
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

458 | P a g e

www.ijacsa.thesai.org

A Tool for C++ Header Generation
An Extension of the C++ Programming Language

Patrick Hock1, Koichi Nakayama2, Kohei Arai3

Faculty of Science and Engineering, Saga University, Saga, Japan

Abstract—This paper presents a novel approach in the field of

C++ development for increasing performance by reducing cogni-

tive overhead and complexity, which results in lower costs. C++

code is split into header and cpp files. This split induces code

redundancy. In addition, there are (commonly used) features for

classes in C++ that are not supported by recent compilers. The

developer must maintain two different files for one single content

and implements unsupported features by hand. This leads to the

unnecessary cognitive overhead and complex sources. The result

is low development performance and high development cost. Our

approach utilizes an enhanced syntax inside cpp files. It allows

header file generation and therefore obsoletes the need to main-

tain a header file. It also enables the generation of fea-

tures/methods for classes. It aims to decrease cognitive overhead

and complexity, so developers can focus on more sophisticated

tasks. This will lead to increased performance and lower costs.

Keywords—Development; C++; header file generation; feature

generation

I. INTRODUCTION

C++ is a rather old programming language with a low con-
venience level. Nevertheless, it is still used in schools and the
industry. Updates of the C++ standard denote, the language is
not dead. Further, Microsoft promotes the use of C++ through
the regular renewal of its C++ IDE Microsoft Visual Studio [1].
Over time, advanced IDEs and updates of the C++ standard
provided a better developing experience in C++. However,
development with C++ is still complex and costly. One reason
for that might be the split of declaration and definition into two
files: header and cpp file. This induces a code redundancy that
must be kept in sync. This induces a cognitive and maintenance
overhead; e.g., the change of a method name must be done
inside the header file and the cpp file. After changing one, it is
necessary to remember (cognitive overhead) to also change the
other (maintenance overhead). If either one is forgotten, the
compiler returns an error and the code needs to be recompiled
after correcting. This decreases performance and increases
development cost. The question arises whether the split in two
files is necessary. Comparison to other programming languages
(e.g. D [2]) reveals that this split does not seem vital.

Furthermore, there are (commonly used) features for clas-
ses that are not supported by recent compilers. E.g. generation
of get/set methods (implemented in C#[3]) or the ability to
initialize a member variable at declaration time (implemented
in Java[4]). Henceforth called coding inconveniences. The
developer has to work around these missing features. This
increases cognitive overhead and code complexity, which leads
to lower performance. This leads to higher development cost.

This paper presents the idea of a text-based inline code
generator, that utilizes an enhanced C++ syntax inside cpp files
to generate header files and features that are not yet supported
by compilers. It aims to decrease cognitive overhead for devel-
opment and reduce code complexity, which leads to higher
performance and lower development cost. Further, this paper
introduces the tool cppHeaderGen which implements the pre-
sented idea.

II. GOALS AND CONSTRAINTS AS WELL AS RELATED

RESEARCH

A. Goals and Constraints

The overall goal is to develop a tool to improve developing
experience for C++ through lowering cognitive overhead for
development and complexity of source files. To achieve that
the following concrete goals should be fulfilled.

1) Obsolete the need to maintain header files; header files

are being generated.

2) Improve coding inconveniences; e.g. variable

definition and initialization can be done in the same place.

These concrete goals should be realized while living up to
the following constraints:

1) Environment independence: The tool is on the same

availability level as C++ compilers. As long as C++ compilers

run on a machine, it is possible to utilize the tool. This implies

the following sub constraints:

a) Independence of IDE

b) Independence of build chain

c) (Source code) Independence of operating system

2) Gradual integration into existing projects possible:

The tool does not enforce its project-wide usage. It can be

used for specific files only. This enables a gradual integration

process for existing projects.

3) Integrable into microsoft visual studio: From the

authors view, Microsoft Visual Studio is an important IDE for

C++ development under Windows. Therefore, the possibility

to integrate the tool into Microsoft Visual Studio is

mandatory.

4) Short working distance: Code changes are done in

place. It is not necessary to open a different software or file to

change currently viewed code. Otherwise slight changes, such

as a variable name change, might be refrained from, because

it’s perceived as “too much effort for a slight change”.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

459 | P a g e

www.ijacsa.thesai.org

5) Debugging and coding in the same file: It is possible to

debug and code in the same file. This reduces working

distance (constraint 4)) and cognitive overhead for working

with multiple files. It eliminates a possible corruption of

breakpoint settings after a line number change within the code

file. This is important for debugging, where step execution

and code updating are repeated several times.

