
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

66 | P a g e

www.ijacsa.thesai.org

Traceability Establishment and Visualization of

Software Artefacts in DevOps Practice: A Survey

D. A. Meedeniya1, I. D. Rubasinghe2, I. Perera3

Dept. of Computer Science and Engineering, University of Moratuwa, Sri Lanka

Abstract—DevOps based software process has become

popular with the vision of an effective collaboration between the

development and operations teams that continuously integrates

the frequent changes. Traceability manages the artefact

consistency during a software process. This paper explores the

trace-link creation and visualization between software artefacts,

existing tool support, quality aspects and the applicability in a

DevOps environment. As the novelty of this study, we identify the

challenges that limit the traceability considerations in DevOps

and suggest research directions. Our methodology consists of

concept identification, state-of-practice exploration and

analytical review. Despite the existing related work, there is a

lack of tool support for the traceability management between

heterogeneous artefacts in software development with DevOps

practices. Although many existing studies have low industrial

relevance, a few proprietary traceability tools have shown a high

relevance. The lack of evidence of the related applications

indicates the need for a generalized traceability approach.

Accordingly, we conclude that the software artefact traceability

is maturing and applying collaboratively in the software process.

This can be extended to explore features such as artefact change

impact analysis, change propagation, continuous integration to

improve software development in DevOps environments.

Keywords—Software traceability; visualization; comparative

study; DevOps; continuous software development

I. INTRODUCTION

Software system is an asset that contributes to enhance
products or services. Change of a software system is inevitable
as the requirements are evolving over time. Technology
improvements, environmental changes, modifications in legal
bodies and many factors affect requirement changes.
Therefore, a continuous system update is required to cope with
the artefact changes by preserving the value of the software.
Hence, considering the usage of resources, time, cost and
effort, software evolution is preferred over building a new
software system to manage the changes [1]. Generally,
software evolution is identified as a maintenance task due to
new change requests during the Software Development Life
Cycle (SDLC). The software evolution mainly depends on the
type of software being maintained, the development processes,
and directly affects the related software artefacts.

Software artefacts are the intermediate by-products used in
each stage of the SDLC that contribute towards the outcome of
an intended product. For instance, Software Requirement
Specification (SRS), non-functional design reports, design
diagrams, source code, test cases, test scripts, bug reports,
walkthroughs, inspections, configuration files, build logs,
project plans, risk assessments and user manuals are some of

the artefacts in the SDLC [2][3]. There are different forms of
relationships between the homogeneous and heterogeneous
software artefacts. Some artefacts may be highly coupled, and
some may depend on other artefacts in different degrees,
unidirectionally or bidirectionally. Thus, software artefacts
consistency management helps to fine-tune the software
process. The incomplete, outdated software artefacts and their
inconsistencies mislead both the development and maintenance
process. Thus, artefact management is essential such that the
changes are accurately propagated to the impacted artefacts
without creating inconsistencies. Traceability is the potential to
relate artefacts considering their relationships [4][5]; thus, a
solution for artefact management. Being an active research
topic, many studies have discussed the different aspects of
traceability, tool support in different scopes and domains.

At present, DevOps, that unifies the process between the
development (Dev) and operation (Ops) teams, has become a
popular software development practice. DevOps environment
supports to build, test and deliver the product at a high demand
and results in faster evolvements of the products [6][7]. The
concepts, Continuous Integration (CI) and Continuous Delivery
(CD) encourage to accept frequent changes at any phase of the
SDLC in DevOps practice [8]. Thus, artefact management is
essential to achieve in DevOps environments to avoid artefact
inconsistencies. However, it is challenging to ensure
traceability with maximum automation due to frequent
integrations. Further, the practical use of artefact traceability in
DevOps is not widely in use due to the limitations in existing
traceability techniques, tools and automation capabilities. Thus,
auditability and traceability are challenging in DevOps [9].

We present a survey on artefact traceability management in
DevOps practice. The traceability concepts and terminology
are described in Section II. Section III and Section IV explore
the traceability creation techniques and related visualization
methods, respectively. Related traceability management studies
in DevOps practice with the conceptual traceability models are
discussed in Section V. Moreover, the tool support to manage
traceability is explored in Section VI. Section VII explores the
traceability evaluation methods using quality aspects and
network analysis. The associated challenges and limitations are
discussed in Section VIII. Finally, Section IX concludes the
survey with the identified suggestions and possible future
directions for traceability support in DevOps practice.

II. BACKGROUND

A. Concept of Traceability

A software system is a combination of several artefacts that
evolves through a certain software development process model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

67 | P a g e

www.ijacsa.thesai.org

It is important to manage the relationships and dependencies
between these software artefacts to maintain the consistency of
the product. The outdated artefacts can lead to artefact
inconsistency, synchronization issues and lack of stakeholders’
trust in artefacts [10]. Thus, it is essential to manage the
artefact traceability in software development with DevOps
practices that involve frequent Continuous Integration and
Continuous Delivery (CICD).

Traceability provides a logical connection between the
artefacts of the software development process. It is important to
maintain the traceability among both homogeneous and
heterogeneous software artefacts throughout the SDLC stages
covering the requirements gathering, design, development,
testing, maintenance and deployment. For example, the ability
to track the relationships between requirements and their
sources is essential to revise the initially gathered set of
requirements [2]. This concept was initially used as a method
of managing requirements artefact during the requirements
engineering phase [11]. Generally, traceability is defined as the
ability to follow the life cycle of a software requirement both
forward and backwards and overcome the inconsistencies
during software development [4]. Thus, each alteration occurs
in each requirement is traced among other requirements and
changed accordingly based on the impact. These traces are
used in the requirement validation and verification processes.

Center of Excellence for Software and Systems
Traceability (CoEST) has defined traceability as “the ability to
interrelate any uniquely identifiable software engineering
artefact to any other, maintain required links over time, and use
the resulting network to answer questions of both the software
product and its development process”. They have not limited to
requirement traceability and have declared traceability in terms
of other artefact types such as design documents, source code
and test cases with the deployment of an experimental
traceability environment for researchers called TraceLab [12].
Traceability is defined as the ability to trace the dependent
items within a model and trace the corresponding items in
other models [13]. As a result, currently, traceability is used
not only in requirements management but also for other
artefact types in different software development methodologies
like Model-Driven Development (MDD) [14]. This wide range
of adaptation of traceability shows its importance in improving
software quality, maintenance, evolution and reuse activities.

