
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

161 | P a g e

www.ijacsa.thesai.org

The Impact of Flyweight and Proxy Design Patterns

on Software Efficiency: An Empirical Evaluation

Muhammad Ehsan Rana1, Wan Nurhayati Wan Ab Rahman2

Masrah Azrifah Azmi Murad3, Rodziah Binti Atan4

Faculty of Computer Science and IT, Universiti Putra Malaysia

43400 Serdang, Selangor, Malaysia

Abstract—In this era of technology, delivering quality

software has become a crucial requirement for the developers.

Quality software is able to help an organization to success and

gain a competitive edge in the market. There are numerous

quality attributes introduced by various quality models. Various

researches and studies prove that the quality of the object-

oriented software can be improved by using design patterns. The

main purpose of this research is to identify the relationships

between the design patterns and software efficiency quality

attribute. This research is focused on the impact of Flyweight

and Proxy Design Patterns on the efficiency of software. An

example scenario is used to empirically evaluate the effectiveness

of applied design refinements on efficiency of a system. The

techniques to measure software efficiency and the results

obtained for each solution are elaborated in detail. At the end of

this research, comparative analysis is provided to show the

relative impact of each selected design pattern on software

efficiency.

Keywords—Software efficiency; design patterns; flyweight

design pattern; proxy design pattern; measuring software

efficiency; empirical evaluation of software

I. INTRODUCTION

Efficiency is an essential quality factor that needs to be
considered by every software engineer while designing a
software program. A highly efficient software can give its
users a more pleasant experience when interacting with the
software by being more responsive to the user’s actions and
commands. To design and develop a highly efficient software,
designers will have to minimize the system resources used by
the software to accomplish the tasks. Increasing the efficiency
of the software through the likes of lowering the process time
and memory used by the software will make the users feel that
the software is more responsive as time used to process their
input and provide an output will be lower. The minimal usage
of memory will also decrease the time used to search for data,
further lowering the processing time.

Due to the competitive nature of software development,
developers would need to find ways to satisfy the users’ needs.
One of the problems of measuring software quality is that it is
often intangible and abstract. Therefore, to combat the problem
that developers usually face, Jim McCall and several other
software engineers have presented their models to ensure
quality of developed software using available industry
standards.

There are three perspectives of quality attributes in Jim
McCall’s model, namely Product Revision, Product Transition,
and Product Operations. Product revision is the ability or
enhancement of the ability for the software to change in
accordance to user needs. Product transition on the other hand,
is the ability for the software to adapt itself to changing
environments. Finally, product operation, which is the topic of
discussion of this research, is defined by the ability of the
software to operate in accordance to the user demands and
without defects [1].

Efficiency is “the state or quality of being efficient”, which
is the ability of a system or machine on “achieving maximum
productivity with minimum wasted effort or expense” or the
ability of a person “working in a well-organised and competent
way” [2]. However, in the context of software engineering,
efficiency is the capability of a software application to fully
utilize the amount of resources that are required to perform a
task, the resources are inclusive of CPU time, storage,
transmission channels and others [3] [4].

As this research is aimed to evaluate the efficiency of
software systems, authors are interested in “the ability of a
system on achieving maximum productivity with minimum
wasted effort or expenses”, which in a simpler form is
processing most input into output with least amount of
resources. Since resource distribution to run software systems
are on average the same, more efficient software can usually
finish the same task in less amount of time.

II. LITERATURE REVIEW

A. Importance of Efficiency in Contemporary Software

Systems

With the development of increasingly advanced hardware,
most software, even inefficient, do not need to take full
advantage of hardware resources except for a few types, such
as games. Due to the abundance of hardware resources,
software development typically has low efficiency standards,
since the development of an efficient software is more
expensive. Due to the higher cost of developing a more
efficient software, the end product would also end up costing
more. Moreover because of the fact that the end users prefer
cheaper products and would usually not notice the subtle
difference in performance, commercial software would choose
to enhance other aspects of the software rather than enhancing
the efficiency [5].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

162 | P a g e

www.ijacsa.thesai.org

Efficiency is often traded off with other quality attributes as
efficiency always comes last in terms of urgency and priority
[6]. However, for some real-time systems such a banking
system, efficiency is a critical factor in order for the system to
be proven useful and successful. Even though the weakness of
software efficiency is compensated by the advancement of
hardware, efficiency is still pivotal as many users of software
are using various specifications of laptops, tablets and
smartphones. On the other hand, battery life is an important
factor to be considered for mobile devices. If a mobile device is
constantly running inefficient software, it will occupy more
resources and the battery will be consumed faster.

