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Abstract—DevOps based software process has become 

popular with the vision of an effective collaboration between the 

development and operations teams that continuously integrates 

the frequent changes. Traceability manages the artefact 

consistency during a software process. This paper explores the 

trace-link creation and visualization between software artefacts, 

existing tool support, quality aspects and the applicability in a 

DevOps environment. As the novelty of this study, we identify the 

challenges that limit the traceability considerations in DevOps 

and suggest research directions. Our methodology consists of 

concept identification, state-of-practice exploration and 

analytical review. Despite the existing related work, there is a 

lack of tool support for the traceability management between 

heterogeneous artefacts in software development with DevOps 

practices. Although many existing studies have low industrial 

relevance, a few proprietary traceability tools have shown a high 

relevance. The lack of evidence of the related applications 

indicates the need for a generalized traceability approach. 

Accordingly, we conclude that the software artefact traceability 

is maturing and applying collaboratively in the software process. 

This can be extended to explore features such as artefact change 

impact analysis, change propagation, continuous integration to 

improve software development in DevOps environments. 
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I. INTRODUCTION 

Software system is an asset that contributes to enhance 
products or services. Change of a software system is inevitable 
as the requirements are evolving over time. Technology 
improvements, environmental changes, modifications in legal 
bodies and many factors affect requirement changes. 
Therefore, a continuous system update is required to cope with 
the artefact changes by preserving the value of the software. 
Hence, considering the usage of resources, time, cost and 
effort, software evolution is preferred over building a new 
software system to manage the changes [1]. Generally, 
software evolution is identified as a maintenance task due to 
new change requests during the Software Development Life 
Cycle (SDLC). The software evolution mainly depends on the 
type of software being maintained, the development processes, 
and directly affects the related software artefacts. 

Software artefacts are the intermediate by-products used in 
each stage of the SDLC that contribute towards the outcome of 
an intended product. For instance, Software Requirement 
Specification (SRS), non-functional design reports, design 
diagrams, source code, test cases, test scripts, bug reports, 
walkthroughs, inspections, configuration files, build logs, 
project plans, risk assessments and user manuals are some of 

the artefacts in the SDLC [2][3]. There are different forms of 
relationships between the homogeneous and heterogeneous 
software artefacts. Some artefacts may be highly coupled, and 
some may depend on other artefacts in different degrees, 
unidirectionally or bidirectionally. Thus, software artefacts 
consistency management helps to fine-tune the software 
process. The incomplete, outdated software artefacts and their 
inconsistencies mislead both the development and maintenance 
process. Thus, artefact management is essential such that the 
changes are accurately propagated to the impacted artefacts 
without creating inconsistencies. Traceability is the potential to 
relate artefacts considering their relationships [4][5]; thus, a 
solution for artefact management. Being an active research 
topic, many studies have discussed the different aspects of 
traceability, tool support in different scopes and domains. 

At present, DevOps, that unifies the process between the 
development (Dev) and operation (Ops) teams, has become a 
popular software development practice. DevOps environment 
supports to build, test and deliver the product at a high demand 
and results in faster evolvements of the products [6][7]. The 
concepts, Continuous Integration (CI) and Continuous Delivery 
(CD) encourage to accept frequent changes at any phase of the 
SDLC in DevOps practice [8]. Thus, artefact management is 
essential to achieve in DevOps environments to avoid artefact 
inconsistencies. However, it is challenging to ensure 
traceability with maximum automation due to frequent 
integrations. Further, the practical use of artefact traceability in 
DevOps is not widely in use due to the limitations in existing 
traceability techniques, tools and automation capabilities. Thus, 
auditability and traceability are challenging in DevOps [9]. 

We present a survey on artefact traceability management in 
DevOps practice. The traceability concepts and terminology 
are described in Section II. Section III and Section IV explore 
the traceability creation techniques and related visualization 
methods, respectively. Related traceability management studies 
in DevOps practice with the conceptual traceability models are 
discussed in Section V. Moreover, the tool support to manage 
traceability is explored in Section VI. Section VII explores the 
traceability evaluation methods using quality aspects and 
network analysis. The associated challenges and limitations are 
discussed in Section VIII. Finally, Section IX concludes the 
survey with the identified suggestions and possible future 
directions for traceability support in DevOps practice. 

II. BACKGROUND 

A. Concept of Traceability 

A software system is a combination of several artefacts that 
evolves through a certain software development process model. 
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It is important to manage the relationships and dependencies 
between these software artefacts to maintain the consistency of 
the product. The outdated artefacts can lead to artefact 
inconsistency, synchronization issues and lack of stakeholders’ 
trust in artefacts [10]. Thus, it is essential to manage the 
artefact traceability in software development with DevOps 
practices that involve frequent Continuous Integration and 
Continuous Delivery (CICD). 