B. Related Research

There are already tools available, that aim to improve de-
velopment experience for C++. The following sections intro-
duce some of the currently available tools and illustrate their
major drawback(s). The sections illustrate that currently avail-
able tools do not implement all aforementioned goals while
living up to all constraints stated in Section II.A.

1) IDEs: Some IDEs (e.g. Microsoft Visual Studio [5],

Eclipse [6], JetBrains CLion [7], etc.) offer great support for a

better development experience in C++. E.g. classes or

methods can be conveniently created or changed via the GUI.

Their major drawback is their dependency on themselves and

the operating system (violation of constraint 1)). Changing the

IDE disables their features. Changing the operating system

might enforce an IDE change.

2) Plug-Ins for IDEs: Some plug-ins for IDEs (e.g.

JetBrains ReSharper [8] for Microsoft Visual Studio [5]) offer

great enhanced functionality for a better development

experience in C++, such as method generation. Their major

drawback is their dependency on the IDE and operating

system (violation of constraint 1)). Changing the IDE disables

their features. Changing the operating system might enforce

an IDE change.

3) Graphical code generators: Graphical code generators

offer a great functionality for generating cpp and header files.

They make it possible for a single change to be effective in

both files. Their major drawback is the long working distance

between coding and generation (violation of constraint 4)). E.g.

changing the name of a member variable requires the overhead

of opening the code generator software, navigating to the

corresponding class and searching for the member variable

declaration. This overhead might be perceived as “too much

effort for a slight change”. As a result, such minor changes

(that might improve readability) might not be done and less

readable code remains.

4) Domain specific language to C++ (text-based code

generation): There is a methodology that focuses on

translating a domain specific language [9][10][11] (henceforth

DSL) to C++. This can be regarded as text-based code

generation. Code generator instructions and source code are

merged to one entity. Therefore, this methodology is not

subject to the working distance drawback of graphical code

generators. Its major drawback is the inability to debug and

code in the same file (violation of constraint 5)). This leads to

the following subsequent problems:

 During a debugging session step execution and code
updating might be repeated several times. The DSL

makes it necessary to update and debug in two different
files: the DSL source file for updating code and the cpp
file for debugging code. This induces a maintenance
and cognitive overhead on the developer.

 While breakpoints for debugging are set inside the cpp
file, coding is done inside the DSL source file. If a code
change results in a line number change, the breakpoint
settings inside the IDE might become obsolete. It might
be necessary to re-set all breakpoints by hand.

5) Lzz–the lazy C++ programmer’s tool: Lzz[12] is a

text-based code generator focused on making C++

development more convenient. It can be regarded as a DSL

within the ease-of-use domain. The focus of Lzz is making

C++ development more convenient. Its major drawback is the

inability to debug and code in the same file (violation of

constraint 5)).

III. PROPOSED METHOD

To fulfill all goals and constraints from Section II.A, this
paper proposes the use of a text-based inline code generator
that utilizes an enhanced C++ syntax to generate a header file
from a cpp file. It also introduces the tool cppHeaderGen
(short for C++ Header Generator) as an implementation of the
proposal.

A. Text-Based Inline Code Generator

The text-based inline code generator (henceforth abbreviat-
ed as code generator) receives a cpp file with an enhanced C++
syntax as input (see TABLE. Ifor an example list of new key-
words). It generates the corresponding header file with all
necessary declarations as output. Therefore, it obsoletes the
maintenance of the header file (goal 1)). It can also generate
(commonly used) methods such as get/set methods and provide
convenient features like initialization and declaration at the
same time. This improves coding convenience (goal 2)).
Through the respective keywords within the cpp file the code
generator knows which declarations, methods or features it
needs to be generated.

B. Method Generation

Regarding method generation there are two possible solu-
tions. As either one has its benefits or drawbacks both should
be provided.

1) Generate code in a separate cpp file and add it to the

list of files to compile within a project. This solution has the

drawback of adding a new file to the project, which will make

its structure more complex. The advantage is, that content of

generated methods is not exposed to the public.

2) Generate code inside the header file and enable it only

within the controlling cpp file. This solution has the drawback

of revealing class internal details to the interface. The

advantage is, that the number of project files does not

increase.

If methods are defined within header files, it’s necessary to
prevent multiple definition errors. The mechanism to generate
code inside header files without raising multiple definition
errors is demonstrated in Fig. 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

460 | P a g e

www.ijacsa.thesai.org

Fig. 1. Mechanism to Generate Code Inside the Header File without Raising

Multiple Definition Errors.