A case study by [7], depicts the fact that complex systems
such as banking systems that require real time interaction
between multiple actors are difficult to implement as issues
such as efficiency and reliability arises in the process of
designing and actually producing the system. Furthermore,
introduction of the system over a large geographical area
(inclusive of rural areas) requires even more attention towards
efficiency as data has to be transmitted, received, and synced
among all nodes within the network in real time. The same
could be seen in Healthcare Systems which poses emphasis on
efficiency as the equipment which are connected using Internet
of Things (IoT) have to provide real-time response for
notification purposes when the monitored patient’s condition is
near or in emergency level [8] and serious implications could
happen when the system fails to extend immediate feedback to
the target audience (in this case, the nurses and the doctors) for
assistance.

Efficiency is becoming more important in software
applications that uses emergent technologies as it emphasize on
using fewer resources to achieve better results, saving
computational time and storage. The importance of efficiency
can be seen through telecommunication software applications
such as Skype, WhatsApp or Facebook Messenger which
provides video or voice calling services through wireless
networks. In the context of Skype, a study that was done by [9]
have shown that the video quality of Skype calls is greatly
affected by the efficiency of Skype’s transmission and
encoding algorithms as well as utilizing the bandwidth
resource provided by the targeted machine itself. Similarly,
within the healthcare sector, through integration of IoT,
surgeons are able to perform telesurgery on patients without
having to be physically present at the operation theatre [10]. In
these cases, efficiency of the software application is extremely
crucial as defective or inefficient software could potentially put
the patient’s life to risk, hence the software application must
perform at maximum efficiency to ensure there is zero to none
disruption. Content management system (CMS) which is a type
of data driven system is used to perform CRUD (create,
remove, update, delete) functionalities on text data and this
stored data is then used for big data analytics [11]. Due to the
large amount of data being stored in the database, the software
has to utilize the computing power by optimizing insert and
retrieval codes to ensure the performance of the system.

In a typical enterprise environment, development of
software applications is usually done on cloud where services
are delivered to clients or end-users through powerful
virtualized data servers that are equipped with high bandwidth

and low latency network speed that are kept in data-centers that
are owned by external parties (the cloud service providers such
as Microsoft Azure, Amazon Simple Storage Service et cetera.)
[12]. Cloud computing is considered as the integration of both
Grid Computing and Cluster Computing paradigms. Cloud
computing architecture allows the software system to be easily
expandable and scalable due to the nature of the services
provided [13]. However, efficiency is one of the main reasons
why most enterprises begin to shift their services to be hosted
through the cloud instead of having the servers hosted and
managed manually within their company’s premises.
Efficiency could be achieved in cloud computing paradigm
through shared resource pooling which improve data storage
and processing power, for example the service providers
dynamically assign computing resources to multiple consumers
only when needed, hence maximum utilization of computing
resources could be achieved [14]. Also, the amount of
computational power or storage could be increased or
decreased at any point of time based on the amount of
resources that will be needed by the software application;
hence it does not waste computing resources and at the same
time allows consumers to save cost. Due to the flexibility,
consumers can ensure that optimum efficiency is reached in
order to provide end-users with a system that runs with high
performance. Through cloud computing architecture,
consumers do not have to worry with concerns on hardware
issues and can pay full focus in development of software.

B. Methods to Improve Software Efficiency

1) Code optimization: In order to achieve higher

efficiency in software applications, the developers of the

system should be able to fully grasp and understand how

codes function at an operating system level and optimize the

codes to enhance computing resource utilization as area of

slowness could only be identified through knowledge and

experience in dealing with system related matters. For

instance, declaring cached reference of objects that is

frequently used as a local variable could greatly help in

reducing the processing power needed to complete a task [15].