Traceability provides a logical connection between the 
artefacts of the software development process. It is important to 
maintain the traceability among both homogeneous and 
heterogeneous software artefacts throughout the SDLC stages 
covering the requirements gathering, design, development, 
testing, maintenance and deployment. For example, the ability 
to track the relationships between requirements and their 
sources is essential to revise the initially gathered set of 
requirements [2]. This concept was initially used as a method 
of managing requirements artefact during the requirements 
engineering phase [11]. Generally, traceability is defined as the 
ability to follow the life cycle of a software requirement both 
forward and backwards and overcome the inconsistencies 
during software development [4]. Thus, each alteration occurs 
in each requirement is traced among other requirements and 
changed accordingly based on the impact. These traces are 
used in the requirement validation and verification processes. 

Center of Excellence for Software and Systems 
Traceability (CoEST) has defined traceability as “the ability to 
interrelate any uniquely identifiable software engineering 
artefact to any other, maintain required links over time, and use 
the resulting network to answer questions of both the software 
product and its development process”. They have not limited to 
requirement traceability and have declared traceability in terms 
of other artefact types such as design documents, source code 
and test cases with the deployment of an experimental 
traceability environment for researchers called TraceLab [12]. 
Traceability is defined as the ability to trace the dependent 
items within a model and trace the corresponding items in 
other models [13]. As a result, currently, traceability is used 
not only in requirements management but also for other 
artefact types in different software development methodologies 
like Model-Driven Development (MDD) [14]. This wide range 
of adaptation of traceability shows its importance in improving 
software quality, maintenance, evolution and reuse activities. 

B. The Terminology of Software Artefact Traceability 

Traceability refers to the ability or the potential of tracing a 
change propagation among artefacts in a software system. For 
a given trace, there can be one or many possible trace paths, 
while each trace path has a source and target artefacts. An 
artefact may be a source for a given trace path and a target for 
another trace path, simultaneously. A trace link or a traceability 
link is a relationship between a pair of artefacts. All trace links 
generated between two sets of artefacts are referred to as a 
trace relation [4]. A trace set is the sum of all generated traces 
and traceability graph is used to visualize all the relationships. 
A traceability graph is a traceability network when the edges 
are directional, or the nodes are embedded with a weight. 
Further, traceability maintenance manages the consistency of 
the artefacts and updates the traces for a given change. 

Different traceability classifications exist in the literature as 
shown in Fig. 1. One such classification is automatic or 
manual, based on the automation level of the traceability 
process.  Another classification is forward or backwards, that is 
based on the direction of the traceability path [4]. Forward 
tracing follows subsequent steps such that from requirements 
to code; whereas backward tracing follows antecedent steps 
such that code to design or requirements artefacts. Artefact-
level is another criterion that classifies traceability as 
horizontal or vertical. Horizontal tracing reflects homogeneous 
artefacts, which are at the same level of abstraction such as 
tracing between different versions of requirements [15]. 
Further, this can be sub-classified based on the direction such 
that horizontal forward tracing or horizontal backward tracing. 
Tracing heterogeneous artefacts that are in different levels of 
abstraction, such as the requirement to code, is considered as 
vertical tracing, which can be either vertical forward tracing or 
vertical backward tracing. Proactive and reactive tracing is 
another categorization based on stimuli behaviour. In reactive 
tracing, the traces are created on demand by responding to a 
stimulus to initiate the trace capture. Whereas in proactive 
tracing, traces are created in the background without explicit 
response to any stimulus [4]. The traceability link generation 
techniques (see Section IV) that are based on these categories 
are selected by considering aspects such as the problem domain 
and the behaviour of the software system. 

C. Traceability in DevOps Practice 

The DevOps concept represents the collaboration of the 
development and the operational teams [6][9]. DevOps eases 
the project team management with communication, 
understandability, integration and relationships by bridging the 
gap between the development and operational teams. This 
CICD process increases the rate of change and deploys the 
features into production faster [16][7]. Thus, DevOps-based 
software development improves the quality, customer 
experience and supports simultaneous deployment in different 
platforms. The associated cross-functionality behaviour 
enables the early identification of ambiguities, reduction of the 
error fixing time and reduction of the problem complexities. 
The importance of DevOps towards the business aspect is also 
significant to shorten the development life cycle, increase the 
release velocity and improve the Return on Investment (ROI) 
by achieving a higher customer satisfaction [6]. Further, rich 
collaboration and performance-oriented culture encourage the 
ability to research and innovate within projects. However, the 
Internet of Things (IoT) and Microservices architecture are 
identified to be challenging in DevOps [9]. 

 

Fig. 1. Summary of Traceability Classification. 
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DevOps environments associate five main principles: 
continuous planning, continuous integration, continuous 
delivery, continuous testing and continuous deployment [6]. 
The CI process integrates work frequently that leads to 
multiple integrations per day and deploys effectively [17][18]. 
Generally, CI verifies the integration using build automation by 
early detection of integration errors. The ability to trace the 
artefact changes is essential to notify feedback at an integration 
failure [19]. Thus, it is important to have software artefact 
traceability support for the CI process to handle changes. 