C. Complying with Constraints

A text-based inline code generator would be the first entity
within the build chain and therefore independent of any other
entity (e.g. IDE) (constraint (1.1), (1.2)). To ensure independ-
ence of the operating system (constraint (1.3)), the implemen-
tation must be open source. As it is used per cpp file, it does
not persist on project wide usage and is therefore gradually
integrable into existing projects (constraint 2)). Providing a
command line interface will ensure the possibility to integrate
it into Microsoft Visual Studio (constraint 3)). As generated
code is controlled directly via the cpp file, it remedies the
working distance drawback of graphical code generators (con-
straint 4)) and allows coding and debugging in the same file
(constraint 5)). As the content of generated methods is trivial,
it’s not rated a violation of constraint 5).

D. Implement Enhanced C++ Syntax

The enhanced syntax must only be visible by the code gen-
erator. It must not be visible to C++ compiler. If it would be
visible to a C++ compiler, it would return compile errors. The
syntax can be implemented utilizing the preprocessor. defines
and macro definitions within a separate header file (henceforth
syntax header file) can remove all enhanced syntax prior to
compiling. To comply with constraint (1.2) it’s must be en-
sured, that preprocessor commands are backwards compatible.

Content of the syntax header file must be contained in eve-
ry cpp file that uses the enhanced syntax. This could be accom-

plished via a direct include within the cpp file or a generated

#include <cppHeaderGen.h> inside the generated header file.

E. Limitations

1) Use of macros is inevitable: Content that is not

supposed to be inside a cpp file must be removed by the

preprocessor. This constraint makes the use of macros for

these cases inevitable. Macros are the only possibility to

remove arbitrary content through the preprocessor. Therefore,

syntax as shown in Fig. 2 is not possible. Instead, syntax like

in Fig. 3 needs to be used.

class MyClass // class declaration start
int foo = 5; // member variable declaration

Fig. 2. Impossible Syntax within the cpp File.

Class (MyClass) // class declaration start
Var (int foo = 5); // member variable declaration

Fig. 3. Use of Macros for Content that is not Supposed to be Inside a cpp

File.

void MyClass::foo() { … }

Fig. 4. Method Definition: Method Foo of Class MyClass.

void foo() { … }

Fig. 5. Desirable Method Definition: Method Foo of class MyClass.

2) Class name before method name at definition: When

defining methods in C++, it’s necessary to write the class

name in front of method names (see Fig. 4). However, a more

convenient way as in Fig. 5 might be desirable.

Technically it is possible to remove the burden of writing
the class name before the method name. However, it is sug-
gested not to implement such a solution, because it would
render currently available C++ code outliners useless.

F. Further Details

Further details about the proposed code generator are im-
plementation dependent and are therefore described along with
its example implementation cppHeaderGen.

IV. EXAMPLE IMPLEMENTATION: CPPHEADERGEN

This chapter presents the features and implementation de-
tails of cppHeaderGen.

A. Outline

cppHeaderGen is the example implementation of the pro-
posed text-based inline code generator for C++. It uses the cpp
file with an enhanced C++ syntax as input. It basically outputs
a header file containing necessary declarations. Method gen-
eration can be outputted within a separated cpp file or directly
within the header file. An example input is shown in Fig. 6 and
the respective output in Fig. 7.

In Fig. 6, cppHeaderGen utilizes the keywords Class,
ClassEnd and Public to determine how the header should look
like. cppHeaderGen.h contains code to implement these key-
words. Its inclusion is mandatory to prevent compile errors (for
details see Section IV.B.1)).

B. Development Environment

cppHeaderGen is written in C++ using generated files from
flex (lexer)[13], GNU Bison[14] and cppHeaderGen itself.

#include <cppHeaderGen.h>
#include <iostream>
Class (MyClass)
 Public void MyClass::foo(int param1) {
 std::cout << “hello world”;
 }
ClassEnd

Fig. 6. Code Example for a Class with a Method Written for cppHeaderGen.

//File Generated by cppHeaderGen
#ifndef _test_H_DOUBLE_INC_PREVENTION
#define _test_H_DOUBLE_INC_PREVENTION
class MyClass
{
 public: void foo(int param1);
};
#endif

Fig. 7. Example Output: Code Generated from Fig. 6.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

461 | P a g e

www.ijacsa.thesai.org

1) Implement enhanced C++ syntax: The enhanced

syntax is implemented within cppHeaderGen.h using define

directives and macro definitions. The content of

cppHeaderGen.h is show in Fig. 8.