B. The Terminology of Software Artefact Traceability

Traceability refers to the ability or the potential of tracing a
change propagation among artefacts in a software system. For
a given trace, there can be one or many possible trace paths,
while each trace path has a source and target artefacts. An
artefact may be a source for a given trace path and a target for
another trace path, simultaneously. A trace link or a traceability
link is a relationship between a pair of artefacts. All trace links
generated between two sets of artefacts are referred to as a
trace relation [4]. A trace set is the sum of all generated traces
and traceability graph is used to visualize all the relationships.
A traceability graph is a traceability network when the edges
are directional, or the nodes are embedded with a weight.
Further, traceability maintenance manages the consistency of
the artefacts and updates the traces for a given change.

Different traceability classifications exist in the literature as
shown in Fig. 1. One such classification is automatic or
manual, based on the automation level of the traceability
process. Another classification is forward or backwards, that is
based on the direction of the traceability path [4]. Forward
tracing follows subsequent steps such that from requirements
to code; whereas backward tracing follows antecedent steps
such that code to design or requirements artefacts. Artefact-
level is another criterion that classifies traceability as
horizontal or vertical. Horizontal tracing reflects homogeneous
artefacts, which are at the same level of abstraction such as
tracing between different versions of requirements [15].
Further, this can be sub-classified based on the direction such
that horizontal forward tracing or horizontal backward tracing.
Tracing heterogeneous artefacts that are in different levels of
abstraction, such as the requirement to code, is considered as
vertical tracing, which can be either vertical forward tracing or
vertical backward tracing. Proactive and reactive tracing is
another categorization based on stimuli behaviour. In reactive
tracing, the traces are created on demand by responding to a
stimulus to initiate the trace capture. Whereas in proactive
tracing, traces are created in the background without explicit
response to any stimulus [4]. The traceability link generation
techniques (see Section IV) that are based on these categories
are selected by considering aspects such as the problem domain
and the behaviour of the software system.

C. Traceability in DevOps Practice

The DevOps concept represents the collaboration of the
development and the operational teams [6][9]. DevOps eases
the project team management with communication,
understandability, integration and relationships by bridging the
gap between the development and operational teams. This
CICD process increases the rate of change and deploys the
features into production faster [16][7]. Thus, DevOps-based
software development improves the quality, customer
experience and supports simultaneous deployment in different
platforms. The associated cross-functionality behaviour
enables the early identification of ambiguities, reduction of the
error fixing time and reduction of the problem complexities.
The importance of DevOps towards the business aspect is also
significant to shorten the development life cycle, increase the
release velocity and improve the Return on Investment (ROI)
by achieving a higher customer satisfaction [6]. Further, rich
collaboration and performance-oriented culture encourage the
ability to research and innovate within projects. However, the
Internet of Things (IoT) and Microservices architecture are
identified to be challenging in DevOps [9].

Fig. 1. Summary of Traceability Classification.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

68 | P a g e

www.ijacsa.thesai.org

DevOps environments associate five main principles:
continuous planning, continuous integration, continuous
delivery, continuous testing and continuous deployment [6].
The CI process integrates work frequently that leads to
multiple integrations per day and deploys effectively [17][18].
Generally, CI verifies the integration using build automation by
early detection of integration errors. The ability to trace the
artefact changes is essential to notify feedback at an integration
failure [19]. Thus, it is important to have software artefact
traceability support for the CI process to handle changes.

III. TRACEABILITY ESTABLISHMENT

A. Information Retrieval and Data Pre-Processing

In software development, different types of artefacts are
considered for traceability creation such as requirements to
design, requirements to source code and test cases. For
instance, requirement traceability shows the mapping of the
requirements to other stages of the SDLC; design traceability
refers the ability to trace design and requirements to design
rationale for verifying and maintaining the architectural design
[20]. In a DevOps environment, the design traceability helps to
identify the change impacts, trace design evolution, relate
design objects and analyse the cross-cutting concerns.

Generally, Information Retrieval (IR) methods and data
pre-processing are considered as pre-requisites to the
traceability establishment process. Software artefacts consist of
different formats such as the requirements in natural language,
design artefacts in different Unified Modelling Language
(UML) notations and source code artefacts in programming
languages. Thus, pre-processing techniques should be applied
to extract the required data as an initial task towards the

generation of traceability links. Most of the time, the textual
content in the artefacts provides descriptive details about its
informal semantics. The frequently involved pre-processing
steps for textual-based requirements artefacts are Natural
Language Processing (NLP) tasks such as tokenization, text
normalization, anaphora analysis, morphological analysis and
stemming [4][21]. It is assumed that the artefacts are
conceptually related if their textual contents are similar Thus,
trace links can be created among them. Hence, the other types
of artefacts can be pre-processed with different file readers,
UML parsers and programming language specific parsers.

IR methods enable the extraction and analysis of the
embodied textual contents in artefacts with a less pre-
processing effort [4]. It minimizes the cost of traceability link
recovery as it does not consider predefined vocabulary or
grammar. The key steps in a generalize IR process that follows
a pipelined architecture are: (1) document parsing, extraction
and pre-processing, (2) corpus indexing with an IR method, (3)
ranked list generation and (4) analysis of candidate links.
Moreover, most IR related techniques are Vector Space Model
(VSM), Latent Semantic Indexing (LSI) and Term Frequency-
Inverse Document Frequency metric (tf-idf) and they have
provided better performance outcomes in the literature [22].

B. Traceability Establishment Approaches

Different types of approaches have been used in the
literature to generate traceability links between software
artefacts. This section discusses the widely used software
artefact traceability establishment approaches and Table I
states a comparison of these approaches.

TABLE I. TRACEABILITY ESTABLISHMENT APPROACHES

Method Description Advantages Limitations

Rule-based

Defines a rule set based on artefact attributes.

Manages traceability with rule re-evaluation

[23].

Works well with artefacts such as

requirements, use cases, object models

[23].

Structural changes are hard to identify

[4].

Hypertext
Manage traceability using XML markup

specifications [23].
Works with requirements and code [4].

Weekly supports the other types of

artefacts.

Event-based
Manage traceability using publish-subscribe

links and event-based subscriptions [24].
Maintains dynamic links.

Scalability issues in maintaining the

dynamicity of the traceability [24].

Constraint-based
Provides a set of constraints which must not be

violated by traceability links [25].

Views artefact types as constraints among

them.

Difficult to refer all the traceability links

with the constraints [25].

Transformations
Uses incremental [26] and graph-transformation

based methodologies.

Suited for model-based software systems

[26].

Difficult to apply to artefacts that are not

generated using MDD [26].