III. TRACEABILITY ESTABLISHMENT 

A. Information Retrieval and Data Pre-Processing 

In software development, different types of artefacts are 
considered for traceability creation such as requirements to 
design, requirements to source code and test cases. For 
instance, requirement traceability shows the mapping of the 
requirements to other stages of the SDLC; design traceability 
refers the ability to trace design and requirements to design 
rationale for verifying and maintaining the architectural design 
[20]. In a DevOps environment, the design traceability helps to 
identify the change impacts, trace design evolution, relate 
design objects and analyse the cross-cutting concerns. 

Generally, Information Retrieval (IR) methods and data 
pre-processing are considered as pre-requisites to the 
traceability establishment process. Software artefacts consist of 
different formats such as the requirements in natural language, 
design artefacts in different Unified Modelling Language 
(UML) notations and source code artefacts in programming 
languages. Thus, pre-processing techniques should be applied 
to extract the required data as an initial task towards the 

generation of traceability links.  Most of the time, the textual 
content in the artefacts provides descriptive details about its 
informal semantics. The frequently involved pre-processing 
steps for textual-based requirements artefacts are Natural 
Language Processing (NLP) tasks such as tokenization, text 
normalization, anaphora analysis, morphological analysis and 
stemming [4][21]. It is assumed that the artefacts are 
conceptually related if their textual contents are similar Thus, 
trace links can be created among them. Hence, the other types 
of artefacts can be pre-processed with different file readers, 
UML parsers and programming language specific parsers. 

IR methods enable the extraction and analysis of the 
embodied textual contents in artefacts with a less pre-
processing effort [4]. It minimizes the cost of traceability link 
recovery as it does not consider predefined vocabulary or 
grammar. The key steps in a generalize IR process that follows 
a pipelined architecture are: (1) document parsing, extraction 
and pre-processing, (2) corpus indexing with an IR method, (3) 
ranked list generation and (4) analysis of candidate links. 
Moreover, most IR related techniques are Vector Space Model 
(VSM), Latent Semantic Indexing (LSI) and Term Frequency-
Inverse Document Frequency metric (tf-idf) and they have 
provided better performance outcomes in the literature [22]. 

B. Traceability Establishment Approaches 

Different types of approaches have been used in the 
literature to generate traceability links between software 
artefacts. This section discusses the widely used software 
artefact traceability establishment approaches and Table I 
states a comparison of these approaches. 

 

TABLE I.  TRACEABILITY ESTABLISHMENT APPROACHES 

Method Description Advantages Limitations 

Rule-based 

Defines a rule set based on artefact attributes.  

Manages traceability with rule re-evaluation  

[23]. 

Works well with artefacts such as 

requirements, use cases, object models 

[23]. 

Structural changes are hard to identify 

[4]. 

Hypertext 
Manage traceability using XML markup 

specifications [23]. 
Works with requirements and code [4]. 

Weekly supports the other types of 

artefacts. 

Event-based 
Manage traceability using publish-subscribe 

links and event-based subscriptions [24]. 
Maintains dynamic links. 

Scalability issues in maintaining the 

dynamicity of the traceability [24]. 

Constraint-based 
Provides a set of constraints which must not be 

violated by traceability links [25]. 

Views artefact types as constraints among 

them.  

Difficult to refer all the traceability links 

with the constraints [25]. 

Transformations 
Uses incremental [26] and graph-transformation 

based methodologies. 

Suited for model-based software systems 

[26]. 

Difficult to apply to artefacts that are not 

generated using MDD [26]. 

Goal-centric (GCT) 

Manages the change impact of non-functional 

requirements. Use soft goal interdependency 

graph and traceability matrix [27]. 

Ensure quality by assessing the change 

impact of functional vs. non-functional 

aspects [27]. 

Lack of scalability and tool support [30]. 

Model based 
Manages traceability using template-based 

models [28]. 
Supports different artefact types [28]. 

Lack of support towards non-MDDD 

[28]. 
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Rule-based traceability generates different types of trace 
links between artefacts based on the semantics and the 
grammatical features of their words [29]. First, the traceability 
link generation rules are defined based on the attributes of the 
artefacts and then the traceability maintenance phase re-
evaluates the rules. Moreover, rule-based approaches can be 
combined with event-driven approaches. Thus, the traceability 
maintenance can be conducted in two phases: (1) recognizing 
changes based on events and (2) re-evaluating the rules that 
governing link updates [26]. However, these rule-based 
traceability techniques are not applicable to all types of 
artefacts rather than requirements and source code [23]. 

Hypertext-based traceability uses an underlying XML 
representation along with the conformance analysis. This is 
suitable for complex and versioning of traceability links [4]. 
However, hypertext-based traceability support technique is also 
limited to software artefacts such as requirements and source 
code [23]. 

