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Abstract—A new approach to vehicle security is proposed, 

tried, tested. The designed and tested system comprises an odor 

detection system (E-Nose) that sends signals corresponding to 

selected odors to the smart vehicle Electronic Control Unit 

(ECU), which is interfaced to a smart system with neural 

networks. The signal is interpreted in time and space, whereby a 

certain ordered number of samples should be obtained before the 

vehicle functions are unlocked. Correlation of rise and decay 

times and amplitudes of the signal is carried out to ensure 

security. The proposed system is highly secured and could be 

further developed to become a vital and integrated part of 

Intelligent Transportation Systems (ITS) through the addition of 

driver’s body odor smell as an extra measure of security and in 

cases of accidents to auto call emergency services with driver 

identification and some diagnostics. Such system can be utilized 

in smart cities. 
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I. INTRODUCTION 

An E-nose is generally recognized as a device that 
encompasses array of electrochemical sensors with 
specification capabilities and adaptable pattern recognition 
system, able to classify individual vapors components or 
combination of vapors. An electronic nose recognizes an odor 
through fingerprinting of its chemical elements using an array 
of sensors backed by intelligent software for pattern 
recognition. Such technology is already in use across many 
industries, including agricultural, environmental, food, 
manufacturing, and the military. Also, E-Noses are 
increasingly playing an important role in disease detection such 
as diabetes by means of blood sniffing and can detect lung 
diseases through sucking up vapors and sniffing the breath [1-
5]. 

The E-Nose is a modular sensor system made for detection 
of odors, odor mixtures, aromas, and gaseous substances in 
both open and closed environments. It uses chemical sensors 
for detection and artificial intelligence for treatment of the 
measured data. Such a device is regarded as fingerprint one 
that analyze the odor as a whole. By processing the obtained 
fingerprint of the odor, that constituent substance(s) would be 
recognized and classified. Such functionality is important in 
many quality and security control systems [6-10]. 

There are two main components in the E-Nose; the sensing 
part and the intelligent pattern recognition part. The 
combination of broad sensing elements coupled with intelligent 
information processing algorithms makes the E-Nose such a 

promising tool for odor related applications. The sensing part 
comprises an array of chemical sensing elements with each 
sensing element capable of measuring a different part of the 
odor spectrum. Each odorant produces a unique characteristic 
(signature) of its own, once exposed to the sensing array. By 
presenting many different odorants to the sensor array, a 
database is built up. This database of odorants with each 
odorant unique characteristics is used to train an intelligent 
classification system, such as Neural Networks [11-20]. 

The way E-noses sense odorant molecules is similar to 
human olfactory system. The odors interact with a responsive 
materials making up the sensor array, resulting in a change in 
the material characteristics and producing a unique response 
related to the specific smelled odorant. The software processes 
the obtained signals, and filter out unnecessary information and 
performs pattern recognition. Some commonly used sensing 
materials are: metal oxides, conducting polymers and 
composites. Pattern recognition can be successfully performed 
using an Artificial Neural Networks (ANN) algorithm. 

ANN is a learning and classification algorithm which is 
based on operation of the human brain. It deduces meaning 
from the data which is complex or difficult to mathematically 
represent in order to identify patterns and enable decision 
making. Weight Elimination Algorithm (WEA) is based on 
Backpropagation (BP) algorithm, which is an iterative gradient 
algorithm aims at decreasing the root mean square error. Input 
and output layers are interconnected through hidden layers. 

Traditionally, systems are vulnerable to those armed with 
the right equipment and willing to intrude. Sometimes 
passwords are unchanged and left as the default ones. Access 
to these gives the power to the fraudster’s to hack. The power 
of neural network- odor sensing based technology together 
with the traditional strengths of conventional rules-based fraud 
detection technologies is a crucial and very effective solution 
to intrusion, as adaptive neural analysis techniques allow high 
levels of security; while conventional rules-based technologies 
provide a high level of detail [21-30]. 