Goal-centric (GCT)

Manages the change impact of non-functional

requirements. Use soft goal interdependency

graph and traceability matrix [27].

Ensure quality by assessing the change

impact of functional vs. non-functional

aspects [27].

Lack of scalability and tool support [30].

Model based
Manages traceability using template-based

models [28].
Supports different artefact types [28].

Lack of support towards non-MDDD

[28].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

69 | P a g e

www.ijacsa.thesai.org

Rule-based traceability generates different types of trace
links between artefacts based on the semantics and the
grammatical features of their words [29]. First, the traceability
link generation rules are defined based on the attributes of the
artefacts and then the traceability maintenance phase re-
evaluates the rules. Moreover, rule-based approaches can be
combined with event-driven approaches. Thus, the traceability
maintenance can be conducted in two phases: (1) recognizing
changes based on events and (2) re-evaluating the rules that
governing link updates [26]. However, these rule-based
traceability techniques are not applicable to all types of
artefacts rather than requirements and source code [23].

Hypertext-based traceability uses an underlying XML
representation along with the conformance analysis. This is
suitable for complex and versioning of traceability links [4].
However, hypertext-based traceability support technique is also
limited to software artefacts such as requirements and source
code [23].

The event-based approaches consider the events occur
during the software development activities to maintain the
traceability links. For example, the deletion of an artefact can
be made as a trigger to delete all the connected traceability
links. Maro et al., have addressed this using a similar
conceptual technique; publish-subscribe mechanism, that
connects traceability maintenance tasks to events [26].
However, this technique has scalability issues [24][25].

Various other approaches that can be used to establish
traceability are available in the literature. The model-based
traceability establishment approach manages the inter-
relationship of models using XML representations, without
narrowed only into UML, Business Process Model and
Notation (BPMN), feature models and systematic review for
architecture to code traceability [27][28]. Constraint-
programming is another approach that declares the valid rules
for traceability links [25]. Here, the traceability links that are
not referenced by constraints are considered as consistent by
default. The transformation-based approaches [26], mainly
graph-transformations are used to generate traceability links
based on the artefact transformations. However, these
approaches are not widely used in practice. The Design
Decision Tree (DDT) provides the ability to connect
requirements to architecture decision and design elements
under the traceability establishment. The traceability model
presented in [20], has addressed the traceability in a design
rationale model using the conceptual UML notations.
However, it captures relationships between only two entities,
architecture rationale and architecture elements. Further, a
scoped-based approach was explored by Patricia et. al., [30],
that emphasizes the current status of considering traceability in
a given situation rather than presenting all the traces. This has
been an attempt to minimize the traceability cost by engaging a
manageable minimal set of links.

IV. TRACEABILITY VISUALIZATION

Software artefact traceability visualization helps the
decision-making process to analyse the relationships among
artefacts. However, it is challenging to visualize many
traceability links and paths among software artefacts in real-
time with the evolving inter-relationships. The challenges

include scalability and visual clutter related issues. Although
there are data visualization techniques and tools to analyse
large temporal data, the selection of an optimal representation
depends on different properties in the traceability links. This
section discusses traceability visualization techniques and
Table II summarizes a comparison of these techniques.

Traceability matrix is used to record the trace relations.
Initially, requirements traceability matrix has used to associate
requirement artefacts during the requirements engineering
process [31]. It shows the associated or dependent pairs of
artefacts using the trace links [4]. The work done by Cleland-
Huang has shown the possibility of increasing the cost of
traceability creation and maintenance by using this technique,
although the row-column structure is simple. Since this
representation is easily readable by the stakeholders, a single
repository is sufficient to document both forward and
backward traceability results, which is an advantage in terms of
storage. However, representing many artefacts and trace links
using a traceability matrix is less practical due to the
complexity in access, search and update operations.

The hierarchical tree is a node-link based representation
that uses lines to connect parent and child nodes. This
representation is easily understandable and communicates a
hierarchical structure. There are two sub-approaches in this
hierarchical tree visualization. The first approach has edges
between relevant children nodes and group edges using the
hierarchical edge bundling technique. However, this method
has the drawback of visual clutter with a larger number of
traceability links [35]. The second approach directly adds
traceability links as children of leaf nodes. Further, this
technique is used to represent detailed dependency information
of an item. In related work [31], hierarchical tree visualization
is used as a supplement for Tree-map visualization to illustrate
the detailed information on each trace.

TABLE II. TRACEABILITY VISUALIZATION TECHNIQUES

Method Features Advantages Limitations

Lists [32]

Show data in

1-dimension,

sequentially.

Efficiency due to

simplicity.

Limited for a small-

scale data due to a single

dimension.

Traceability

matrix [31]

[33][34]

Stores data in

2-dimensional

grid structure.

Well-represents

a small set of

artefacts.

Impractical to represent

a larger number of trace

links.

Cross-

reference

[31]

Represents

data in a table

structure.

Provides a list of

related links for

an artefact.

Hard to show the full

trace structure.

Scalability issues.

Tree-map

[33][35]

Uses a tree

data structure

to represent

data in 2D.

Represents a

large tree by

optimum display

space.

Hard to communicate

with the layers.

Complex for a larger set

of traceability links.

Hierarchical

tree [35]

Node-link

representation

to show data

hierarchically.

Gives trace

dependency data.

Simple to

understand.

Visual clutter when a

larger number of

traceability links are

involved.

Traceability

graph

[33][36][37]

Show data as

nodes, links as

edges.

Visualizes

structured data

with relations.

Limit the graph view for

excessive nodes.

Performance issues.

Sunburst and

Netmap

[32][33]

Use a radial

layout.

Browse, navigate

with user

orientation.

Not filter the

visualization links.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

70 | P a g e

www.ijacsa.thesai.org

Traceability graph visualizes a trace set in a node-link
format, where trace artefacts as nodes and trace links as edges
[4]. The associated visual clutter can be reduced and can
enhance the readability of the traceability graph by using
colour codes for nodes and edges based on their type, category
and direction [38]. The traceability outcome can be analysed
by graph traversal and graph analysis methods. Moreover,
network analysis methods discussed in Section VII can be
applied to analyse these network graphs. However, this
technique has performance issues when there is an excessive
number of nodes and links.

Among many other visualization techniques, lists are a
single dimension primary approach that can be applied for a
small set of data. This technique shows efficient performance
due to its simple structure [32]. Cross-reference is a tabular
structure that represents a list of related links for a given
software artefact. However, this technique does not support to
obtain an overall traceability representation [31]. Tree-map
approach represents trace data in a 2D tree structure and
supports a larger set of data. However, the communication
among each trace artefacts by traversing the tree tends to be
complex [33]. Further, Sunburst and Netmap visualization
[32] is a radial layout representation approach.