The event-based approaches consider the events occur 
during the software development activities to maintain the 
traceability links. For example, the deletion of an artefact can 
be made as a trigger to delete all the connected traceability 
links. Maro et al., have addressed this using a similar 
conceptual technique; publish-subscribe mechanism, that 
connects traceability maintenance tasks to events [26]. 
However, this technique has scalability issues [24][25]. 

Various other approaches that can be used to establish 
traceability are available in the literature. The model-based 
traceability establishment approach manages the inter-
relationship of models using XML representations, without 
narrowed only into UML, Business Process Model and 
Notation (BPMN), feature models and systematic review for 
architecture to code traceability [27][28]. Constraint-
programming is another approach that declares the valid rules 
for traceability links [25].  Here, the traceability links that are 
not referenced by constraints are considered as consistent by 
default. The transformation-based approaches [26], mainly 
graph-transformations are used to generate traceability links 
based on the artefact transformations. However, these 
approaches are not widely used in practice. The Design 
Decision Tree (DDT) provides the ability to connect 
requirements to architecture decision and design elements 
under the traceability establishment. The traceability model 
presented in [20], has addressed the traceability in a design 
rationale model using the conceptual UML notations. 
However, it captures relationships between only two entities, 
architecture rationale and architecture elements. Further, a 
scoped-based approach was explored by Patricia et. al., [30], 
that emphasizes the current status of considering traceability in 
a given situation rather than presenting all the traces. This has 
been an attempt to minimize the traceability cost by engaging a 
manageable minimal set of links. 

IV. TRACEABILITY VISUALIZATION 

Software artefact traceability visualization helps the 
decision-making process to analyse the relationships among 
artefacts. However, it is challenging to visualize many 
traceability links and paths among software artefacts in real-
time with the evolving inter-relationships. The challenges 

include scalability and visual clutter related issues. Although 
there are data visualization techniques and tools to analyse 
large temporal data, the selection of an optimal representation 
depends on different properties in the traceability links. This 
section discusses traceability visualization techniques and 
Table II summarizes a comparison of these techniques. 

Traceability matrix is used to record the trace relations. 
Initially, requirements traceability matrix has used to associate 
requirement artefacts during the requirements engineering 
process [31]. It shows the associated or dependent pairs of 
artefacts using the trace links [4]. The work done by Cleland-
Huang has shown the possibility of increasing the cost of 
traceability creation and maintenance by using this technique, 
although the row-column structure is simple. Since this 
representation is easily readable by the stakeholders, a single 
repository is sufficient to document both forward and 
backward traceability results, which is an advantage in terms of 
storage. However, representing many artefacts and trace links 
using a traceability matrix is less practical due to the 
complexity in access, search and update operations. 

The hierarchical tree is a node-link based representation 
that uses lines to connect parent and child nodes. This 
representation is easily understandable and communicates a 
hierarchical structure. There are two sub-approaches in this 
hierarchical tree visualization. The first approach has edges 
between relevant children nodes and group edges using the 
hierarchical edge bundling technique. However, this method 
has the drawback of visual clutter with a larger number of 
traceability links [35]. The second approach directly adds 
traceability links as children of leaf nodes. Further, this 
technique is used to represent detailed dependency information 
of an item. In related work [31], hierarchical tree visualization 
is used as a supplement for Tree-map visualization to illustrate 
the detailed information on each trace. 

TABLE II.  TRACEABILITY VISUALIZATION TECHNIQUES 

Method Features Advantages Limitations 

Lists [32] 

Show data in 

1-dimension, 

sequentially. 

Efficiency due to 

simplicity. 

Limited for a small-

scale data due to a single 

dimension. 

Traceability 

matrix [31] 

[33][34] 

Stores data in 

2-dimensional 

grid structure. 

Well-represents 

a small set of 

artefacts. 

Impractical to represent 

a larger number of trace 

links. 

Cross-

reference 

[31] 

Represents 

data in a table 

structure. 

Provides a list of 

related links for 

an artefact. 

Hard to show the full 

trace structure. 

Scalability issues.  

Tree-map 

[33][35] 

Uses a tree 

data structure 

to represent 

data in 2D. 

Represents a 

large tree by 

optimum display 

space. 

Hard to communicate 

with the layers. 

Complex for a larger set 

of traceability links. 

Hierarchical 

tree [35] 

Node-link 

representation 

to show data 

hierarchically.  

Gives trace 

dependency data. 

Simple to 

understand. 

Visual clutter when a 

larger number of 

traceability links are 

involved. 

Traceability 

graph 

[33][36][37] 

Show data as 

nodes, links as 

edges.  

Visualizes 

structured data 

with relations. 

Limit the graph view for 

excessive nodes.  

Performance issues. 

Sunburst and 

Netmap 

[32][33] 

Use a radial 

layout.  

Browse, navigate 

with user 

orientation. 