The diagram represented by Fig. 1 below shows the actual

implementation of cached memory.

In Fig. 1, the code snippet on the left is the initial
implementation of the code without using cached memory. The
difference in two implementations is only a line of code,
however it can make a huge difference when the computer
interprets the code. The code on left have to retrieve the draw
method every single time the loop is executed, however the
code on the right retrieves the draw method once, and for each
loop execution the reference to the retrieved method is called.
Various modifications such as avoiding recursion, managing
threads etc. could also help in enhancing efficiency of a
software application [16].

Fig. 1. Code Snippets Showing the Variation in Efficiency.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

163 | P a g e

www.ijacsa.thesai.org

2) Parallel programming: Parallel programming is the

method of programming which utilize threads where each

thread could process a single line of command, however many

threads could be created and kept alive concurrently. In the

current real-world scenario, industries are paying more focus

on hardware components rather than software quality, hence

stronger processing chips are being researched on and

produced over the years whereas the efficiency of a software

is still neglected and there is no major improvement in terms

of efficiently utilizing the computing power which is being

provided by the chips [17]. However, in systems which are

heavily reliant on efficiency, parallel programming would be

among the most suitable to be implemented within the actual

source code.

3) Design patterns: Design patterns are tested and

reusable solutions to reoccurring problems. Some of the most

commonly used software design patterns are the twenty-three

object-oriented patterns proposed by the Gang of Four (GoF),

consisting Erich Gamma, Richard Helm, Ralph Johnson, and

John Vlissides, in their book “Design Patterns: Elements of

Reusable Object-Oriented Software”, published in 1994 [18].

Design patterns could be commonly seen within the context of

object-oriented programming where coupling and coherence

plays a very important role in determining the quality of a

software. Design patterns are classified into three categories,

creational addressing the process of object creation; structural

addressing composition of objects and classes; behavioral

addressing how classes and object interact and distribute

responsibility [18]. Through the usage of design patterns, a

common structure of code implementation can be applied to

solve certain type of issues. As design patterns are commonly

used, recognized and practiced by experienced object-oriented

developers, the solutions can be categorized to be the best

possible solution in specific situations. Since they are

commonly used by developers, the solutions are practically

stable in nature. Most of the time in the real-world

environment, design patterns are also the commonly used as a

base for most software development projects, this help saves

time as reoccurring problems could be solved immediately

through implementation of design patterns without the need of

rethinking code structure and design for constantly emerging

problems. As exploring design patters for improvement in

efficiency is the core objective of this research, subsequent

sections provide details on how it can impact software

efficiency.

C. Impact of Design Patterns on Software Efficiency

Design patterns could help in breaking down tight coupling
between classes and objects and with such, the structure of an
application can be broken down into few separated parts which
is typically implemented through the MVC (model, view and
controller) architecture. Efficiency of a software could be
improved by implementing heavy loading (functions that
require a large amount of processing power) to be done at
server-side machines with higher computational power and
allowing clients to access the Web APIs service to invoke the

functions and features [19]. Within the MVC architecture, the
Decorator pattern can be used in controller, the Strategy pattern
between the controller and view and the Observer pattern in
order to notify the view when the model is changed, whereas
Factory pattern can be used for creation of multiple views or
controllers.

Design patterns could also help in reducing the computing
power consumed by an application but instantiating lesser
objects and instead of creating new objects, similar objects are
shared in usage. For example, the Flyweight design pattern
allow objects to be shared. Whereas the Proxy design pattern
can improve the efficiency of an application by avoiding
duplication of object especially for objects that is very large in
size. For example, in a typical web application environment,
end users usually make requests to the server multiple times,
instead of responding multiple times, the proxy pattern will
check if the existing object exists and try to return the local
reference if there is an existing object.

Some of the existing researches also suggest that the design
patterns Factory, State, and Proxy can improve the
performance of a software system by caching or skipping
repetitive procedures [20, 21, 22, 23, 24, 25, 26]. In one of the
tests conducted by Erik Jansson, it was shown that flyweight
has noticeably improved the memory usage of the software
[27].

