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Abstract—A large dataset network is considered for 

computation of maximal clique size (MC). Additionally, its link 

with popular centrality metrics to decrease uncertainty and 

complexity and for finding influential points of any network has 

also been investigated. Previous studies focus on centrality 

metrics like degree centrality (DC), closeness centrality (CC), 

betweenness centrality (BC) and Eigenvector centrality (EVC) 

and compare them with maximal clique size however, in this 

study Katz centrality measure is also considered and shows a 

pretty robust relation with maximal clique size (MC). Secondly, 

maximal clique size (MC) algorithm is also revised for network 

analysis to avoid complexity in computation. Association between 

MC and five centrality metrics has been evaluated through 

recognized methods that are Pearson’s correlation coefficient 

(PCC), Spearman’s correlation coefficient (SCC) and Kendall’s 

correlation coefficient (KCC). The strong strength of association 

between them is seen through all three correlation coefficients 

measure. 

Keywords—Centrality measures; network analysis; maximal 

clique size 

I. INTRODUCTION 

This Network analysis has become a crucial tool in 
studying the patterns involved in branched systems and graphs. 
From its initial journey of solving bridges by Euler all the way 
back in 1735, network analysis and graph theory have greatly 
evolved and found applications in nearly every area of study. 
Since, these analyses involving the exchange of 
information/resources between „actors‟ (nodes) fields like big 
data science, health care, finance, computer science, social 
sciences, etc. have grown as  a result of efficient use of 
networking techniques [1]. 

More specifically Complex Network Analysis has emerged 
as a major area of research in big data science. The aim of this 
approach is to analyze real life complex network models using 
the approaches of graph theory. Numerous approaches have 
been developed for the analysis of networks; centrality 
measures have really contributed to the understanding of these 
networks. Node centrality is a prominently used measure, it 
links one node with others in the network based on a statistical 
quantitative measuring of the topological importance of the 
node with respect to the others [2]. In general, node centrality 
can help study a wide range of measures ranging from sports 
associated patterns of play, to identify user preferences in 
social networks, the most used clinics in urban and rural 
settings, to even the super-spreaders of a disease, etc. The 
existing techniques for evaluating the centrality measures 

involve a neighborhood-based approach and a shortest path 
algorithm approach.  The neighborhood approach makes use of 
the key features of a node such as the degree centrality (DC) 
and Eigenvector centrality (EVC), while the shortest path 
approach utilizes the betweenness centrality (BC) and the 
closeness centrality (CC) measures [3]. 

Due to being computationally easier to manage, numerous 
variations (spatial and temporal) of the algorithms for 
determining centrality metrics have been developed. However, 
one question associated with centrality of a node is usually the 
allowable size of a „clique‟ for a node.  A graph contains a 
“clique” that is a set of some nodes such that each two different 
nodes are adjacent. The size of a clique is defined as the count 
of nodes that are present in the clique. Every node of a graph 
might be a piece of one or more than one cliques of different 
sizes. In networks which are highly linked and have complex 
interactions, this maximum size of a clique can help identify 
whether a node in particular is of importance in a community 
or not based on its modular score. The modularity score is a 
measure of effectiveness of a networks partitioning into 
communities. A larger modularity score means a highly inter 
related community with a high number of vertices within it. 
Hence, it becomes imperative to identify the vertices that are 
scored high on the modular scale and design algorithms for the 
detection of a community using these vertices [2]. 

The paper is oriented as follows: literature review on 
network analysis is mentioned in Section II. Section III of this 
paper contains network analysis through centrality metrics. 
Revised maximal clique size algorithm evaluation for small 
network was done in Section IV. Results of centrality metrics 
and maximal clique size for large product network data is 
discussed in Section V. Conclusion and future work is 
presented in Section VI. 