Most of the traceability visualization techniques have
slightly considered model driven features; thus, there is a limit
of supporting to a range of software types [36][37]. Many
related works have addressed issues such as visual clutter and
scalability [32][33] and several tools are integrated with a
specific Integrated Development Environment (IDE).
However, most of the studies have not addressed different
types of software artefacts, as they have considered a certain
type of artefacts such as either requirements or source code.
Thus, there is a potential need for a generic software artefact
visualization methodology that can accommodate artefact
representation independent of its type and scale.

V. TRACEABILITY IN PRACTICE

A. Models for Traceability in DevOps Practice

Although there are some attempts in the recent literature to
adapt traceability into Agile environments, traceability
management in DevOps practices has not been addressed well.
A generic Agile Traceability Model (ATM) for managing Non-
Functional Requirements (NFR) has presented by Firdaus et al.
[39]. They have traced the effects of the frequent Functional
Requirement (FR) changes on NFRs such as security and
performance. This model is based on an example ATM [4] that
trace requirements, source code and test cases and an NFR
traceability metamodel that links the stakeholders and the
requirement grouping component of the project. Each artefact
and its elements of the FRs are used to trace NFR with a
mediate association component. Fig. 2 shows the integration of
ATM (blue in colour) and NFR traceability metamodel (grey in
colour). Here, the code is backtracked to the requirements
through testing. It is required to have test cases for NFRs
without adding code to the overall model. Thus, the impact of
development changes is traced using test cases. This conceptual
model has been implemented as a prototype. Although the average
value of precision and recall of the process model is 0.46, they
have stated that the integration is mapped correctly.

A traceability approach named Trace++, that transforms a
traditional software development to Agile environments has
been proposed in [40]. They have addressed four transition
issues such that (i) amount of rework per sprint, (ii) high-level
understanding of a project scope before starting a sprint,
(iii) lack of NFR documentation, and (iv) losing management
control. They have considered extended information as shown
in Fig. 3 when transforming to an Agile environment.

Another semi-automated traceability prototype for Agile
development is proposed in [41], with the intention of
achieving reusability of requirements artefacts. This work is
based on an extension of an existing metamodel named TmM
model [42]. The authors have identified reusable traceability
links with the automated traceability link generation and Agile
integration approaches as shown in Fig. 4. The user story
change process is started when a change to a user story in the
Agile team backlog occurs. If the responsible link is not found
in the link repository, then the link generation process obtains
rules from the metamodel and sends the result to the link
maintenance process that modifies or removes the impacted
links. The automated link generation process requires a manual
confirmation from an authorized Agile team member via the
link generation reviewer in IDE.

Fig. 2. Proposed NFR Agile Traceability Model [39].

Fig. 3. Trace++ Traceability Solution Structure [40].

Fig. 4. Traceability Methodology for Requirements Reuse in Agile [41].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

71 | P a g e

www.ijacsa.thesai.org

Generally, in a DevOps environment, distributed cloud
platforms integrated software projects are monitored using logs
and runtime information. These data are scattered in large-scale
projects, due to the use of multiple tools and dashboards, hence
hard to identify accurately. A traceability approach to
monitoring these data in a DevOps environment has been
proposed using explicit links between runtime information and
source code in [43]. This work has used an online context
graph to show the connections such that edges denote the
implicit connections among information fragments. The
conceptual model of this solution is shown in Fig. 5. A
prototype of this context analytics model has been evaluated
using cloud applications. The cost associated with the artefact
pre-processing is low in this approach, as it considers runtime
information with short textual artefacts. The results have
shown a 48% reduction of efforts required in analysis steps and
an average reduction of 40% for the required inspected traces.

A heuristic named SPEQTRA is proposed to locate the
traces of automated tests in the CI process [44]. This approach
enables the efficient continuation of a project when a test case
is failed during the DevOps practice. Fig. 6 shows the trace
execution of successful and unsuccessful test cases. This
approach executes each test case records the traces and
identifies the closet item set to transform traces to sequences
via SPEQTRA. Then, the classes with sequences are ranked
using the Jaccard similarity coefficient based on the fault
likelihood to localize the classes with faults.

Similarly, another test case artefact-based tracing approach
that supports CI for the automotive industry domain is
proposed in [45]. They have used black-box testing following
the input and output signals through process controllers as
shown in Fig. 7. Every keyword in the test suites are used to
trace the most suitable tests for a given CI task and a mapping
table is maintained for the selection.

Fig. 5. DevOps Context-Based Analytics Conceptual Model [43].

Fig. 6. SPEQTRA Heuristic Workflow [44].

Fig. 7. Process Model for Trace-Based Test Selection [45].

Although several models are available that can manage
software artefact traceability, most of them are restricted to a
few artefact types. The model ATM [39] has considered
requirement level artefacts, SPEQTRA [44] is based on test
case artefacts, Trace++ [40] has addressed issues in the Agile-
based development and other approaches have emphasized
only on development level artefacts. A single model is not
sufficiently addressed the traceability between heterogeneous
artefacts in a CICD pipeline due to the inbuilt complexity;
Thus, traceability management in a DevOps practice is still an
active research area.

B. Related Studies on Traceability Management

Consistency management of a large set of artefact
relationships, when a change occurs during the software
development process is a costly task that consumes more time
and effort. Although there are few studies on managing
traceability in many artefacts, there are several studies that
have focused on traceability maintenance of a small set of
artefacts. It is important to ensure the correctness of traceability
over time [26][23]. The proper identification of a feasible
traceability management approach could minimize the
associated cost and effort.

Traceability recovery management system incorporating IR
techniques such as VSM and LSI were used in [46]. They have
performed an incremental semi-automated traceability recovery
by integrating into an artefact management tool called ADMS
[47]. Moreover, they have identified quality issues in the
textual descriptions of the traced artefacts using IR tools.
However, their results have shown that IR techniques are not
sufficient to identify all the traceability links and required to
remove a large number of false-positives manually. An
approach named SCOTCH+ (Source code and COncept based
Test to Code traceability Hunter) was presented in [48] that has
addressed the JUnit test to code traceability. The techniques;
dynamic slicing and textual information analysis were used in
this approach and have shown results with high accuracy.