Following is a brief description of the Flyweight and Proxy
design patterns, which are used in this research for studying the
impact on software efficiency:

1) Flyweight design pattern: The Flyweight design pattern

as defined by GoF [18] is “using sharing to support large

numbers of fine-grained objects efficiently”. In other words,

flyweight is a pattern which aims to reduce the number of

objects that are created, and instead of creating a large number

of objects with tiny differences in attributes the Flyweight will

use the shared pool of objects with intrinsic state and extrinsic

state properties [28]. The intrinsic state is the predefined states

for the object which is constant and unchangeable whereas the

extrinsic state is the attribute which is determined during run

time. Fig. 2 below shows the general structure for Flyweight

implementation.

Fig. 2. Flyweight Generic Design.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

164 | P a g e

www.ijacsa.thesai.org

Fig. 3. Proxy Generic Deisgn.

2) Proxy design pattern: The Proxy design pattern as

defined by GoF [18], is “providing a surrogate or placeholder

for another object to control access to it”. Proxy is categorized

into four main types, which are the remote proxy, virtual

proxy, protection proxy and smart proxy respectively. Remote

proxy is used for the purpose of accessing remote services by

processing on the request that was sent by the client; Virtual

proxy is for delaying the sending of the actual until the

moment where the data is required; Protection proxy is to act

as a layer of protection when accessing data; Smart proxy is to

check the caching of objects. As shown in Fig. 3 above, the

Proxy design pattern consists of four main components, the

Client which send requests; the Subject (interface) which

handles request made by the Client; the Real Subject which is

the actual object or data; the Proxy which is a pointer or

reference to the actual data or object. The Proxy acts a checker

or a control which identifies if similar request is previously

sent from the Client, if the result to the request is found within

the local context of the Proxy, then the Proxy will redirect the

request to the local reference of the result instead of accessing

the Real Subject to request for the result again. In cases where

the Real Subject is heavyweight, through the implementation

of proxy design pattern, greater efficiency could be achieved.

D. System Attributes related to Efficiency

As efficiency is a broad term, there exists many ways in
which one can measure a system’s efficiency. As proposed by
[29], there are a few sub-factors in a system which are related
to efficiency. The sub-factors include:

 Time Behavior–The response time, throughput, and
capacity to perform of a system.

 Resource Behavior–How much resource is used by the
system while performing its tasks. The resources can be
random access memory (RAM), read-only memory
(ROM) as well as the utilization of Input and Output
device.

 Reply Time–The time passed between which an inquiry
or demand is given to a system and the beginning of the
system’s response to the inquiry or demand.

 Processing speed–The amount of time used by a system
to complete a task or the actual time spent by the user
on the system to generate a result.

 Execution Efficiency–The run time performance of a
component in the system.

 Robustness–The ability of a component in the system to
execute tasks correctly when given incorrect inputs or
while under stressful environmental conditions to give
desired results.

With higher efficiency, less hardware resources and more
importantly, less time will be consumed, and accomplishing
more tasks deemed very important by the user under a given
amount of time. Therefore, in order to measure the efficiency
of a system, these factors should be considered.

III. DESIGN AND IMPLEMENTATION OF SIMPLER AND

REFINED SOLUTIONS

To measure the impact of design refinements on system
efficiency, a simple imitation of an online shooter game is
designed and implemented. Initially a simpler solution is
implemented without applying any design refinements. Then
the same design is improved by applying appropriate design
patterns and the solutions is re-implemented. Finally efficiency
of simpler legacy solution as well as the refined design pattern
based solutions are calculated by measuring the execution time
and memory usage. Comparison of the solutions highlight the
impact and effectiveness of the design patterns used and help
in identifying the design refinements that should be used to
make a software system efficient.

Scenario: In an online shooter game, there are two teams
consisting of defenders and attackers. 200 players will be
playing in a single map and they can either choose to be an
attacker or defender. These players can also choose their
desired weapons. Once players have chosen their weapons, the
attackers will spawn at a location and the defenders will spawn
another. For imitation purpose, the 200 players will randomly
choose classes and we assume that the likelihood of them
picking each of the weapons will be the same. The attackers
are assigned the task to attack the objective while the defenders
are assigned to defend it.