II. LITERATURE REVIEW 

Stattner and Vidot (2011) presented new favorable 
circumstances in the area of social networks to comprehend the 
outbreak of infectious diseases as these events have been 
increasing rapidly such as the spread of H1N1 influenza virus. 
Hence the hindrance and regulation of outbreaks have become 
a health problem of fundamental importance. In this study, the 
methods already used in epidemiology and those which are 
recent both are focused in order to apply modeling on disease 
spreads and overviewed possible future implementations on 
social network analysis [2]. 
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Zhnag et al. (2015) highlighted the point that common 
models such as SIR model overlooks the flocking or protection 
consequences and thus may have some improbable 
assumptions. Therefore, in this study an improved SIR model 
is proposed in which these consequences are considered. Both 
stochastic as well as deterministic models are used to identify 
the outbreaks on social networks. The results obtained from 
both of the simulations show that diseases spread even more in 
social contact networks having greater average of degree. 
Some dormant immunization strategies have been presented in 
this work as well to support the findings [3]. 

Lawyer (2015) mentioned that the spreading power of all 
nodes in a network should be identified as every vertex in a 
network generates some force for the distribution of infection, 
and the recently used centrality measures like eigenvalue, 
degree or k-shell centrality can be used to accurately identify 
the nodes that are most influential but not for the nodes that are 
not much influential. It was concluded that the resulted metric 
and expected force accurately evaluates the spreading power of 
all nodes in social contact networks. The force may be 
estimated independently for each vertex that may be applicable 
for networks with dynamic or very large adjacency matrix [4]. 

Yin et al. (2017) proposed a modified SIS model, which 
contains the property that in social contact networks a vertex 
along with its neighbor nodes also contacts to the other ones 
randomly that do not have direct connections that may be 
called as stranger contacts. This modified model is 
implemented on a scale-free network and the impact of these 
different contact patterns are studied on the dynamics of 
epidemics. This study concluded that the more partiality for 
direct contacts, the less likely would be the outbreak of disease. 
Furthermore, the finest strategy of disease control is to adjust 
both of the number of contact patterns [5]. 

Meghanathan (2017) explained betweenness centrality 
metric for complex graphs. Association among betweenness 
and Local clustering coefficient was discussed. Local 
clustering coefficient- based degree centrality measure was 
stated and studied with betweenness centrality on real-world 
datasets [6]. 

Meghanathan (2018) identified the relationship among vital 
centrality measures that are easily computed and maximal 
clique size which is complex in computation. The association 
was studied on 10 real-world datasets between centrality 
metrics and maximal clique size through three well known 
correlation coefficients that are Pearson‟s, Spearman‟s and 
Kendall‟s [2]. 

III.  NETWORK GRAPH AND IMPORTANT METRICS IN 

NETWORK ANALYSIS 

Key nodes can be recognized in a given social network by 
looking forward to the following metrics: 

 

Fig. 1. Undirected Network of 5 Nodes [7]. 

Adjacency matrix (  ) for the undirected network 
containing 5 vertices (nodes) of Fig. 1 is demonstrated as: 
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                 (1) 

A. Degree Centrality (DC) 

Degree Centrality (DC) is a parameter to measure number 
of contacts that a node have in a graph or a network, contacts 
are represented by edges. If the communication (edges) is 
directed among nodes in a graph or a network then the DC is 
divided into two terminologies that are indegree centrality or 
outdegree centrality. Indegree and outdegree centrality of a 
node refers to forward and backward connection towards other 
nodes present in a network [1]. 

Degree centrality (DC) measure of network graph present 
in Fig. 1 is like that node id E minimum value of DC that is 3 
whereas node ids B and C have maximum value of DC that is 4 
[1]. 

B. Betweenness Centrality (BC) 

The betweenness centrality (BC) of a node is the total count 
of shortest walks passing through a node among any two nodes 
by seeing all sets of nodes in the graph. The count of shortest 
walks from node m to node n that is passing through a node g 
(represented as     ( ))  is the maximum of the count of 
shortest walks from node m to node   in the shortest walk tree 
rooted at node m and the count of shortest walks from node n 
to node   in the shortest walk tree rooted at node n. The 
formula for computation of BC is given by equation (2) and 
computation of BC for Fig. 1 is mentioned in Table I [2].  