To prevent compilation errors, the inclusion of
cppHeaderGen.h is mandatory. It’s possible to generate an
#include "cppHeaderGen.h" inside the header file using
command line options.

2) New features and method generation: For features like

member initialization at declaration time or method

generation, there are two options as destination location for

the code.

 Inside a dedicated gen.cpp file (default)

 Inside the generated header file

The examples in the chapters below use the Var keyword to
trigger the generation of a standard constructor for initialization
(see 5) for more details)

a) Generate methods inside a dedicated gen.cpp file

(default): Generating methods inside a dedicated gen.cpp file

is the default setting. It’s necessary to add the generated file to

the list of files to compile (e.g. the project). Fig. 9 shows an

example input for generating a constructor for a class. Fig. 10

shows the generated output.

#ifndef CPPHEADERGEN_H
#define CPPHEADERGEN_H

#define Class(…)
#define ClassEnd

#define HF(...)
#define Include(...)

#define Def
#define GlobalVar
#define ExternVar

#define Static
#define Virtual

#define Public
#define Private
#define Protected

#define PublicVar(...)
#define PrivateVar(...)
#define ProtectedVar(...)

#define Var(...)

#define GENERATE_copyNonPointerMember

#define CTOR __init

#endif

Fig. 8. Content of cppHeaderGen.h.

#include <cppHeaderGen.h>
#include "myclass.h"
Class (MyClass)
 Var(public; int; foo; 8); // define a new variable
ClassEnd

Fig. 9. Example Input: Class with a Member Variable Definition. Setting a

Default Value (“8”) Triggers the Creation of a Standard Constructor.

#include "myclass.h"
MyClass::MyClass() : foo(8) {}

Fig. 10. Example Output: Content of File Myclass.gen.cpp from Fig. 9.

b) Generate methods inside header files: If it’s desirable

to generate only one file, methods can be generated directly

into the header file. This might expose class-private data

through the header file. To activate this option a specific

define is set inside the cpp file before the inclusion of the

corresponding header include. The define complies with the

following pattern: #define genInHeader_[unique identifier].

Fig. 11 shows an example input and Fig. 12 shows the

generated output.

3) Support for older compilers: The invalidation of the

enhanced syntax uses macros with variable parameter count

(henceforth: variadic macros). Some older compilers [15] do

not support variadic macros. For older compilers there is a

different header file to include: cppHeaderGenNoVar.h.

Macros inside this header are not defined variadic. An extract

of the file is shown in Fig. 13.

Using this include file changes the enhanced syntax. In-
stead of single brackets for macros, double brackets are used.
Fig. 14 shows an example for the Class macro.

#include <cppHeaderGen.h>
#define genInHeader_MyClass
#include "myclass.h"
Class (MyClass)
 Var(public; int; foo; 8); // define new variable
ClassEnd

Fig. 11. Example Input: Generate Methods Inside Header File. The Trigger

for Generating Methods Inside the Header File is Marked Bold.

[…]
class MyClass { […] }

#ifdef genInHeader_MyClass
#undef getInHeader_MyClass
MyClass::MyClass() : foo(8) {}
#endif
[…]

Fig. 12. Example Output: Code Generated From Fig. 11. “[…]” is used as

Abbreviation of Content.

#define HF(A)
#define Include(A)

#define Def
#define GlobalVar
#define ExternVar

#define Static
#define Virtual

Fig. 13. Extract of File cppHeaderGenNoVar.h that Shows a Non-

Variadic Macro Definition.

Class((MyClass))
 Public void MyClass::foo(int param1) {
 std::cout << “hello world”;
 }
ClassEnd

Fig. 14. Example Input: Double-Bracketed Enhanced Syntax for Support for

Older Compilers. The Parameter List of the Method is Not Part of the En-

hanced Syntax. Therefore it must not have Double Brackets.

Class(MyClass : public Base1, Base2)

Fig. 15. Demonstration of a Macro Containing Two Parameters.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

462 | P a g e

www.ijacsa.thesai.org

4) Variadic macros: The reason why variadic macros are

necessary is because even a simple class definition with

several base classes contains a comma, which is interpreted by

the preprocessor as multiple parameters (see Fig. 15).

5) Keyword list: The following TABLE. Iintroduces all

keywords and features provided by cppHeaderGen at the time

being.