The tool Software Artefact Traceability Analyser (SAT-
Analyser) [21][48] has addressed the traceability among
requirements artefact, UML class diagrams regarding the
design artefact and the source code artefact in Java
programming language. It has used NLP and traceability has
been established based on a string similarity computation using
the Jaro-Winkler algorithm and Levenshtein Distance
algorithm along with WordNet synonyms and pre-defined
dictionary ontology. Next, the artefacts and their established
trace links were parsed through the Document Object Model
(DOM) parser and converted into a predefined XML structure
for traceability graph representation. However, this approach
lacks the artefact support for the entire SDLC. Subsequently,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

72 | P a g e

www.ijacsa.thesai.org

this work has extended to support DevOps based software
development [49][50]. This approach manages the traceability
among heterogeneous artefact types that are involved in a
DevOps environment covering each stage in SDLC.
Additionally, this work has addressed continuous changes
using change detection, change impact analysis and change
propagation. Further, this study has supported the collaborative
nature in DevOps practice by integrating the SAT-Analyser
tool with the existing project management tools.

Accordingly, these related studies have mainly considered
the automation of traceability management. Requirement,
design level artefact traceability and enhancing traceability
with visualizations have been slight considerations. The
interest in obtaining complete automation in literature is
advantageous for DevOps in practice. But having traceability
support for all artefact types in overall SDLC phases is also
required along with automation to be applicable to DevOps
which is not significantly addressed together in literature.

VI. TRACEABILITY MANAGEMENT TOOLS

Variety of traceability management tools is available in the
literature. These tools can be classified as proprietary tools:
commercial and open source and research-based prototypes.
Additionally, these tools can be grouped as non-Graphical User
Interface (GUI) supportive and tools with fine-tuned IDEs.
Among them, only a few sets of tools support traceability
management in a DevOps environment, that considers all the

artefacts from the requirement phase to delivery and
maintenance phases. The overall analysis of commercial tools
is presented in Table III. Considering the proprietary tools,
TraceMaintainer [15] is an independent tool that supports any
Computer-Aided Software Engineering (CASE) tool by
allowing to work in any heterogeneous environment. However,
this tool is limited to the requirements and design artefacts.

The tool TraceME [48] is a freely available integrative tool
within the Eclipse IDE as a plugin. Tools such as TIRT [34],
are limited to specific application domains such as software
product line-based information retrieval. The artefacts such as
test scripts, configuration files, deployment and delivery
related artefacts in a DevOps environment have not
significantly addressed in these existing tools. Thus, there is a
need for tools with CI features that have addressed all the
artefact types and support the CICD process.

Accordingly, lack of tool support for all types of software
artefacts in the DevOps practice with a minimum of
dependencies, such as depending on a given IDE or a platform
like Windows or Ubuntu is observable. Further, most of the
tools lack proper visualization of traceability information. Only
some tools are adapting the traceability graph visualization and
still, those representations are not using colour codes or
interactive usability attributes.

TABLE III. TRACEABILITY MANAGEMENT AND VISUALIZATION TOOLS

Tool name Artefacts

Traceability technique Visualization technique

R
u

le
-b

a
se

d

H
yp

er
te

x
t-

b
a
se

d

In
te

g
ra

ti
ve

T
ra

ce
a
b
il

it
y

m
a
tr

ix

C
ro

ss
-r

ef
er

en
ce

T
re

e-
m

a
p

H
ie

ra
rc

h
ic

a
l

tr
ee

T
ra

ce
a
b
il

it
y

g
ra

p
h

TraceMaintainer [15] Requirements, structural UML X X X

TraceME [48] All X X X

Rational DOORS [51] Requirements X X X X

Rational RequisitePro [52] Requirements X X X X X

Cradle [53] Requirements X X X

ReqView [54] Requirements X X X

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

73 | P a g e

www.ijacsa.thesai.org

VII. QUALITY MEASURES

One major hindrance in the practical application of
traceability is the cost and resource consumption. In generic
software development organizations are reluctant to spare the
resources on traceability. Therefore, validating the traceability
aspects and ensuring the quality measures are important to
encourage real-world usage. Usability measures consider the
user experience and interactivity based on evolving user
expectations. The usefulness, ease of use, learnability and
likeability are treated as the general concepts of the usability
[55][56]. Generally, a larger user base is considered to measure
the usability aspects of a traceability tool. Further, the degree
of automatization by reducing human effort in trace link
generation, time, user interface improvements with the aid of
colour codes and help-tips are used as usability metrics [57].

The traceability coverage refers to the set of identified
correct links after a traceability link recovery process. The link
coverage analysis helps to identify the poorly traced artefacts.
Traceability coverage can be defined as:

 ()

 (1)

where, targets is the set of target artefacts and links_a

(targets) represents the set of links traced between the artefact
a and the artefacts in the set target [4].

The statistical methods precision, recall and F-measure are
widely used accuracy measures [39]. Precision refers to the
number of correct instances among all the retrieved instances
(2). Recall or the sensitivity denotes the number of correct ones
among a total number of relevant instances (3) [58]. The higher
precision saves time in locating and implementing the changes,
while higher recall is useful in confirming that all proposed
changes will be taken into consideration. Moreover, F-measure
(F1 Score) is a measure of accuracy and defined as the
weighted harmonic mean of the precision and recall of a test.
This conveys the balance between the Precision and the Recall.
F-measure assumes values to be in the interval [0,1].

 (2)

 (3)

 (4)

Ensuring reliability is important in traceability
establishment and management. It ensures that a process will
perform its intended tasks, without any failures for a given
time. The Hidden Markov Chain is one of the algorithms that
can be applied to measure software reliability. For instance,
Lee et al., have proposed an approach using Markov Chain for
measuring reliability in UML by supporting traceability to
overcome the limitations in analysis and modelling [59].
Further, traceability matrix-based techniques help to preserve
the reliability with respect to requirement artefacts.

Network analysis is originated from graph theory and
applied on problems that are represented in a node-link
structure as a graph. This technique is actively used for graph
analysis in various domains such as food chains in ecosystems

to internet traffic in computer systems. Network analysis
comprises of several centrality measures that can be used to
validate and assess the accuracy of the traceability links in
networks [60]. Fig. 8 shows an example of four centrality
measure values, degree centrality (D), closeness centrality (C),
betweenness centrality (B), eigenvector centrality (E), obtained
using the Python NetworkX libraries. The maximum and
minimum centrality measures of nodes in a traceability graph is
useful to identify the most and least connected artefact,
centralized artefact, the artefacts with control over the network
and influential artefacts. Further, these four centrality measures
have used in validating traceability results [61].