     ( )  ∑
    ( )

    
   
   

               (2) 

The equation (2) can compute a betweenness centrality 
(BC) of a node in any network graph. BC determines the 
influence of a node in a graph for network analysis in a way 
that how important a node (vertex) is in between a 
communication of any other two nodes of the same graph. 

From Fig. 1, it is observed clearly that node B and node C 
are pretty important for communication as they are lying on 
shortest walk between node A and node E and similarly 
between node D and node E. Table I demonstrate a fine picture 
of BC measure. 

TABLE. I. BC MEASURE FOR A NETWORK IN FIG. 1 

Node Id 

A 
Node Id B Node Id C 

Node 

Id D 

Node 

Id E 

BC of 

node id A 

is 0. 

Set[   ]       

Set[   ]      

Set[   ]      

Set[   ]      

 

BC of node id B is 

sum of all above sets 

that is equal to 2. 

Set[   ]       

Set[   ]      

Set[   ]      

Set[   ]      

 

BC of node id B is 

sum of all above sets 

that is equal to 2. 

 

BC of 

node id 

D is 0. 

BC of 

node id 

E is 0. 
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C. Closeness Centrality (CC) 

Node‟s closeness centrality (CC) is defined as the 
reciprocal of the sum of the count of shortest walks from a 
node to all other nodes present in a network [8]. The formula 
for CC is given by equation (3) for network analysis. The node 
which carries a largest amount of CC is nearest to rest of the 
nodes in a network that aids a node in communicating and 
developing a relation with other nodes in that graph. Similarly 
a node with lowest CC is far from other nodes present in a 
network and that node may face difficulty in communicating 
and developing a relation with the rest of the nodes in a graph. 

   
 

∑                                                          
   (3) 

For computation of CC by equation (3), we have to first 
evaluate shortest walk between every two nodes in a graph. For 
Fig. 1 shortest walk between every two nodes is represented by 
shortest walk distance matrix (SWDM) in equation (4). 
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 ]
 
 
 
 

             (4) 

It is seen in Fig. 1 that there is no loop present therefore 
diagonal element of SWDM are zero shown in equation (4). 
Sum of shortest walk for each node is represented in 
equation (5). 

∑     

[
 
 
 
 
 
 
 
 
 ]
 
 
 
 

                   (5) 

Finally CC for each node   in Fig. 1 is computed in 
equation (6) by following the definition of CC measure. 

  ( )  
 

∑    ( )
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     ]

 
 
 
 

                 (6) 

Outcomes in equation (6) shows the significance of node B 
and node C that have highest amount of CC which means node 
B and node C are nearest to rest of the nodes in a graph 
presented in Fig. 1. 

D. Eigenvector Centrality (EVC) 

Eigenvector centrality (EVC) is a measurement of amount 
that indicates key nodes in a graph. EVC explains the role of 
neighboring nodes in a way that all those nodes are essential in 
a network which are linked with useful nodes. Dominant 
eigenvector of adjacency matrix (Ad) is EVC. The EVC 
amount of the nodes in a network corresponds to the input for 
the nodes in the principal eigenvector of the network 
represented by   . The n eigenvalues and the corresponding 
eigenvector is extracted from n×n Ad. Power method is used 
for evaluation of EVC from    of the network. For this 
method, we initiate from the ones vector that is    

[            ] corresponding to the count of nodes in the 
network and passes through a number of iterations [2, 9, 10]. 

The preliminary eigenvector evaluated during the(   )   
iteration is given as follows: 

    
(  )   

‖(  )   ‖
                (7) 

Where ‖(  )    ‖ is the normalized amount of the EVC 

obtained in proceeding of    iteration. Power method is 
applied and repeated till normalized values becomes same and 
converges as seen in Table II. 

Table II also points the importance of node id B and node 
id C in the considered graph network (that is Fig. 1). In 7th 
iteration of power method we obtained a dominant eigenvalue 
and corresponding eigenvector for a matrix graph      

E. Katz Centrality (KC) 

The Katz centrality (KC) evaluates the centrality of a vertex 
(node) that depends on the centrality of its adjacent nodes 
relatively than considering shortest walks between nodes. It is a 
broad view of EVC [11]. The Katz centrality (KC) for node   
is computed by formula mentioned in equation (8). 