6) Management features: Regarding file generation

cppHeaderGen provides the following features.

 No double inclusion

Double inclusion of headers is avoided through the
#ifndef include guard directive.

 Handwritten header files do not get overwritten

Every generated header file contains a specific comment
that marks the file as generated. A header file will only be
overwritten, if it is marked as generated.

 Only renew on change

A header file is only renewed, if its content changed. This
preserves file generation timestamps and therefore prevents
unnecessary rebuilds.

7) Integration into microsoft visual studio: Integration

into Microsoft Visual Studio can be accomplished through

pre-build events within the project settings.

TABLE. I. LIST OF ALL KEYWORDS AND FEATURES PROVIDED BY THE SYNTAX OF CPPHEADERGEN (SEE 6) FOR FILE MANAGEMENT FEATURES).

Keyword

Explanation Example

HF([content]))

Copies [content] verbatim into the header file. All hashtags within

[content] must be escaped with a backslash.

Example input:

 HF(

 // copy to header file.

 \#ifdef FOO

 \#endif

)

Example output:

 // copy to header file.

 #ifdef FOO

 #endif

Include("[filename]") / Include(<[filename]>)

Creates an include statement inside the header file.

Example input:

 Include(<string>)

Example output:

 #include <string>

Class ([classname]) / Struct ([structname])

Denotes the start of a new class. In the current version nested classes are

not fully supported.

Example input:

 Class(MyClass)

Example output:

 class MyClass {

ClassEnd

Denotes the end of Class.

Example input:

 ClassEnd

Example output: }

Public / Private / Protected

Denotes the start of a method definition with the given visibility.

Example input:

 Public MyClass::foo(

 int param) { ... }

Example output:

 public: foo(int param);

Static

Keyword used to declare a method static.

Example input:

 Public Static void

 MyClass::foo()

 { ... }

Example output:

 public: static void foo();

Virtual

Keyword used to declare a method virtual.

Example input:

 Public Virtual void

 MyClass::foo()

 { ... }

Example output:

 public: virtual void foo();

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

463 | P a g e

www.ijacsa.thesai.org

Var([visibility]; [type] ; [variable name])

Create a member variable declaration inside the header file. This

notation develops its full potential when used with

GENERATE_copyNonPointerMember.

Example input:

 Var(public; int; var)

Example ouput:

 public: int var;

Var([visibility]; [type]; [variable name]; [initialization value])

Create a member variable declaration inside the header file and initialize

it with 7. The initialization is realized through the generation of

initializer lists and constructors. If no custom constructor is defined, a

standard constructor will be generated.

.Example input:

 Var(public; int; var; 7)

Example ouput:

 public: int var;

 [...]

 MyClass::MyClass() : var(7) {}

GENERATE_copyNonPointerMember

Generate a method that copies the content of all declared non-pointer

variables to another object. Only variables declared via Var() are

considered.

Example input:

 Class (MyClass)

 Var(public; int; var)

 GENERATE_copyNonPointerMember

 EndClass

Example ouput:

 class MyClass {

 private:

 void copyNonPointerMemberFrom

(const MyClass & source);

 [...]

 void MyClass::

copyNonPointerMemberFrom (

const MyClass &source)

 {

 this->var = source.var; }

[visibility] void [classname]::CTOR([parameter]) {}

Generate a constructor for the class [classname]. It must be used in

conjunction with a visibility indicator (Public / Private / Protected) and

the classname.

Inside cppHeaderGen.h CTOR is changed to __init through the

following define:

#define CTOR __init

Example input:

 Public void MyClass::CTOR

 (int param1)

 { }

Example output:

 public: inline void __init

 (int param1);

 public: MyClass(int param1);

Def [function definition]

Create a declaration for a (global) function. The namespace of the

function will be stripped away.

 Example input:

 Def std::string myNamespace

::foo(int param){}

Example output:

 std::string foo(int param){}

GlobalVar

Create an extern declaration for a given variable.

Example input:

 GlobalVar int gValue = 1;

Example output:

 extern int gValue;

[method generation]

By default methods are generated inside a dedicated gen.cpp file. The generated file must be included in the list of files to compile. Methods can also be generated inside the

header file.

#define genInHeader_[unique specifier]

Instructs the generator to generate methods directly inside the header

file. No seperate gen.cpp file will be generated. The define must be set

before the associated header file is included.