Degree centrality (5) describes the status of a node in
accordance with its adjacent links by counting the
neighbouring nodes [60][62]. It has two versions as in-degree
that counts incoming relationships and out-degree that counts a
number of outgoing connections. Thus, a node that has a higher
degree centrality value denotes that it is more central and has
more power to be visible due to a maximum number of
relationships in that network with respect to other nodes. For
instance, nodes R and T have the maximum degree centrality in
Fig. 8 with a value of 4 since they both have four connections.

CDegree (v) = deg (v) where, v denotes a node.

Closeness centrality (6) defines the nearest node to most
nodes [60][62]. It considers the sum of a node to all the other
nodes available in a network. Hence, a maximum closeness
centrality value depicts that the distance from that node to the
majority of other nodes in a lower value having the ability to
send information fast. In Fig. 8, maximum closeness centrality
value belongs to two nodes; R and T.

 ()

∑ ()

where, d(x,y) denotes the distance between vertex x and
vertex y. N denotes the number of nodes in the graph.

Betweenness centrality (7) denotes the occurrences of a
node being a bridge along the shortest path to other nodes
[60][62]. Here, it is assumed that information flow is
performed over the shortest paths between nodes. Accordingly,
a node with a higher betweenness centrality value may have
control within the network in terms of data passing as in Fig. 8
the node T has the maximum betweenness centrality value.

 () ∑
 ()

where, v, s, t denote nodes and () is all the shortest
paths between nodes s to t that pass through node v.

Fig. 8. Example of Network Centrality Measures.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

74 | P a g e

www.ijacsa.thesai.org

Moreover, EigenVector Centrality (EVC) also named as
eigen centrality defines the most influential nodes in terms of
the connectivity of a node with the other well-connected nodes
in a network [60][62]. EVC is the principal eigenvector of an
adjacency matrix defining the network. If a node’s EVC is a
higher value, it shows that it is a more influential element in
that network with respect to remaining nodes [61]. A node is
influential, if it affects other highly influential nodes than the
lesser nodes [63]. Thus, in EVC, nodes influence the linked
nodes without being restricted to the shortest path or the
adjacency of node connectivity [62]. For example, node R has
the maximum EVC value in Fig. 8. Due to these factors, EVC
measure is applied in Google web page ranking and to analyze
the traceability establishment accuracy [62][63].

VIII. DISCUSSION

One major challenge in tracing software artefacts is the
heterogeneity due to different abstraction levels and the lack of
defined data formats of the artefacts. Thus, it is essential to
identify the key elements from a given artefact for proper
relationship establishment. Although there are a variety of
related studies, most of the literature has certain limitations
such as being addressing only a few artefacts types, not
addressing aspects related to software development in DevOps
practice, lack of support towards CICD and lack automation
[40][45]. Considering the tool support, many tools have
traceability visualization and scalability issues leading to the
inability to manage traceability with many artefacts.

Moreover, the need for techniques and tools to recover
traceability links in legacy systems is particularly important for
a variety of software evolution tasks such as transitioning from
traditional software process models to DevOps. The tasks
include general maintenance tasks, impact analysis, program
comprehension and more encompassing tasks such as
systematic reuse traceability types and reverse engineering for
redevelopment [4]. Some existing studies have addressed these
aspects separately such as change impact analysis rather than
along with traceability [64][65]. Hence, overall there is a lack
of traceability management support to cope with the
continuous integrations in DevOps practice.

Traceability support in a DevOps based software
development environment can be achieved by addressing the
identified limitations. Several future possible research
directions can be suggested based on this survey. The
efficiency and effectiveness of the software artefact extraction
process can be improved by exploring data pre-processing and
information retrieval techniques that support heterogeneous
artefact types, which can result in a more accurate traceability
establishment process. Moreover, a generalized framework can
be modelled to manage traceability, so that the automation can
be achieved irrespective of the project domain and scale.
Consequently, it is important to have a traceability
representation with a scalable visualization technique that can
lead to better decision making with minimum visual clutter.
Additionally, traceability result validation is important to avoid
inconsistencies among artefacts and reduce the associated cost
due to re-work. Therefore, it is essential to determine a
traceability methodology to synchronize software artefacts,
such that the changes made to an artefact in any phase of the

SDLC can preserve the consistency across all the artefacts.
Furthermore, the traceability management process can be
refined with automation and cutting-edge CI features including
impact analysis and change propagation addressing the
frequent artefact changes with a minimum cost.

IX. CONCLUSION

Software artefact traceability in DevOps practice is an
evolving research area with the need for software evolution and
maintenance. Software development in DevOps practice
considers frequent software change requests and facilitates for
continuous integration and continuous delivery process. This
study addressed the applications of artefact traceability in a
DevOps environment, which is challenging than managing
traceability in a traditional software development process. We
have identified the traceability concepts, terminologies,
traceability models in DevOps practice, traceability
establishment techniques, visualization approaches and
traceability evaluation methods. Moreover, this study explored
the related work on artefact traceability management and the
existing traceability tool support. We have identified that there
is a lack of traceability management features, which can be
practically applicable in DevOps software development
environments. This study has identified the requirement of
having a generalized and automated traceability management
solution that can handle any type of frequent artefact change in
a scalable manner with a proper visualization approach.

ACKNOWLEDGMENT

The authors acknowledge the support received from the
University of Moratuwa, Sri Lanka in publishing this paper.

REFERENCES

[1] V. Rajlich, “Software evolution and maintenance,” in Future of Software
Engineering (FOSE), 2014, pp. 133–144.

[2] I. Sommerville, Software Engineering, 10th ed. New York: Addison-
Wesley Professional, 2010.

[3] R. Arora and N. Arora, “Analysis of SDLC Models,” Int. J. Curr. Eng.
Technol., vol. 6, no. 1, pp. 268–272, 2016.

[4] J. Cleland-Huang, A. Zisman, and O. Gotel, Software and Systems
Traceability, 1st ed. London: Springer-Verlag London, 2012.

[5] D. A. Meedeniya I. D. Rubasinghe I. Perera, "Software Artefacts
Consistency Management Towards Continuous Integration: A
Roadmap", International Journal of Advanced Computer Science and
Applications (IJACSA), Vol. 10, No. 4, April 2019.

[6] L. J. Bass, I. M. Weber, and L. Zhu, DevOps : A Software Architect’s
Perspective, 1st ed. Addison-Wesley Professional, 2015.

[7] F. M. A. Erich, C. Amrit, and M. Daneva, “A qualitative study of
DevOps usage in practice,” J. Softw. Evol. Process, vol. 29, no. 6, p.
e1885, 2017.