  ( )   ∑       ( )   
 
                  (8) 

Where, the parameter   controls the centrality not to 
become zero. First term of equation (8) arrows to eigenvector 
centrality (EVC). 

                               (9) 

In equation (9),   is a unit column vector. 

                               (10) 

  (       )                       (11) 

    (      )                     (12) 

For computation of Katz centrality (KC), always suppose 
value of alpha ( ) less than the reciprocal of dominant 
eigenvalue ( ) for convergence. As dominant eigenvalue is 
obtained for network presented in Fig. 3 is of amount 3.3234; 
therefore, in equation (12) considering       and     for 
Katz centrality (KC) computation. Equation (13), (14), (15) 
and (16) demonstrated the complete evaluation details of Katz 
centrality for a network in Fig. 1. 
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TABLE. II. EVC MEASURE FOR A NETWORK IN FIG. 1 
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Equation (17) also arrows a same result of influential nodes 
in a network as all four previous centrality measure indicates 
that node id B and node id C plays a vital role in 
communication and developing relation with other remaining 
nodes. Now we move towards Section IV for a concept of 
maximal clique size (MC) evaluation and its connection with 
centrality metrics. 

IV. MAXIMAL CLIQUE SIZE (MC) AND ITS ASSOCIATION 

WITH KEY CENTRALITY METRICS 

The concept behind maximal clique size (MC) of a graph 
for any node is that the node   is assigned a value that belongs 
to the presence of node   in a maximum clique size (MC) of 
that graph. The MC of a node is a determination of amount of 
modularity of a node and that can be used to recognize seed 
nodes about which communities can develop. The evaluation 
of modular node in large dataset networks have very 
significance for network analysis but it is seen from previous 
literature that preference was given to linked measure called 
maximal clique size (MC) over count of modular nodes. In 
addition to previous work, we modify previous methods for 

determination of maximal clique size (MC) for large dataset 
networks which was pretty difficult to compute, aim is to 
decrease complexity in computation. Modified algorithm of 
MC is mentioned in Table IX. Also small network example 
(that is Fig. 1) is considered to explain the concept of MC. 

There are in total two maximal cliques present that are 
demonstrated in Fig. 2 with two different colors. One maximal 
clique is {A, B, C, D} shown by yellow lines and second one is 
{B, C, E} shown by green color.  MC value for each node is 
represented in Table III. 

The link between maximal clique size (MC) and all five 
centrality metrics is measured through renowned correlation 
coefficients that are Pearson‟s, Spearman‟s and Kendall‟s 
which are discussed briefly and determined in this section. The 
association between MC and all five centrality metrics is 
important in the way that if strength of association is strong 
and positive then we can go for centrality metrics in network 
analysis rather than to compute MC. Results has shown 
strength of positive association between them which are 
mentioned in Table XV. 

 

Fig. 2. Marking of Maximal Cliques on a Network Considered in Fig. 1. 
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TABLE. III. MAXIMAL CLIQUE SIZE FOR A NETWORK IN FIG. 1 

Node ID A B C D E 

MC 4 4 4 4 3 

A. Pearson’s Product Moment-Based Correlation Coefficient 

(PCC) 

The Pearson‟s correlation coefficient (PCC) is stated for 
any two data‟s as the ratio of covariance and the product of 
standard deviations. Suppose mean of maximal clique size and 
degree centrality are demonstrated by       and 

     respectively for a network of n number of nodes. 

Suppose that each input corresponding to n number of nodes 
for maximal clique size and degree centrality is demonstrated 
by      and     respectively [6]. The evaluation for Fig. 1 
through equation (18) is computed in Table IV. 