Not filter the 

visualization links. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 7, 2019 

70 | P a g e  

www.ijacsa.thesai.org 

Traceability graph visualizes a trace set in a node-link 
format, where trace artefacts as nodes and trace links as edges 
[4]. The associated visual clutter can be reduced and can 
enhance the readability of the traceability graph by using 
colour codes for nodes and edges based on their type, category 
and direction [38]. The traceability outcome can be analysed 
by graph traversal and graph analysis methods. Moreover, 
network analysis methods discussed in Section VII can be 
applied to analyse these network graphs. However, this 
technique has performance issues when there is an excessive 
number of nodes and links. 

Among many other visualization techniques, lists are a 
single dimension primary approach that can be applied for a 
small set of data. This technique shows efficient performance 
due to its simple structure [32]. Cross-reference is a tabular 
structure that represents a list of related links for a given 
software artefact. However, this technique does not support to 
obtain an overall traceability representation [31]. Tree-map 
approach represents trace data in a 2D tree structure and 
supports a larger set of data. However, the communication 
among each trace artefacts by traversing the tree tends to be 
complex [33].  Further, Sunburst and Netmap visualization 
[32] is a radial layout representation approach. 

Most of the traceability visualization techniques have 
slightly considered model driven features; thus, there is a limit 
of supporting to a range of software types [36][37]. Many 
related works have addressed issues such as visual clutter and 
scalability [32][33] and several tools are integrated with a 
specific Integrated Development Environment (IDE). 
However, most of the studies have not addressed different 
types of software artefacts, as they have considered a certain 
type of artefacts such as either requirements or source code. 
Thus, there is a potential need for a generic software artefact 
visualization methodology that can accommodate artefact 
representation independent of its type and scale. 

V. TRACEABILITY IN PRACTICE 

A. Models for Traceability in DevOps Practice 

Although there are some attempts in the recent literature to 
adapt traceability into Agile environments, traceability 
management in DevOps practices has not been addressed well. 
A generic Agile Traceability Model (ATM) for managing Non-
Functional Requirements (NFR) has presented by Firdaus et al. 
[39]. They have traced the effects of the frequent Functional 
Requirement (FR) changes on NFRs such as security and 
performance. This model is based on an example ATM [4] that 
trace requirements, source code and test cases and an NFR 
traceability metamodel that links the stakeholders and the 
requirement grouping component of the project. Each artefact 
and its elements of the FRs are used to trace NFR with a 
mediate association component. Fig. 2 shows the integration of 
ATM (blue in colour) and NFR traceability metamodel (grey in 
colour). Here, the code is backtracked to the requirements 
through testing. It is required to have test cases for NFRs 
without adding code to the overall model. Thus, the impact of 
development changes is traced using test cases. This conceptual 
model has been implemented as a prototype. Although the average 
value of precision and recall of the process model is 0.46, they 
have stated that the integration is mapped correctly. 

A traceability approach named Trace++, that transforms a 
traditional software development to Agile environments has 
been proposed in [40]. They have addressed four transition 
issues such that (i) amount of rework per sprint, (ii) high-level 
understanding of a project scope before starting a sprint, 
(iii) lack of NFR documentation, and (iv) losing management 
control. They have considered extended information as shown 
in Fig. 3 when transforming to an Agile environment. 

Another semi-automated traceability prototype for Agile 
development is proposed in [41], with the intention of 
achieving reusability of requirements artefacts. This work is 
based on an extension of an existing metamodel named TmM 
model [42]. The authors have identified reusable traceability 
links with the automated traceability link generation and Agile 
integration approaches as shown in Fig. 4. The user story 
change process is started when a change to a user story in the 
Agile team backlog occurs. If the responsible link is not found 
in the link repository, then the link generation process obtains 
rules from the metamodel and sends the result to the link 
maintenance process that modifies or removes the impacted 
links. The automated link generation process requires a manual 
confirmation from an authorized Agile team member via the 
link generation reviewer in IDE. 

 

Fig. 2. Proposed NFR Agile Traceability Model [39]. 

 

Fig. 3. Trace++ Traceability Solution Structure [40]. 

 

Fig. 4. Traceability Methodology for Requirements Reuse in Agile [41]. 
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Generally, in a DevOps environment, distributed cloud 
platforms integrated software projects are monitored using logs 
and runtime information. These data are scattered in large-scale 
projects, due to the use of multiple tools and dashboards, hence 
hard to identify accurately. A traceability approach to 
monitoring these data in a DevOps environment has been 
proposed using explicit links between runtime information and 
source code in [43]. This work has used an online context 
graph to show the connections such that edges denote the 
implicit connections among information fragments. The 
conceptual model of this solution is shown in Fig. 5. A 
prototype of this context analytics model has been evaluated 
using cloud applications. The cost associated with the artefact 
pre-processing is low in this approach, as it considers runtime 
information with short textual artefacts. The results have 
shown a 48% reduction of efforts required in analysis steps and 
an average reduction of 40% for the required inspected traces. 