Following represents the design of a simpler solution:

As shown in Fig. 4, the basic solution contains four (4)
classes. The Players are separated into Attackers and
Defenders. The OnlineShooter class (Fig. 5) will then spawn
the Attacker and Defender Players. In the OnlineShooter class,
there are 2 arrays which are playerTeam, containing the teams
the players can join, and Weapon, which is the weapon that the
players can pick. For each player, the player will be generated
by placing them into a random team with a random weapon
selected using the Java Random utility. Once the player is
loaded, they will be spawned.

The Player interface (Fig. 6) contains methods that will be
implemented in the Attacker and Defender class which are
assignWeapon(String weapon), for assigning the randomly
chosen weapon to the players, spawn(), which spawns the
players, and loadModel() which will load the player models.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

165 | P a g e

www.ijacsa.thesai.org

Fig. 4. UML Class Diagram for Simpler Solution.

Fig. 5. Online Shooter Class.

Fig. 6. Player Interface.

Fig. 7. Attacker Class.

As Attacker and Defender classes are similar, only the
Attacker class is shown in Fig. 7 above. In both Attacker and
Defender class, the task, file location of the player model, and
the weapon assigned are stored as Strings, while the spawn
location and actual player models are stored as buffered images
to simulate the actual process of loading the players, which
needs a considerable amount of time and memory.

A. First Design Refinement using Flyweight Design Pattern

In above design and implementation, there is a problem
with the system needing to create a completely new Player
object for every single player loaded, even though there are
only slight differences between the different Player objects. For
each Attacker or Defender, the Task, Model, and Spawn
Location are the same, with only their weapon being different.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

166 | P a g e

www.ijacsa.thesai.org

This creates a situation where the system needs to create about
99 player objects for each type of player which can be avoided.

To solve this issue, Flyweight design pattern is
implemented. By using Flyweight, each Player object will only
have to be instantiated once, which can then be reused
repeatedly, only needing to reassign their weapons each time
instead of reassigning everything. The refined UML Class
Diagram (Fig. 8) is depicted below.

As can be seen from Fig. 8 below, most of the classes
remained same as the basic implementation, except that a
PlayerFactory class is added, which the OnlineShooter class
will use for the generation of Players. The implementation of
the Attacker and Defender classes as well as the Player
interface is the same. The DPATProjFlyweight in the
implementation however, has a minor change, which is the
generation of Player object, instead of directly making a new
Player, the player is gotten from the PlayerFactory class.

The PlayerFactory class, as shown in Fig. 10, is a new class
that was not implemented in the simpler solution of the
scenario. The class contains a HashMap, which will be used as
a key that is associated with created objects. When the
getPlayer() method is called, the system will first check if the
player type is already created by searching for the associated
key. Then return the player object if it is already created, not
needing to recreate a new object. If the associated key cannot
be found, only then the system will create a new object and
store it with its associated key before returning it.

Fig. 8. UML Class Diagram for Flyweight Pattern based Refinement

Fig. 9. Online Shooter Class tweak

Fig. 10. Player Factory Class.

B. Second Design Refinement using Proxy Design Pattern

There is still an issue in the refined solution, whereby
before each player is spawned; their player models need to be
loaded from a specific file. In this case, spawning 200 players
would mean that the system would have to repeatedly read the
player model from a remote file for 200 times, which 99 times
can be avoided for each player type (as in Fig. 9).

To resolve this issue, Proxy design pattern is implemented
alongside Flyweight, where each player type’s model file
would only have to be accessed and read once, and then the
system will store the remote file’s information as an object,
which can then be reused repeatedly without needing to access
the remote file again. Fig. 11 shows the UML class diagram
designed for the implementation with Proxy design pattern.