   (     )  
∑ (         )(         )
 
   

√∑ (         )
 ∑ (         )

  
   

 
   

           (18) 

   (     )  
   

√       
                   (19) 

From equation (19) it is clear that there exists a pretty 
strong positive association between maximal clique size (MC) 
and degree centrality (DC) that is of amount 0.8017. The 
outcome indicates that for recognition of influential nodes in a 
network analysis one may use degree centrality metric (DC) as 
compared to maximal clique size (MC) that is difficult and 
time consuming to evaluate. Now we move on to other method 
of finding link between these two measures that is Spearman‟s 
correlation coefficient. 

B. Spearman’s Rank-Based Correlation Coefficient (SCC) 

The Spearman‟s correlation coefficient (SCC) is stated for 
two data‟s as the determination of association by considering 
the ranks of the values rather than their exact values. To find 
the link between two variables MC and DC, we transform the 
two data‟s     and    into rank data that is    and     
respectively. SSC can be evaluate through formula presented in 
equation (20) [6]. 

   (     )    
 ∑   

  
   

 (    )
                (20) 

Where,           is the difference of ranks between two 
variables. The evaluation of SCC between MC and DC for 
network in Fig. 1 is done through equation (20) presented in 
Table V. 

   (     )    
   

 (    )
   

  

   
                (21) 

Equation (21) demonstrates the output of SCC computation 
that also shows a pretty strong positive association between 
MC and DC that is of amount 0.8. In few words, one may 
prefer DC over MC evaluation for a network analysis. 

C. Kendall’s Concordance-based Correlation Coefficient 

(KCC) 

Kendall‟s correlation coefficient (KCC) is stated for two 
data‟s as the count of similarity in the arrangement of the 
values for the variables (data‟s) acquired by the nodes in the 
network. The set of nodes    and    are said to be concordant 

sets (conc.sets) if either of these 2 nodes rigorously has a 
greater value or a smaller value for two variables MC and DC. 
Similarly, the set of two    and    is said to be discordant sets 

(disc.sets) if a node has a greater value or smaller value for at 
least one out of two variables. The set of nodes    and    is 

neither said to be concordant set nor to be discordant set if 
either of the set have equal values for MC and DC (shown in 
Table VI) [2]. The KCC is evaluated by formula presented in 
equation (22) and evaluation is presented in Table VII. 

   (     )  
                               

 

 
 (   )

           (22) 

                            (23) 

                            (24) 

                 
 (   )

 
              (25) 

   (     )  
   

  
                  (26) 

Count of concordant sets (conc.sets) is given by equation 
(23), count of discordant sets (disc.sets) is given by equation 
(24) and equation (25) represents the total number of sets. The 
outcome of the Kendall‟s correlation coefficient (KCC) is 
given by equation (26) that arrows positive link between 
maximal clique size (MC) and degree centrality (DC) that is of 
amount 0.4. This amount also shows the preference of degree 
centrality (DC) over maximal clique size (MC). 

TABLE. IV. FINDING ASSOCIATION BETWEEN MC AND DC THROUGH PCC 

   
M

C 

D

C 

  
       

  
       

(  

      )

 (  
      ) 

(  
      )

  

(  
      )

  

A 4 3 0.2 -0.2 -0.04 0.04 0.04 

B 4 4 0.2 0.8 0.16 0.04 0.64 

C 4 4 0.2 0.8 0.16 0.04 0.64 

D 4 3 0.2 -0.2 -0.04 0.04 0.04 

E 3 2 -0.8 -1.2 0.96 0.64 1.44 

Av

g 
3.8 3.2  Sum 1.2 0.8 2.8 

TABLE. V. FINDING ASSOCIATION BETWEEN MC AND DC THROUGH SCC 

   MC 

Trial 

Rank: 

MC 

Final 

Rank: 

   

DC 

Trial 

Rank: 

DC 

Final 

Rank: 

    

  
   

     
  
 
 

A 4 2 3.5 3 2 2.5 1 1 

B 4 3 3.5 4 4 4.5 -1 1 

C 4 4 3.5 4 5 4.5 -1 1 

D 4 5 3.5 3 3 2.5 1 1 

E 3 1 1 2 1 1 0 0 

       Sum 4 

TABLE. VI. VALUES OF MC AND DC FOR EACH NODE PRESENT IN FIG. 1 

Node Id A   B C D E 

MC 4 4 4 4 3 

DC 3 4 4 3 2 
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TABLE. VII. FINDING ASSOCIATION BETWEEN MC AND DC THROUGH KENDALL‟S CORRELATION COEFFICIENT 