In this paper, a fresh approach to the use and application of 
E-Nose system is proposed which utilizes odor sensing 
together with artificial neural networks interfaced to the ECU 
of the vehicle. Such approach will support both driver and 
vehicle functionality in terms of driver identification for secure 
access and mobility. The system can be further developed to 
support driver health and status monitoring while driving and 
driver vanning, support and intervention under critical 
conditions if integrated with other vehicular systems and 
interfaced to wireless communication systems. 
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II. RELATED WORK 

The last few years seen a rapid development of Intelligent 
Transportation Systems (ITS), Intelligent Vehicles and 
Vehicular Ad Hoc Network (VANET) with the tendency to 
change the way we drive by providing a safe, secure, and 
reliable ubiquitous computing systems capable of covering 
many roads. 

Due to the advancement in electronics and its interface and 
integrated into the automotive industry and modern 
transportation, there has been a marked change in road vehicle 
technology. In smart vehicles there are over 90 devices 
equivalent to microcomputers placed in each smart vehicle, 
which provide services to drivers by controlling vehicle 
operation, comfort, support, security and safety. Electronic 
devices are used control almost every function inside the 
vehicle and supervise complex and complicated. 

An intelligent or  smart vehicle, is a vehicle that is capable 
of sensing its environment by combining a variety of sensor 
inputs, such as RAdio Detection And Ranging (RADAR), 
LIDAR LIght Detection And Ranging (LIDAR), Global 
Positioning Systems (GPS),Computer vision devices such as 
Cameras, and other safety, mobility, comfort, and security 
related applications. Such applications are performed through 
continuous monitoring of the performance and status of the 
vehicle and driver. Such sensors can be classified under 
different categories such as; safety sensors, diagnostics sensors, 
multimedia and comfort sensors, environmental sensors, 
driver/driving monitoring sensors, and traffic monitoring 
sensors. There is no doubt that intelligent or smart vehicles will 
play a central role in personal mobility, driver safety and 
vehicle security in the future. Highly automated driving 
systems will relieve the drivers from stressing tasks ensuring 
safer and sustainable mobility [31]. 

Three main operational levels of sensor based electronic 
computing systems are realized within an intelligent vehicle 
system [32]: 

1) Warning: To inform the driver about potentially 

dangerous situations without support or intervention. 

2)  Support: To inform and support the driver and provide 

guidance in facing a risky and threatening situation. 

3) Intervention: An automated intervention into the 

vehicle control is carried out at this level. 

In intelligent vehicles, the objective is to fuse and aggregate 
data from different sensors according to the following criteria: 

a) Data source. 
 

b) Data type. 
 

c) Data architecture. 
 

d) Data level of abstraction. 

Data type and sources are critical in facing many challenges 
related to transportation systems, such as smooth integration 
independent data sources in real-time to meet requirements. 

Data integration techniques must be integrated with 
Artificial Intelligence algorithms (AI) to allow the vehicle to 

understand the current state similar to human understanding 
and interpretation, and to react accordingly. 

The privacy and security of vehicles highly depend on 
reducing intrusiveness by including security and privacy 
protocols into the communication devices that are supported by 
the communication networks to protect drivers, vehicles, 
passengers, and passengers within the vehicular network 
environment. Hackers have penetrated, modified, corrupted or 
taken control of vehicle systems through sensors monitoring 
systems and internal and external vehicle communication 
systems. Threats exist to identity data in vehicles with intrusion 
with malicious intent. In-vehicle software can have millions of 
lines of code which executes on both the primary computer 
board(s) and over 80 microprocessor-based electronic control 
units (ECUs) networked throughout the body of the car [33-
43]. 

It is envisaged in this work that it could be very useful to 
produce mobile E-Noses that could also be mounted within a 
vehicular structure (On Board Units OBU), which is interfaced 
to the rest of the vehicle via and ECU unit and can work in 
collaboration with the rest of the vehicle sensory system. An E-
nose device attached to an intelligent car is considered a 
sensory source similar to on board cameras, radar and other 
sensor data sources, which all need specialized software for 
data collection and interpretation. Adding E-noses to the 
system of available sensors will lead to improvement of the 
overall security model on the three mentioned operational 
levels of the vehicle computing system aiding in both driver 
identification, health diagnostics such as stress levels, heart 
attacks, accidents, and vehicle security. 