In the refined UML class diagram (Fig. 11) depicted above,
no changes are made to the already existing classes except for a
few variables in the Attacker and Defender classes. However,
two interfaces AttackerModel and DefenderModel, which are
the player models for each of their respective player types, are
added. Proxy player model classes ProxyAtkM and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

167 | P a g e

www.ijacsa.thesai.org

ProxyDefM as well as real player model classes RealAtkM and
RealDefM are shown for their respective player types. As in
the first refinement, classes that are unchanged are not shown
here, that include OnlineShooter (renamed to
DPATProjFProxy), PlayerFactory, and the Player interface.
There are slight changes to the Attacker and Defender classes.
The String Model variables are changed to a type of their
respective model classes and the loadModel() method is
replaced by the getModel() method, which gets the player
model from their respective classes as a BufferedImage as
shown in Fig. 12 below.

The AttackerModel and DefenderModel interfaces in
Fig. 13 and Fig. 14 contain a getModel() method, which is used
for the Attacker and Defender classes to get player model.

Fig. 11. UML Class Diagram for Proxy Pattern based Refinement.

Fig. 12. Player getModel().

Fig. 13. AttackerModel interface.

Fig. 14. DefenderModel Interface.

The ProxyAtkM and ProxyDefM classes in Fig. 15 and
Fig. 16 are the proxy classes for the player models. There are
String variables for storing the file name of the player model
and RealAtkM and RealDefM type classes which is used to
refer to the real model classes. When the getModel() method is
called, it will first check if the real model classes are
instantiated, and get the player model from the real model class
and return it.

Fig. 15. ProxyAtkM Class.

Fig. 16. ProxyDefM Class.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

168 | P a g e

www.ijacsa.thesai.org

The RealAtkM and RealDefM classes in Fig. 17 and
Fig. 18 are responsible for loading and storing the player model
from the remote file. Similar to the proxy classes, there is a
String variable in each of the real model classes to store the file
name of the model. The BufferedImage is first instantiated as
null but when the class is first instantiated, the model will be
loaded into the BufferedImage. When the getModel is called
by the proxy classes every next time, the BufferedImage will
be returned without needing to be loaded again.

Fig. 17. RealAtkM Class.

Fig. 18. RealDefM Class.

IV. EMPIRICAL EVALUATION AND ANALYSIS OF RESULTS

Efficiency of a system can be calculated by measuring its
execution time and its memory usage when executing tasks.
The efficiency of a system is inversely proportional to both
memory usage and execution time. Therefore, in order for a
system to be considered as efficient, its memory usage as well
as execution time needs to be as low as possible. In order to
show the impact of design patterns on system’s efficiency, the
memory usage will be measured in Mega Bytes (MB) and its
execution time will be measured in Seconds.

To measure these attributes of the system, the above
designs are implemented in Java programming language using
NetBeans IDE. NetBeans is chosen as it has an internal profiler
which automatically tracks the project’s memory usage, CPU
usage and Garbage Collection, etc. To obtain system’s memory
usage, one would only need to run the project in the profiler’s
telemetry tab, and the memory usage at each stage of the
project’s execution will be shown in a graphical form. For each
execution of a project, NetBeans’ internal output console will
also display the project’s completion time after it has finished
executing the project. The completion time can then be directly
translated to the execution time of the system. To simulate
large amount of data being processed by a real system,
BufferedImage (a Java library) is used. The large file size of an
image, when loaded into the system using BufferedImage, can
simulate a large object in a real system. Without the existence
of a large object, the execution time and memory usage of the
implementation will be too low to have a noticeable difference.

Each variant of differently designed implementation was
run multiple times using NetBean’s built-in profiler to obtain
the memory usage and execution time so that the time needed
to start the profiler is not calculated into the execution time.
Following are the results for each of the three variant
implementations discussed above:

Fig. 19. Memory usage by Simpler Legacy Solution.

Fig. 20. Execution Time Taken by Simpler Legacy Solution.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

169 | P a g e

www.ijacsa.thesai.org

The results for the simpler implementation are shown in
Fig. 19 and Fig. 20 above. The memory needed to complete
running the system was 817MB and the execution time was 30
seconds. As one would expect, the memory and time would
increase proportionally to the number of players generated as
well as the file size of the Buffered Image.