Node Sets (     ) (   ) (   ) (   ) (   ) (   ) (   ) (   ) (   ) (   ) (   ) 

        (   ) (   ) (  3) (   ) (   ) (   ) (   ) (   ) (   ) (   ) 

        (   ) (   ) (   ) (   ) (   ) (   ) (   ) (   ) (   ) (   ) 

Class of Sets N/A N/A N/A Conc.set N/A N/A Conc.set N/A Conc.set Conc.set 

V. AMAZON PRODUCT NETWORK DATA 

The dataset of amazon product co-purchasing is of June 
2003 containing 403394 nodes and 3387388 edges is 
evaluated. This data informs the consumer‟s pattern of buying 
which kind of products are usually bought in combination [12]. 
This 403394 nodes (products) data is converted into adjacency 
matrix      and then graph is formed for further network 
analysis as demonstrated in Fig. 3 and Fig. 4 where nodes 
(products) are in blue color and edges are represented by green 
color. 

Amazon co-purchasing data of 1001 products are extracted 
for computation to identify influential products through 
centrality metrics. All these five metrics are strongly linked 
with each other. It is captured in Table VIII clearly like node id 
4 is highest in all 5 metrics. 

Table VIII shows all five centrality metrics of nodes 
present in large product data set. Evaluation is done on 
extracted data of 1001 nodes from amazon website. The target 
is to find influential nodes through centrality metrics and 
maximal clique size (MC). Node id 5 is found as vital node 
(product) in network analysis through these 5 measures, as 
node id 5 have highest values in all most all 5 measures that 
indicates its importance in terms of profit in marketing as these 

outcomes are evaluated through amazon product network data. 
Secondly node id 29 has a second highest measure which is 
also arrows its importance in marketing of amazon products. 
Now we move towards another significant measure in network 
analysis that is maximum clique size (MC). 

 

Fig. 3. Adjacency Matrix Formation for Amazon Product Dataset. 

 

Fig. 4. Plot of Amazon Product Network from Adjacency Matrix. 

TABLE. VIII. DETERMINATION OF INFLUENTIAL NODES IN AMAZON DATA THROUGH CENTRALITY METRICS 

Products (Nodes Id) 
Degree 

(DC) 

Betweenness 

(BC) 

Closeness 

(CC) 

Eigenvector 

(EVC) 

Katz Centrality 

(KC) 

0 10 452.448 5.1939e-05 0.08630 1.1244 

1 10 150.285 4.7123e-05 0.05577 1.1166 

2 10 122.528 4.6759e-05 0.07234 1.1190 

3 10 1150.530 5.2952e-05 0.08552 1.1272 

4 21 9008.548 5.3205e-05 0.17034 1.2619 

5 74 311765.340 6.0335e-05 0.5 1.8879 

. . . . . . 

. . . . . . 

. . . . . . 

29 31 858717.100 5.0241e-05 0.00122 1.3649 

. . . . . . 

. . . . . . 

. . . . . . 

. . . . . . 

499 11 563.207 4.7703e-05 0.00068 1.1250 

500 10 3816.174 4.7700e-05 0.00067 1.1140 

. . . . . . 

. . . . . . 

. . . . . . 

. . . . . . 