A heuristic named SPEQTRA is proposed to locate the 
traces of automated tests in the CI process [44]. This approach 
enables the efficient continuation of a project when a test case 
is failed during the DevOps practice. Fig. 6 shows the trace 
execution of successful and unsuccessful test cases. This 
approach executes each test case records the traces and 
identifies the closet item set to transform traces to sequences 
via SPEQTRA. Then, the classes with sequences are ranked 
using the Jaccard similarity coefficient based on the fault 
likelihood to localize the classes with faults. 

Similarly, another test case artefact-based tracing approach 
that supports CI for the automotive industry domain is 
proposed in [45]. They have used black-box testing following 
the input and output signals through process controllers as 
shown in Fig. 7. Every keyword in the test suites are used to 
trace the most suitable tests for a given CI task and a mapping 
table is maintained for the selection. 

 

Fig. 5. DevOps Context-Based Analytics Conceptual Model [43]. 

 

Fig. 6. SPEQTRA Heuristic Workflow [44]. 

 

Fig. 7. Process Model for Trace-Based Test Selection [45]. 

Although several models are available that can manage 
software artefact traceability, most of them are restricted to a 
few artefact types. The model ATM [39] has considered 
requirement level artefacts, SPEQTRA [44] is based on test 
case artefacts, Trace++ [40] has addressed issues in the Agile-
based development and other approaches have emphasized 
only on development level artefacts. A single model is not 
sufficiently addressed the traceability between heterogeneous 
artefacts in a CICD pipeline due to the inbuilt complexity; 
Thus, traceability management in a DevOps practice is still an 
active research area. 

B. Related Studies on Traceability Management 

Consistency management of a large set of artefact 
relationships, when a change occurs during the software 
development process is a costly task that consumes more time 
and effort. Although there are few studies on managing 
traceability in many artefacts, there are several studies that 
have focused on traceability maintenance of a small set of 
artefacts. It is important to ensure the correctness of traceability 
over time [26][23]. The proper identification of a feasible 
traceability management approach could minimize the 
associated cost and effort. 

Traceability recovery management system incorporating IR 
techniques such as VSM and LSI were used in [46]. They have 
performed an incremental semi-automated traceability recovery 
by integrating into an artefact management tool called ADMS 
[47]. Moreover, they have identified quality issues in the 
textual descriptions of the traced artefacts using IR tools. 
However, their results have shown that IR techniques are not 
sufficient to identify all the traceability links and required to 
remove a large number of false-positives manually. An 
approach named SCOTCH+ (Source code and COncept based 
Test to Code traceability Hunter) was presented in [48] that has 
addressed the JUnit test to code traceability. The techniques; 
dynamic slicing and textual information analysis were used in 
this approach and have shown results with high accuracy. 

The tool Software Artefact Traceability Analyser (SAT-
Analyser) [21][48] has addressed the traceability among 
requirements artefact, UML class diagrams regarding the 
design artefact and the source code artefact in Java 
programming language. It has used NLP and traceability has 
been established based on a string similarity computation using 
the Jaro-Winkler algorithm and Levenshtein Distance 
algorithm along with WordNet synonyms and pre-defined 
dictionary ontology. Next, the artefacts and their established 
trace links were parsed through the Document Object Model 
(DOM) parser and converted into a predefined XML structure 
for traceability graph representation. However, this approach 
lacks the artefact support for the entire SDLC. Subsequently, 
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this work has extended to support DevOps based software 
development [49][50]. This approach manages the traceability 
among heterogeneous artefact types that are involved in a 
DevOps environment covering each stage in SDLC. 
Additionally, this work has addressed continuous changes 
using change detection, change impact analysis and change 
propagation. Further, this study has supported the collaborative 
nature in DevOps practice by integrating the SAT-Analyser 
tool with the existing project management tools. 

Accordingly, these related studies have mainly considered 
the automation of traceability management. Requirement, 
design level artefact traceability and enhancing traceability 
with visualizations have been slight considerations. The 
interest in obtaining complete automation in literature is 
advantageous for DevOps in practice. But having traceability 
support for all artefact types in overall SDLC phases is also 
required along with automation to be applicable to DevOps 
which is not significantly addressed together in literature. 

VI. TRACEABILITY MANAGEMENT TOOLS 

Variety of traceability management tools is available in the 
literature. These tools can be classified as proprietary tools: 
commercial and open source and research-based prototypes. 
Additionally, these tools can be grouped as non-Graphical User 
Interface (GUI) supportive and tools with fine-tuned IDEs. 
Among them, only a few sets of tools support traceability 
management in a DevOps environment, that considers all the 

artefacts from the requirement phase to delivery and 
maintenance phases. The overall analysis of commercial tools 
is presented in Table III. Considering the proprietary tools, 
TraceMaintainer [15] is an independent tool that supports any 
Computer-Aided Software Engineering (CASE) tool by 
allowing to work in any heterogeneous environment. However, 
this tool is limited to the requirements and design artefacts. 