III. MATERIALS AND METHODS 

Three Odor keys are inserted and form a complex odor key 
by combining the sequential sampling of the three separate 
odor keys into one correlated odor key.  The odor detection 
system employs Figaro TGS (Metal Oxide Semiconductor) 
Sensors shown in Fig. 1. The keys inserted in a certain order as 
an extra measure of security. The sampling process is shown in 
Fig. 2. The system will sample the odor keys until it returns 
back to its original base signal after completing three-key scan, 
before unlocking. 

Weight Elimination Algorithm (WEA) is used to carry out 
training of the Neural Networks system in order to enable 
unlocking and locking of the vehicle as shown in Fig. 3. 

WEA works by minimizing a modified error function 
which is formed by adding an overhead term to the original 
error function used in the algorithm. The overhead variable in 
weight decay applies cost values to large weights, hence, 
causes weights under consideration to converge to smaller 
absolute values. Large weights can adversely affect 
generalization according to their position in the network. When 
large weight values lie between input layer and hidden layer, 
they affect smoothness of the output function, with possible 
near discontinuities. However, if they lie between the hidden 
layer and the output layer, they can lead to out of range 
outputs. Hence, large weights can cause excessive variation in 
the output and instability of the neural structure, as their values 
and instability will be outside the range of the output activation 

8 
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function. Weights size is critical and in some cases will have 
marked effect in determining generalization. 

 

Fig. 1. Figrao TGS (MOS) Sensor. 

 

Fig. 2. Odor Key Unlocking System 

 

Fig. 3. Neural Networks (WEA) Traninig System 

Weight elimination describes the dynamic changes in 
neural network convergence through error functions. The 
overall weight elimination error function is shown in equation 
(1): 
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Where; 

WEE
: The combined overhead function that includes the 

initial overhead function, InitialE
 and the weight-elimination 

term OverheadE
. 


 :  The weight-reduction factor, 

jkw
: Represents the individual weights of the neural network 

model 

Nw
: A scale parameter computed by the WEA. 

kd
:  The desired Output. 

ko
: The actual Output. 

The dynamic weight changes is calculated as shown in 
equation (4) 
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Where; 


: The Learning Rate (between 0 and 1) 

The parameter, Nw , is a scale parameter computed by the 

WEA, and selected to be the smallest weight from the last 

epoch or set of epochs to converge small weights to zero. Nw  

plays an fundamental role so that the network will converge 
with either small number of large weights or large number of 
small weights. 
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IV. RESULTS 

Tables I to III show the used odor keys used in validating 
the designed system, while Fig. 4 shows the Neural Network 
model used for training with distributed weights. 

TABLE I.  USED ODOR KEY 1 

Odor Key 1 

Response Time (Seconds) VSensor/VRef 

0 1 

1 1.3 

2 1 

TABLE II.  USED ODOR KEY 2 

Odor Key 2 

Response Time (Seconds) VSensor/VRef 

0 1 

1 1.4 

2 2.6 

3 2.7 

4 2.55 

5 1.9 

6 1.6 

7 1.4 

8 1.25 

9 1 

TABLE III.  USED ODOR KEY 3 

Odor Key 3 

Response Time (Seconds) VSensor/VRef 

0 1 

1 1.3 

2 2 

3 3.2 

4 3.7 

5 3.7 

6 3.7 

7 3.7 

8 3.7 

9 2.7 

10 2 

11 1.8 

12 1.6 

13 1.5 

14 1.4 

15 1.25 

16 1.1 

17 1.05 

18 1 

 

Fig. 4. Neural Networks Model used for Traning and Decision Making. 

V. ANALYSIS AND DISCUSSION 

Fig. 5 shows the signal characteristics of odor coded key, 
which consists of three separate odor keys combined. 