999 10 4506.667 3.8430e-05 2.4901e-07 1.0942 

1000 10 0 1.2411e-07 1.0142e-17 1.0000 
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TABLE. IX. PSEUDO-ALGORITHM FOR COMPUTATION OF MAXIMAL CLIQUE SIZE IN LARGE DATASET 

> Import. Dataset (data) 

>A=Adjacency. Matrix (data) #formation of Adjacency matrix from a network data 

> Library (ggnet); library (network); library (sna); library (ggplot2) 

>graph=network (A) 

>g=ggnet2 (graph) 

>g=plot (A)              # graph formation 

>largest. Cliques (g) # display maximal cliques and nodes that are present in largest clique size 

>n=clique. Number (g)                                                 # node count in maximal clique 

>m=maximal. Cliques (g) 

>r=zeros (total nodes, 1)                                             # null matrix of total nodes by 1 

>     if     (n>=1) then 

                  for     i : total nodes do    

                             v= unlist (m[n]) 

                             display (v)   } 

                           Nv =length (v) 

                          for   (i in 1: Nv) do        

                                         j  v[i] 

                                  if     (r[j] <= Nv) then 

                                             r[j]     length (v) 

                                             display (r) 

                                                           else    { 

                                                                        display (r)     }   } 

             n=n-1       }   }          # return a vector r of total nodes by 1 dimension containing a maximal clique size for each node 

The maximal clique size (MC) is evaluated for amazon 
product network of 1001 nodes by improved algorithm as 
mentioned in Table IX and outcomes for each node in a 
network are represented in Table X. This improved algorithm 
decreases the complexities in computation and demonstrates 
the appropriate result of MC for each and every node in the 
data. 

The maximal clique size (MC) is evaluated for amazon 
product network of 1001 nodes that is mentioned in Table X. 
The association between MC and DC by three renowned 
measures are discussed and evaluated that are represented in 
Tables XI, XII, XIII and XIV by correlation coefficients 
Pearson‟s, Spearman‟s and Kendall‟s, respectively. 

   (     )  
       

√                 
                   (27) 

The outcome of link between maximal clique size (MC) 
and degree centrality (DC) through PCC for large dataset of 
amazon network is equals to 0.2599566 which shows positive 
association between these two variables as discussed in 
previous section for small network example. 

   (     )    
           

     (       )
                    (28) 

Similarly, the result of association between maximal clique 
size (MC) and degree centrality (DC) of amazon product 
network through SCC measure also indicates a positive link 
that is of amount 0.3039. It is also pretty clear from Table XIII 
that node id 5 which carries all five highest centrality metrics 
specially highest DC i.e. 74 also  contains third larger maximal 
clique size (MC) in amazon network which shows strength of 
link between them. 

TABLE. X. MAXIMAL CLIQUE SIZE COMPUTATION FOR AMAZON PRODUCT DATA 

Node Id 0 1 2 3 4 5 . 499 500 . 999 1000 

MC 5 5 5 5 6 8 . 9 9 . 2 2 

TABLE. XI. EVALUATING RELATION AMONG MC AND DC FOR AMAZON DATASET THROUGH PCC 

   MC DC                   
(        )

 (        ) 
(        )

  (        )
  

0 5 10 -0.718 -2.685 1.928 0.515 7.209 

1 5 10 -0.718 -2.685 1.928 0.515 7.209 

2 5 10 -0.718 -2.685 1.928 0.515 7.209 

3 5 10 -0.718 -2.685 1.928 0.515 7.209 

4 6 21 0.282 8.315 2.345 0.079 69.139 

. . . . . . . . 

. . . . . . . . 

499 9 11 3.282 -1.685 -2.24817 10.771 2.839 

500 9 10 3.282 -2.685 -5.53017 10.771 7.209 

. . . . . . . . 

. . . . . . . . 

999 2 10 -3.718 -2.685 9.983 13.823 7.209 

1000 2 10 -3.718 -2.685 9.983 13.823 7.209 

Avg 5.72 12.7  Sum 3313.17 6228.476 26079.77 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 7, 2019 

451 | P a g e  

www.ijacsa.thesai.org 

TABLE. XII. EVALUATING RELATION AMONG MC AND DC FOR AMAZON DATASET THROUGH SCC 

   MC Final Rank:    DC Final Rank:                 
 
 

0 5 338 10 203 135 18225 

1 5 338 10 203 135 18225 

2 5 338 10 203 135 18225 

3 5 338 10 203 135 18225 

4 6 473 21 942 -469 219961 

. . . . . . . 

. . . . . . . 