The tool TraceME [48] is a freely available integrative tool 
within the Eclipse IDE as a plugin. Tools such as TIRT [34], 
are limited to specific application domains such as software 
product line-based information retrieval. The artefacts such as 
test scripts, configuration files, deployment and delivery 
related artefacts in a DevOps environment have not 
significantly addressed in these existing tools. Thus, there is a 
need for tools with CI features that have addressed all the 
artefact types and support the CICD process.  

Accordingly, lack of tool support for all types of software 
artefacts in the DevOps practice with a minimum of 
dependencies, such as depending on a given IDE or a platform 
like Windows or Ubuntu is observable. Further, most of the 
tools lack proper visualization of traceability information. Only 
some tools are adapting the traceability graph visualization and 
still, those representations are not using colour codes or 
interactive usability attributes. 

TABLE III.  TRACEABILITY MANAGEMENT AND VISUALIZATION TOOLS 

Tool name Artefacts 

Traceability technique Visualization technique 
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TraceMaintainer [15] Requirements, structural UML X  X    X  

TraceME [48] All   X    X X 

Rational DOORS [51] Requirements  X X  X  X  

Rational RequisitePro [52] Requirements   X X  X X X 

Cradle [53] Requirements   X  X  X  

ReqView [54] Requirements   X  X   X 
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VII. QUALITY MEASURES 

One major hindrance in the practical application of 
traceability is the cost and resource consumption. In generic 
software development organizations are reluctant to spare the 
resources on traceability. Therefore, validating the traceability 
aspects and ensuring the quality measures are important to 
encourage real-world usage. Usability measures consider the 
user experience and interactivity based on evolving user 
expectations. The usefulness, ease of use, learnability and 
likeability are treated as the general concepts of the usability 
[55][56]. Generally, a larger user base is considered to measure 
the usability aspects of a traceability tool. Further, the degree 
of automatization by reducing human effort in trace link 
generation, time, user interface improvements with the aid of 
colour codes and help-tips are used as usability metrics [57]. 

The traceability coverage refers to the set of identified 
correct links after a traceability link recovery process. The link 
coverage analysis helps to identify the poorly traced artefacts. 
Traceability coverage can be defined as: 

                              
         (       ) 

         
           (1) 

where, targets is the set of target artefacts and links_a 

(targets) represents the set of links traced between the artefact 
a and the artefacts in the set target [4]. 

The statistical methods precision, recall and F-measure are 
widely used accuracy measures [39]. Precision refers to the 
number of correct instances among all the retrieved instances 
(2). Recall or the sensitivity denotes the number of correct ones 
among a total number of relevant instances (3) [58]. The higher 
precision saves time in locating and implementing the changes, 
while higher recall is useful in confirming that all proposed 
changes will be taken into consideration. Moreover, F-measure 
(F1 Score) is a measure of accuracy and defined as the 
weighted harmonic mean of the precision and recall of a test. 
This conveys the balance between the Precision and the Recall. 
F-measure assumes values to be in the interval [0,1]. 

            
                                                

                        
           (2) 

         
                                                

                        
          (3) 

             
                

                  
            (4) 

Ensuring reliability is important in traceability 
establishment and management. It ensures that a process will 
perform its intended tasks, without any failures for a given 
time. The Hidden Markov Chain is one of the algorithms that 
can be applied to measure software reliability. For instance, 
Lee et al., have proposed an approach using Markov Chain for 
measuring reliability in UML by supporting traceability to 
overcome the limitations in analysis and modelling [59]. 
Further, traceability matrix-based techniques help to preserve 
the reliability with respect to requirement artefacts. 

Network analysis is originated from graph theory and 
applied on problems that are represented in a node-link 
structure as a graph. This technique is actively used for graph 
analysis in various domains such as food chains in ecosystems 

to internet traffic in computer systems. Network analysis 
comprises of several centrality measures that can be used to 
validate and assess the accuracy of the traceability links in 
networks [60]. Fig. 8 shows an example of four centrality 
measure values, degree centrality (D), closeness centrality (C), 
betweenness centrality (B), eigenvector centrality (E), obtained 
using the Python NetworkX libraries. The maximum and 
minimum centrality measures of nodes in a traceability graph is 
useful to identify the most and least connected artefact, 
centralized artefact, the artefacts with control over the network 
and influential artefacts. Further, these four centrality measures 
have used in validating traceability results [61]. 

Degree centrality (5) describes the status of a node in 
accordance with its adjacent links by counting the 
neighbouring nodes [60][62]. It has two versions as in-degree 
that counts incoming relationships and out-degree that counts a 
number of outgoing connections. Thus, a node that has a higher 
degree centrality value denotes that it is more central and has 
more power to be visible due to a maximum number of 
relationships in that network with respect to other nodes. For 
instance, nodes R and T have the maximum degree centrality in 
Fig. 8 with a value of 4 since they both have four connections. 

CDegree (v) = deg (v) where, v denotes a node.           