Fig. 21 and Fig. 22 shows the results for refined
implementation with Flyweight pattern. Here the memory
needed to complete the execution of the project was 648MB,
which is significantly lower than the simpler solution, while
the execution time was 15 seconds, which is half of what the
simpler implementation needed.

Finally, the results of running the second refinement using
both Flyweight and Proxy design pattern are shown in Fig. 23
and Fig. 24. The memory usage is even lower than the first
refinement, only needing 129MB. The execution time was
surprising reduced to less than 1 second.

Fig. 21. Memory usage by Flyweight Pattern based Solution.

Fig. 22. Execution Time Taken by Flyweight Pattern based Solution.

Fig. 23. Memory usage by Proxy Pattern based Solution.

Fig. 24. Execution Time Taken by Proxy Pattern based Solution.

Fig. 25 and Fig. 26 show the comparison of the three
solutions using a bar chart in order to better illustrate the
impact of the design patterns.

From the results above, it is obvious that both design
patterns have significantly lowered the execution time as well
as the memory usage. Applying the flyweight pattern has
lowered the memory usage by 349MB while applying proxy
pattern has further lowered the memory usage by 519MB. Both
design patterns have also shown a significant decrease in the
execution time which is 15 seconds.

Fig. 25. Memory usage Comparison.

Fig. 26. Execution Time Comparison.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

170 | P a g e

www.ijacsa.thesai.org

V. CONCLUSION

Throughout the context of this research, the impact of
efficiency on software systems is explored and examined and
later evaluated using a simple imitation of an online shooter
game. This research also analyze the effectiveness of applied
design refinements on efficiency of a system. The design
refinements were carried out by applying Flyweight and Proxy
design patterns on a simpler solution. In conclusion, Flyweight
and Proxy design patterns can both be very effective at
increasing the efficiency of a system by decreasing the
execution time and memory usage provided they are
implemented in the right context.

REFERENCES

[1] ProQA, "ProfessionalQA," 2016. [Online]. Available: http://www.
professionalqa.com/mc-call-software-quality-model.[Accessed 5 4 2019].

[2] Oxford, Oxford English Dictionary, 7 ed., Oxford: Oxford University
Press, 2012.

[3] J. P. Cavano and J. A. McCall, "A Framework for the Measurement of
Software Quality," ACM SIGSOFT Software Engineering Notes, vol. 3,
no. 5, pp. 133-139, 1978.

[4] M.-C. Lee, "Software Quality Factors and Software Quality Metrics to
Enhance Software Quality Assurance," British Journal of Applied
Science & Technology, vol. 4, no. 21, pp. 3069-3095, 2014.

[5] D. H. M. Kabutz, "JavaSpecialists," 2019. [Online]. Available: https://
www.javaspecialists.eu/archive/Issue267.html. [Accessed 5 4 2019].

[6] H.-W. Jung, S.-G. Kim and C.-S. Chung, "Measuring Software Product
Quality: A Survey of ISO/IEC 9126," IEEE Software , vol. 21, no. 5, pp.
88-92, 2004.

[7] P. M. Leonardi, D. E. Bailey, E. H. Diniz, D. Sholler and B. Nardi,
"Multiplex Appropriation in Complex Systems Implementation: The Case
of Brazil’s Correspondent Banking System", MIS Quarterly, vol. 40, no.
2, pp. 461-473, 2016.

[8] T. N. Gia, M. Jiang, A.-M. Rahmani, T. Westerlund, P. Liljeburg and H.
Tenhunen, "Fog Computing in Healthcare Internet of Things: A Case
Study on ECG Feature Extraction," 2015 IEEE International Conference
on Computer and Information Technology; Ubiquitous Computing and
Communications; Dependable, Autonomic and Secure Computing;
Pervasive Intelligence and Computing, pp. 356-363, 2015.

[9] L. Li, K. Xu, D. Wang, C. Y. Peng, K. Zheng, H. Y. Wang, R. Mijumbi
and X. X. Wang, "A Measurement Study on Skype Voice and Video
Calls in LTE Networks on High Speed Rails," 2017 IEEE/ACM 25th
International Symposium on Quality of Service (IWQoS), pp. 1-10, 2017.