 

Fig. 5. Used Odor Coded Key in System Testing. 

Table IV shows used training Odor keys data for the Neural 
Networks model shown in Fig. 4, while Table V shows the 
testing results of the Neural System assuming the correct Odor 
Keys are used. 

Tables VI and VII shows testing data obtained as a result of 
incorrect odor keys 2 and 3 with Table VIII and Fig. 6 showing 
areas of pattern change and difference between correct and 
incorrect odor keys. 

As the sampled odor keys that form the complex odor key 
change in pattern, the inputs to the neural network will change, 
causing a different actual output which when compared with 
desired output will result in a unique value that causes the 
system to stop sampling and raise an alarm and send an alert to 
the vehicle owner that an unauthorized key is being used. The 
vehicle system will stay locked and a time stamp will register 
the date and time the incident occurred. 

Under normal operating conditions, the sampling system 
should fulfill both time cycle scanning, amplitude cycle 
scanning, and order cycle scanning to allow unlocking of the 
vehicle and its functions, hence, the result is a three 
dimensional function as prescribed by equation (5). 
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TABLE IV.  ODOR KEYS TRAINING DATA 

Training Data Set {Odor 1, Odor 2, Odor 3} 

Response Time  
(Seconds) 

Training Data 
Input 
VSensor/VRef 

Training Data  
Output 
VSensor/VRef 

0 1 0 

1 1.3 1 

2 1 0 

3 1 0 

4 1.4 1 

5 2.6 1 

6 2.7 1 

7 2.55 1 

8 1.9 1 

9 1.6 1 

10 1.4 1 

11 1.25 1 

12 1 0 

13 1 0 

14 1.3 1 

15 2 1 

16 3.2 1 

17 3.7 1 

18 3.7 1 

19 3.7 1 

20 3.7 1 

21 3.7 1 

22 2.7 1 

23 2 1 

24 1.8 1 

25 1.6 1 

26 1.5 1 

27 1.4 1 

28 1.25 1 

29 1.1 1 

30 1.05 1 

31 1 0 

TABLE V.  ODOR KEYS TESTING DATA: CORRECT KEYS 

Testing Data Set 1 {Odor 1, Odor 2, Odor 3} 

Response Time  
(Seconds) 

Testing Data 
Input 
VSensor/VRef 

Testing Data  
Output 
VSensor/VRef 

Rounded 
Output 

0 1 0 0 

1 1.3 1.00197 1 

2 1 0.00006 0 

3 1 0.00006 0 

4 1.4 1.00197 1 

5 2.6 0.99917 1 

6 2.7 0.99959 1 

7 2.55 0.99943 1 

8 1.9 0.99987 1 

9 1.6 0.99917 1 

10 1.4 1.00197 1 

11 1.25 0.99788 1 

12 1 0.00006 0 

13 1 0.00006 0 

14 1.3 1.00197 1 

15 2 0.99877 1 

16 3.2 1.00003 1 

17 3.7 1.00045 1 

18 3.7 1.00045 1 

19 3.7 1.00045 1 

20 3.7 1.00045 1 

21 3.7 1.00045 1 

22 2.7 0.99959 1 

23 2 0.99877 1 

24 1.8 0.99862 1 

25 1.6 0.99917 1 

26 1.5 1.00021 1 

27 1.4 1.00197 1 

28 1.25 0.99788 1 

29 1.1 1.00180 1 

30 1.05 0.99867 1 

31 1 0.00006 0 
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TABLE VI.  ODOR KEYS TESTING DATA-CHANGE IN ODOR KEY 2 

Testing Data Set 2  {Odor 1, Odor 2, Odor 3} 
Incorrect Odor Key 3 

Response Time  
(Seconds) 