[8] M. Meyer, “Continuous integration and its tools,” IEEE Software, vol.
31, no. 3, pp. 14–16, May 2014.

[9] G. B. Ghantous and A. Gill, “DevOps: Concepts, Practices, Tools,
Benefits and Challenges,” in 21st Pacific Asia Conference on
Information Systems, 2017, pp. 1–13.

[10] I. Pete, D. Balasubramaniam, "Handling the Differential Evolution of
Software Artefacts A Framework for Consistency Management", in 22nd
IEEE International Conference on Software Analysis Evolution and
Reengineering (SANER 2015), pp. 599-600, 2015.

[11] M. Osborne and C. K. MacNish, Requirements Engineering, 2nd
International Conference on (ICRE ’96). IEEE Computer Society, 1996.

[12] E. Keenan et al., “TraceLab: An experimental workbench for equipping
researchers to innovate, synthesize, and comparatively evaluate

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

75 | P a g e

www.ijacsa.thesai.org

traceability solutions,” in 34th International Conference on Software
Engineering (ICSE), 2012, pp. 1375–1378.

[13] K. Mohan, P. Xu, L. Cao, and B. Ramesh, “Improving change
management in software development: Integrating traceability and
software configuration management,” Decis. Support Syst., vol. 45, no.
4, pp. 922–936, Nov. 2008.

[14] J. S. Her, H. Yuan, and S. D. Kim, “Traceability-centric model-driven
object-oriented engineering,” Inf. Softw. Technol., vol. 52, no. 8, pp.
845–870, Aug. 2010.

[15] P. Mäder, O. Gotel, T. Kuschke, and I. Philippow, “traceMaintainer -
Automated Traceability Maintenance,” in 16th IEEE International
Requirements Engineering Conference, 2008, pp. 329–330.

[16] G. Kim, P. Debois, J. Willis, J. Humble, and J. Allspaw, The DevOps
Handbook, 1st ed. IT Revolution Press, 2016.

[17] P. M. Duvall, S. Matyas, and A. Glover, Continuous Integration:
Improving Software Quality and Reducing Risk, 1st ed. Addison-
Wesley Professional, 2007.

[18] G. Pinto, F. Castor, R. Bonifacio, and M. Rebouças, “Work practices
and challenges in continuous integration: A survey with Travis CI
users,” Softw. Pract. Exp., vol. 48, no. 12, pp. 2223–2236, Dec. 2018.

[19] D. Ståhl, K. Hallén, and J. Bosch, “Achieving traceability in large scale
continuous integration and delivery deployment, usage and validation of
the eiffel framework” Empir Softw Eng,vol.22,no. 3, pp. 967–995, 2017.

[20] A. Tang, Y. Jin, and J. Han, “A rationale-based architecture model for
design traceability and reasoning,” J. Syst. Softw., vol. 80, no. 6, pp.
918–934, Jun. 2007.

[21] A. Arunthavanathan et al., “Support for Traceability Management of
Software Artefacts using Natural Language Processing,” in Moratuwa
Engineering Research Conference (MERCon), 2016, pp. 18–23.

[22] J. H. Hayes, A. Dekhtyar, S. K. Sundaram, E. A. Holbrook, S.
Vadlamudi, and A. April, “REquirements TRacing On target (RETRO):
improving software maintenance through traceability recovery,” Innov.
Syst. Softw. Eng., vol. 3, no. 3, pp. 193–202, Sep. 2007.

[23] P. Mäder and O. Gotel, “Towards automated traceability maintenance,”
J. Syst. Softw., vol. 85, no. 10, pp. 2205–2227, Oct. 2012.

[24] J. Cleland-Huang, C. K. Chang, and M. Christensen, “Event-based
traceability for managing evolutionary change,” IEEE Trans. Softw.
Eng., vol. 29, no. 9, pp. 796–810, 2003.

[25] H. Schwarz, J. Ebert, and A. Winter, “Graph-based traceability: A
comprehensive approach,” Softw. Syst. Model., vol. 9, no. 4, pp. 473–
492, Sep. 2010.

[26] S. Maro, A. Anjorin, R. Wohlrab, and J.-P. Steghöfer, “Traceability
maintenance: factors and guidelines,” in 31st IEEE/ACM International
Conference on Automated Software Engineering, 2016, pp. 414–425.

[27] M. A. Javed and U. Zdun, “A systematic literature review of traceability
approaches between software architecture and source code,” in 18th
International Conference on Evaluation and Assessment in Software
Engineering (EASE), 2014, pp. 1–10.

[28] I. Omoronyia, G. Sindre, and T. Stålhane, “Exploring a Bayesian and
linear approach to requirements traceability,” Inf. Softw. Technol., vol.
53, no. 8, pp. 851–871, Aug. 2011.

[29] G. Spanoudakis, A. Zisman, E. Pérez-Miñana, and P. Krause, “Rule-
based generation of requirements traceability relations,” Journal of
Systems and Software, vol. 72, no. 2, pp. 105–127, Jul. 2004.

[30] P. Lago, H. Muccini, and H. van Vliet, “A scoped approach to
traceability management,” Journal of Systems and Software, vol. 82, no.
1, pp. 168–182, 2009.

[31] X. Chen, J. Hosking, and J. Grundy, “Visualizing traceability links
between source code and documentation,” in IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), 2012, pp.
119–126.

[32] W. B. Santos, E. S. De Almeida, and S. R. Silvio, “TIRT: A traceability
information retrieval tool for software product lines projects,” in 38th
EUROMICRO Conf Softw. Eng. Adv. Appl. (SEAA), pp. 93–100,
2012.

[33] D. Holten, “Hierarchical Edge Bundles: Visualization of Adjacency
Relations in Hierarchical Data,” IEEE Trans. Vis. Comput. Graph., vol.
12, no. 5, pp. 741–748, Sep. 2006.

[34] S. Kugele and D. Antkowiak, “Visualization of Trace Links and Change
Impact Analysis,” in IEEE 24th International Requirements Engineering
Conference Workshops (REW), 2016, pp. 165–169.

[35] T. Merten, D. Jüppner, and A. Delater, “Improved representation of
traceability links in requirements engineering knowledge using Sunburst
and Netmap visualizations,” in 4th International Workshop on Managing
Requirements Knowledge (MaRK), 2011, pp. 17–21.

[36] I. Santiago, J. M. Vara, V. De Castro, and E. Marcos, “Visualizing
Traceability Information with iTrace,” in 9th International Conference
on Evaluation of Novel Approaches to Software Engineering, 2014, pp.
5–15.