Closeness centrality (6) defines the nearest node to most 
nodes [60][62]. It considers the sum of a node to all the other 
nodes available in a network. Hence, a maximum closeness 
centrality value depicts that the distance from that node to the 
majority of other nodes in a lower value having the ability to 
send information fast. In Fig. 8, maximum closeness centrality 
value belongs to two nodes; R and T. 

 ( )   
 

∑  (   ) 
               

where, d(x,y) denotes the distance between vertex x and 
vertex y. N denotes the number of nodes in the graph. 

Betweenness centrality (7) denotes the occurrences of a 
node being a bridge along the shortest path to other nodes 
[60][62]. Here, it is assumed that information flow is 
performed over the shortest paths between nodes. Accordingly, 
a node with a higher betweenness centrality value may have 
control within the network in terms of data passing as in Fig. 8 
the node T has the maximum betweenness centrality value. 

 ( )  ∑
   ( )

        
              

where, v, s, t denote nodes and    ( ) is all the shortest 
paths between nodes s to t that pass through node v. 

 

Fig. 8. Example of Network Centrality Measures. 
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Moreover, EigenVector Centrality (EVC) also named as 
eigen centrality defines the most influential nodes in terms of 
the connectivity of a node with the other well-connected nodes 
in a network [60][62]. EVC is the principal eigenvector of an 
adjacency matrix defining the network. If a node’s EVC is a 
higher value, it shows that it is a more influential element in 
that network with respect to remaining nodes [61]. A node is 
influential, if it affects other highly influential nodes than the 
lesser nodes [63]. Thus, in EVC, nodes influence the linked 
nodes without being restricted to the shortest path or the 
adjacency of node connectivity [62]. For example, node R has 
the maximum EVC value in Fig. 8. Due to these factors, EVC 
measure is applied in Google web page ranking and to analyze 
the traceability establishment accuracy [62][63]. 

VIII. DISCUSSION 

One major challenge in tracing software artefacts is the 
heterogeneity due to different abstraction levels and the lack of 
defined data formats of the artefacts. Thus, it is essential to 
identify the key elements from a given artefact for proper 
relationship establishment. Although there are a variety of 
related studies, most of the literature has certain limitations 
such as being addressing only a few artefacts types, not 
addressing aspects related to software development in DevOps 
practice, lack of support towards CICD and lack automation 
[40][45]. Considering the tool support, many tools have 
traceability visualization and scalability issues leading to the 
inability to manage traceability with many artefacts. 

Moreover, the need for techniques and tools to recover 
traceability links in legacy systems is particularly important for 
a variety of software evolution tasks such as transitioning from 
traditional software process models to DevOps. The tasks 
include general maintenance tasks, impact analysis, program 
comprehension and more encompassing tasks such as 
systematic reuse traceability types and reverse engineering for 
redevelopment [4]. Some existing studies have addressed these 
aspects separately such as change impact analysis rather than 
along with traceability [64][65]. Hence, overall there is a lack 
of traceability management support to cope with the 
continuous integrations in DevOps practice. 

Traceability support in a DevOps based software 
development environment can be achieved by addressing the 
identified limitations. Several future possible research 
directions can be suggested based on this survey. The 
efficiency and effectiveness of the software artefact extraction 
process can be improved by exploring data pre-processing and 
information retrieval techniques that support heterogeneous 
artefact types, which can result in a more accurate traceability 
establishment process. Moreover, a generalized framework can 
be modelled to manage traceability, so that the automation can 
be achieved irrespective of the project domain and scale. 
Consequently, it is important to have a traceability 
representation with a scalable visualization technique that can 
lead to better decision making with minimum visual clutter. 
Additionally, traceability result validation is important to avoid 
inconsistencies among artefacts and reduce the associated cost 
due to re-work. Therefore, it is essential to determine a 
traceability methodology to synchronize software artefacts, 
such that the changes made to an artefact in any phase of the 

SDLC can preserve the consistency across all the artefacts. 
Furthermore, the traceability management process can be 
refined with automation and cutting-edge CI features including 
impact analysis and change propagation addressing the 
frequent artefact changes with a minimum cost. 

IX. CONCLUSION 

Software artefact traceability in DevOps practice is an 
evolving research area with the need for software evolution and 
maintenance. Software development in DevOps practice 
considers frequent software change requests and facilitates for 
continuous integration and continuous delivery process. This 
study addressed the applications of artefact traceability in a 
DevOps environment, which is challenging than managing 
traceability in a traditional software development process. We 
have identified the traceability concepts, terminologies, 
traceability models in DevOps practice, traceability 
establishment techniques, visualization approaches and 
traceability evaluation methods. Moreover, this study explored 
the related work on artefact traceability management and the 
existing traceability tool support. We have identified that there 
is a lack of traceability management features, which can be 
practically applicable in DevOps software development 
environments. This study has identified the requirement of 
having a generalized and automated traceability management 
solution that can handle any type of frequent artefact change in 
a scalable manner with a proper visualization approach. 
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