Testing Data 
Input 
VSensor/VRef 

Actual Testing  
Data Output 
VSensor/VRef 

Rounded  
Output 

0 1 0 0 

1 1.3 1.00197 1 

2 1 0.00006 0 

3 1 0.00006 0 

4 1.4 1.00197 1 

5 0.6 -0.09999 0 

Time Stamp Stop Sampling and Send Alert 

TABLE VII.  ODOR KEYS TESTING DATA-CHANGE IN ODOR KEY 3 

Testing Data Set 3 {Odor 1, Odor 2, Odor 3} 
Incorrect Odor Key 3 

Response Time  
(Seconds) 

Testing Data 
Input 
VSensor/VRef 

Actual Testing  
Data Output 
VSensor/VRef 

Rounded  
Output 

0 1 0 0 

1 1.3 1.00197 1 

2 1 0.00006 0 

3 1 0.00006 0 

4 1.4 1.00197 1 

5 2.6 0.99917 1 

6 2.7 0.99959 1 

7 2.55 0.99943 1 

8 1.9 0.99987 1 

9 1.6 0.99917 1 

10 1.4 1.00197 1 

11 1.25 0.99788 1 

12 1 0.00006 0 

13 1 0.00006 0 

14 1.3 1.00197 1 

15 2 0.99877 1 

16 3.2 1.00003 1 

17 3.7 1.00045 1 

18 3.7 1.00045 1 

19 3.7 1.00045 1 

20 3.7 1.00045 1 

21 3.7 1.00045 1 

22 2.7 0.99959 1 

23 2 0.99877 1 

24 1.8 0.99862 1 

25 1.6 0.99917 1 

26 0.5 -0.09999 0 

Time Stamp Stop Sampling and Send Alert 

TABLE VIII.  COMPARISON BETWEEN ODOR  KEYS TESTING DATA 

All Data Sets {Odor 1, Odor 2, Odor 3} 

Response Time  
(Seconds) 

Correct  
Odor  Keys 
VSensor/VRef 

Incorrect  
Odor Key 2 
VSensor/VRef 

Incorrect  
Odor Key 3 
VSensor/VRef 

0 1 1 1 

1 1.3 1.3 1.3 

2 1 1 1 

3 1 1 1 

4 1.4 1.4 1.4 

5 2.6 0.6 2.6 

6 2.7  2.7 

7 2.55  2.55 

8 1.9  1.9 

9 1.6  1.6 

10 1.4  1.4 

11 1.25  1.25 

12 1  1 

13 1  1 

14 1.3  1.3 

15 2  2 

16 3.2  3.2 

17 3.7  3.7 

18 3.7  3.7 

19 3.7  3.7 

20 3.7  3.7 

21 3.7  3.7 

22 2.7  2.7 

23 2  2 

24 1.8  1.8 

25 1.6  1.6 

26 1.5  0.5 

27 1.4   

28 1.25   

29 1.1   

30 1.05   

31 1   

 

Fig. 6. System Testing with Incorrect Odor Keys. 
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Any deviation in any of the parameters in equation (5) will 
cause the system to halt and alert. The order or keys position 
relative to each other can periodically be change, by retraining 
the system again for different order of the same odorant, which 
is a standard security practice as changing a password every 
few weeks. Also, the types of odorants can also be changed and 
the system retrained to use the new odorants, which is a fourth 
security dimension. 

The sampling system could be placed in a remote device 
held by the person concerned or in the vehicle itself with 
regular but random interchanging of odor keys. 

Neural Engine will initially be trained to recognize the odor 
keys and only unlocks the vehicle if the random combination 
of the three keys falls within the space-time domains of the 
training key sets. Any other keys will not be able to unlock the 
system and will raise a remote call to the user. 

VI. CONCLUSIONS 

The proposed system is a good step towards a new type of 
vehicular security systems, which can be made as simple and 
as complex as necessary by increasing the number of odorants 
or the process of sampling. Future developments could include 
smelling of the driver body odorant in a combination with an 
external odorant or on its own, which means that body odor 
can be used as a biometric identification for vehicles, similar to 
fingerprinting. More stable and integrated sensors with 
temperature compensation and high level of noise isolation will 
contribute to a great deal in refining the system and improve its 
reliability. 
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