[10] Y. Yin, Y. Zeng, X. Chen and Y. Fan, "The internet of things in
healthcare: An overview," Journal of Industrial Information Integration,
vol. 1, pp. 3-13, 2016.

[11] J. Thrivani, K. Venugopal and B. Thomas, "An Efficient Cloud Based
Architecture for Integrating Content Management Systems," 2017 IEEE
International Conference on Innovative Mechanisms for Industry
Applications, pp. 337-342, 2017.

[12] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg and I. Brandic, "Cloud
Computing and Emerging IT Platforms: Vision, Hype, and Reality for
Delivering Computing as the 5th Utility," Future Generation Computer
Systems, vol. 25, pp. 599-616, 2015.

[13] Q. Zhang, L. Cheng and R. Boutaba, "Cloud Computing: State-of-the-Art
and Research Challenges," IEEE Internet Computing , vol. 13, no. 5, pp.
10-13, 2009.

[14] H. T. Dinh, C. Lee, D. Niyato and P. Wang, "A Survey of Mobile Cloud
Computing: Architecture, Applications, and Approaches," Wireless
Communications and Mobile Computing, vol. 13, pp. 1587-1611, 2013.

[15] K. Busch, "The Rules of Optimization: Why So Many Performance
Efforts Fail," 2016. [Online]. Available: https://hackernoon.com/the-
rules-of-optimization-why-so-many-performance-efforts-fail-
cf06aad89099. [Accessed 7 August 2018].

[16] E. Paraschiv, "How to Improve the Performance of a Java Application,"
2018. [Online]. Available: https://dzone.com/articles/how-to-improve-
the-performance-of-a-java-applicati. [Accessed 7 August 2018].

[17] S. H. Fuller and L. I. Millett, "Computing Performance: Game Over or
Next Level?," Computer, vol. 44, no. 1, pp. 31-38, 2011.

[18] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesle, 1995.

[19] F. E. Shahbudin and F.-F. Chua, "Design Patterns for Developing High
Efficiency Mobile Application," Journal of Information Technology &
Software Engineering, vol. 3, no. 3, 2013.

[20] M. Ayata, "Effects of Some Software Design Patterns on Real Time
Software Performance," Middle East Technical University, Ankara,
Turkey, 2010.

[21] C. Clifton, "Some GoF Design Patterns:," Rose-Hulman Institute of
Technology, Terre Haute, Indiana.

[22] Devlob, "Medium - Proxy Design Pattern to Speed up Your
Applications!," 2018. [Online]. Available:
https://medium.com/@devlob/proxy-design-pattern-to-speed-up-your-
applications-2416816493d. [Accessed 16 4 2019].

[23] B. M. Dotte and D. C. Julson, "Using Design Patterns to Improve the
Run-Time Efficiency of Real-Time," University of Wisconsin-Eau Claire
, Eau Claire, Wisconsin.

[24] K. Khosravi and Y.-G. Gu´eh´eneuc, "A Quality Model for Design
Patterns," German Industry Standard, 2004.

[25] R. Carr, "BlackWasp - Proxy Design Pattern," [Online]. Available:
http://www.blackwasp.co.uk/Proxy.aspx. [Accessed 21 4 2019].

[26] M. E. Rana and W. N. W. A. Rahman, "The Effect of Applying Software
Design Patterns on Real Time Software Efficiency," in Future
Technologies Conference (FTC) 29-30 November 2017, Vancouver,
2017.

[27] E. S. Jansson, "Performance Effect of Flyweight in," Linköping
University, Sweden, Linköping, Sweden, 2015.

[28] D. Geary, "Make your apps fly | JavaWorld," 2003. [Online]. Available:
https://www.javaworld.com/article/2073632/build-ci-sdlc/make-your-
apps-fly.html. [Accessed 8 August 2018].

[29] A. K. Sharma, "Component Based Systems: A Quality Assurance
Framework," Himachal Pradesh University, Shimla, 2013.