499 9 924 11 478 446 86142.25 

500 9 924 10 203 721 198916.00 

. . . . . . . 

. . . . . . . 

999 2 122 10 203 -81 6561 

1000 2 122 10 203 -81 6561 

     Sum 115461200 

TABLE. XIII. COUNT OF MC AND DC MEASURE FOR EACH NODE IN AMAZON PRODUCT NETWORK 

Node Id  0 1 2 3 4 5 . 499 500 . 999 1000 

MC 5 5 5 5 6 8 . 9 9 . 2 2 

DC 10 10 10 10 21 74 . 11 10 . 10 10 

TABLE. XIV. EVALUATING RELATION BETWEEN MC AND DC FOR AMAZON PRODUCT NETWORK 

Node Sets (     ) (   ) (   ) (   ) (   ) (   ) . (       ) . (        ) 

        (    ) (    ) (  10) (    ) (    ) . (    ) . (    ) 

        (    ) (    ) (    ) (    ) (    ) . (    ) . (    ) 

Class of Sets N/A N/A N/A Conc.set Conc.set . N/A . N/A 

TABLE. XV. RELATIONSHIP BETWEEN KEY CENTRALITY METRICS AND MC USING PCC, SCC AND KCC 

 DC and MC BC and MC CC and MC EVC and MC KC and MC 

 PCC SCC KCC PCC SCC KCC PCC SCC KCC PCC SCC KCC PCC SCC KCC 

5 nodes 

network 

in Fig. 1 

0.801 0.8 0.4 0.408 0.408 0.408 0.721 0.745 0.707 0.904 0.707 0.632 0.873 0.725 0.667 

Amazon 

Product 

network 

0.259 0.309 0.177 0.057 -0.18 -0.13 -0.07 -0.12 -0.082 0.122 0.085 0.065 0.299 0.415 0.301 

                                        (29) 

                                 (30) 

                 
    (      )

 
                 (31) 

   (     )  
             

      
                      (32) 

Equation (32) represents the outcome of KCC for maximal 
clique size (MC) and degree centrality (DC) that again conveys 
a positive link between them for amazon product data of 1001 

nodes. It is observed from previous literature and present study 
that amount of KCC measure is small as compared to PCC and 
SCC measures but delivers a same picture of concept that they 
have positive connection between maximal clique size (MC) 
and degree centrality (DC) in network analysis. 

The bond between fundamental centrality metrics (like DC, 
BC, CC, EVC and KC) and maximal clique size (MC) is 
demonstrated in Table XV through PCC, SCC and KCC 
measures. It is seen that DC, EVC and KC have strong positive 
relation with MC in network analysis. Katz centrality (KC) 
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metric also shows pretty strong positive association with 
maximal clique size (MC) as it is observed from present study. 
For determination of significant nodes in large datasets one 
may prefer degree centrality (DC), eigenvector centrality 
(EVC) and Katz centrality (KC) measures over maximal clique 
size (MC) computation which is difficult to measure. Secondly, 
betweenness and closeness centrality metrics shows least 
association with MC. 

VI. CONCLUSION 

The complete work of this paper addressed an amount of 
modularity and use of improved method of maximal clique size 
(MC) in large network datasets. Although it is hard to measure 
MC for big datasets and finding its connection with centrality 
metrics, the improved algorithm has been introduced to 
decrease complexity for large networks and results have been 
computed for Amazon large product network data and also for 
a small network example. Strong connection of maximal clique 
size (MC) with degree centrality (DC), eigenvector centrality 
(EVC) and Katz centrality (KC) was seen by Pearson‟s 
correlation (PCC), Spearman‟s correlation coefficient (SCC) 
and Kendall‟s correlation coefficient (KCC). The strength of 
association between them indicates that these three centrality 
measures can be favored over maximal clique size (MC) 
computation for network analysis.  It is also seen that Pearson‟s 
and Spearman‟s correlation coefficients measure outcomes are 
almost same as compared to Kendall‟s correlation coefficient 
measure which shows small values in their comparison but 
picture of outcome is same that is quality of association 
between variables. 
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