[37] I. D. Rubasinghe, D. A. Meedeniya, and I. Perera, “Software Artefact
Traceability Analyser : A Case-Study on POS System,” in 6th
International Conference on Communications and Broadband
Networking (ICCBN 2018), 2018, pp. 1–5.

[38] A. Rodrigues, M. Lencastre, and G. A. de A. C. Filho, “Multi-
VisioTrace: Traceability Visualization Tool,” in 10th International
Conference on the Quality of Information and Communications
Technology (QUATIC), 2016, pp. 61–66.

[39] A. Firdaus, I. Ghani, D. N. Abg Jawawi, and W. M. N. Wan Kadir,
“Non functional requirements (NFRs) traceability metamodel for agile
development,” J. Teknol., vol. 77, no. 9, pp. 115–125, 2015.

[40] F. Furtado and A. Zisman, “Trace++: A Traceability Approach to
Support Transitioning to Agile Software Engineering,” in IEEE 24th
International Requirements Engineering Conference (RE), 2016, pp. 66–
75.

[41] R. Elamin and R. Osman, “Towards Requirements Reuse by
Implementing Traceability in Agile Development,” in IEEE 41st Annual
Computer Software and Applications Conference (COMPSAC), 2017,
vol. 2, pp. 431–436.

[42] A. E. Limón and J. G. Sopeña, “Tackling Traceability Challenges
through Modeling Principles in Methodologies Underpinned by
Metamodels.,” Proc. 3rd IFIP TC2 Cent. East Eur. Conf. Softw. Eng.
Tech. CEE-SET 2008, no. May 2014, 2008.

[43] J. Cito, F. Oliveira, P. Leitner, P. Nagpurkar, and H. C. Gall, “Context-
based analytics - establishing explicit links between runtime traces and
source code,” in 2017 IEEE/ACM 39th International Conference on
Software Engineering: Software Engineering in Practice Track (ICSE-
SEIP), 2017, pp. 193–202.

[44] G. Laghari, A. Murgia, and S. Demeyer, “Localising Faults in Test
Execution Traces,” in 14th International Workshop on Principles of
Software Evolution (IWPSE), 2015, pp. 1–8.

[45] S. Vöst and S. Wagner, “Trace-based test selection to support
continuous integration in the automotive industry,” Proc. Int. Work.
Contin. Softw. Evol. Deliv. (CSED), pp. 34–40, 2016.

[46] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering
traceability links in software artifact management systems using
information retrieval methods,” ACM Trans. Softw. Eng. Methodol.,
vol. 16, no. 4, pp. 13:1-13:50, 2007.

[47] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Fine-grained
management of software artefacts: the ADAMS system,” Softw. Pract.
Exp., vol. 40, no. 11, pp. 1007–1034, Oct. 2010.

[48] K. Kamalabalan et al., “Tool support for traceability of software
artefacts,” in Moratuwa Engineering Research Conference (MERCon),
2015, pp. 318–323.

[49] I. D. Rubasinghe, D. A. Meedeniya, G. I. U. S. Perera, “Automated
Inter-artefact Traceability Establishment for DevOps Practice”, in 17th
IEEE/ACIS International Conference on Computer and Information
Science (ICIS 2018), 2018, pp. 211-216.

[50] I. Rubasinghe, D. Meedeniya, I. Perera, “Traceability Management with
Impact Analysis in DevOps based Software Development”, in 7th
international conference on advances in computing, communications and
informatics (ICACCI), 2018, pp. 1956-1962.

[51] IBM, “Ditch the documents and spreadsheets - manage requirements
efficiently and more accurately with IBM Rational DOORS Next
Generation - IBM Software White Paper,” 2014.

[52] “P. Zielczynski, Requirements Management Using Ibm® Rational®
Requisitepro®, First ed., IBM Press, 2007.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

76 | P a g e

www.ijacsa.thesai.org

[53] Y. Klochkov, A. Gazizulina, M. Ostapenko, E. Eskina and N. Vlasova,
"Classifiers of nonconformities in norms and requirements," in 5th
International Conference on Reliability, Infocom Technologies and
Optimization (ICRITO), 2016, pp. 96-99.

[54] “ReqView,” 2017. [Online]. Available: https://www.reqview.com/.
[Accessed: 07-May-2018].

[55] A. I. Martins, A. Queirós, A. G. Silva, and N. P. Rocha, “Usability
Evaluation Methods,” in Human-Computer Interaction: Concepts,
Methodologies, Tools, and Applications, S. Daeed et al., Eds. IGI
Global, 2014, pp. 613–636.

[56] S. Winkler, “On Usability in Requirements Trace Visualizations,” in
Requirements Engineering Visualization, 2008, pp. 56–60.

[57] A. Sünnetcioglu, E. Brandenburg, U. Rothenburg, and R. Stark,
“ModelTracer: User-friendly Traceability for the Development of
Mechatronic Products,” Procedia Technol., vol. 26, pp. 365–373, 2016.

[58] T. Zeugmann et al., “Precision and Recall,” in Encyclopedia of Machine
Learning, Boston, MA: Springer US, 2011, pp. 781–781.

[59] J. Lee, B. Cho, H. Youn, and E. Lee, “Reliability analysis method for
supporting traceability using UML,” in Communications in Computer
and Information Science, Springer Berlin Heidelberg, 2009, pp. 94–101.

[60] J. Scott, Social Network Analysis, Third. SAGE Publications, London,
2013.

[61] G. Bavota, L. Colangelo, A. De Lucia, S. Fusco, R. Oliveto, and A.
Panichella, “TraceME: Traceability Management in Eclipse,” in 28th
IEEE International Conference on Software Maintenance (ICSM), 2012,
pp. 642–645.

[62] S. P. Borgatti, “Centrality and network flow,” Soc. Networks, vol. 27,
no. 1, pp. 55–71, Jan. 2005.

[63] I. Perera, A. Miller, and C. Allison, “A Case Study in User Support for
Managing OpenSim Based Multi User Learning Environments,” IEEE
Trans. Learn. Technol., vol. 10, no. 3, pp. 342–354, Jul. 2017.

[64] S. Park and D. H. Bae, “An approach to analyzing the software process
change impact using process slicing and simulation,” J. Syst. Softw.,
vol. 84, no. 4, pp. 528–543, 2011.

[65] J. Dick, E. Hull, and K. Jackson, “Advanced Traceability,” in
Requirements Engineering, Springer International Publishing, 2017, pp.
239–254.