Example input:

 #define genInHeader_MyClass

 #include “myclass.h”

 Class (MyClass)

 Var(public;int;foo;8)

 EndClass

Example output:

 class MyClass{

 public: int foo;

 public: MyClass();

 }

 #ifdef genInHeader_MyClass

 #undef genInHeader_MyClass

 MyClass::MyClass() : foo(8);

 #endif

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

464 | P a g e

www.ijacsa.thesai.org

C. Limitations

1) Syntax for member variable declaration: The current

syntax for variable declaration (Var([visibility]; [type];

[name]; [initial value])) is very different from the C++

standard. The reason why this syntax was chosen over a more

native syntax is that it’s easier to parse. In future versions the

syntax shown in Fig. 16 might become supported.

PublicVar (int foo = 5)
PrivateVar(const string foo(“hello”))

Fig. 16. Possible Future Syntax for Variable Definition.

The reason why a syntax as shown in Fig. 17 cannot be
supported is that Public is already defined as #define Public
(non-macro definition). Creating a macro with the same name
is not allowed by the preprocessor.

Public(int foo = 5)

Fig. 17. Possible Future Syntax for Variable Definition.

2) Class name before method name at definition:

Removing the need to write a class name before a method

name at definition time renders a code outliner useless. To

ensure a working C++ code outlining, no measures are taken

to eliminate the need to write the class name before method

names at definition time.

3) CppHeaderGen can only process one file per call: It is

not possible for cppHeaderGen to process multiple files or

whole directories per. If such functionality is needed (e.g. as

for Section III.7)), it’s necessary to use an external program or

script that calls cppHeaderGen multiple times.

D. Example

Fig. 18 shows an example of a generated header file. On the
left side, there is the manually created file myclass.cpp. On the
right side, there is the generated file myclass.h. Fig. 19 demon-
strates the use of class MyClass defined in Fig. 18. Particularly
it demonstrates the use of the generated method for copying
non-pointer member variables.

Fig. 18. Example Generation of File Myclass.H Containing Declarations and Definitions for Class Myclass. The Input File (Myclass.Cpp) is Shown on the Left.

The Output File (Myclass.H) is Shown in the Right. Colored Areas Indicate Correlated Code. The Following Features are in use: Method Generation in Header

File, Include, Verbatim Copy to Header File, Variable Definition and Initialization, Constructor Generation, Method Declaration, Generation of Member Variable

Copy Method.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 7, 2019

465 | P a g e

www.ijacsa.thesai.org

int main()
{
 MyClass printer1;
 cout << "printer1:\n";
 printer1.print(); // 3x "hello world"

 printer1.setTimesPrint(5);

 cout << "printer2:\n";
 MyClass printer2(printer1);

 printer2.print(); // 5x "hello world"

 return 0;
}

Fig. 19. Example Program: uses Myclass from Fig. 18 to demonstrate the use

of the Generated Method CopyNonPointerMemberFrom.

V. DISCUSSION

Using cppHeaderGen in practice smoothened C++ devel-
opment. For developing cppHeaderGen itself usage of
cppHeaderGen is already part of the build chain. For small-
sized projects or projects without a full-featured development
environment cppHeaderGen is rated worth using by the author.
There is no experience regarding the usage in large projects.

VI. CONCLUSION

This paper worked on a concept for improving the devel-
opment experience in C++. It presented the idea to utilize a
text-based inline code generator controlled by a cpp file to
generate and obsolete the need to manually maintain the ac-
cording header file. It could improve coding inconveniences, as
it was able to provide new features to the C++ language (like
initialization at declaration time) and method generation. This
paper introduced the tool cppHeaderGen, which implemented
the idea of a text-based inline code generator. cppHeaderGen
took a cpp file with an enhanced C++ syntax as input and out-
putted the corresponding header file. cppHeaderGen success-
fully obsoleted the need to maintain the header file. It allowed
for a more convenient developing experience through the abil-
ity of method generation. E.g. it allowed member variable
initialization at declaration time. It was independent of the
underlying operating system, IDE or build chain and could
gradually be integrated into existing projects. It was integrable
into Microsoft Visual Studio. All coding was done in place.
Therefore, it had a short working distance and coding and
debugging could be done in the same file.

VII. FUTURE WORK

The code generator runs before the compilation process and
therefore allows for a wide spectrum of possibilities regarding
code generation. Future work should focus on finding new
helpful features and generatable methods. Research should also
be done regarding helpfulness of a paradigm change, such as
making virtual the default modifier for method declaration.

cppHeaderGen should implement further, already known
features to evaluate their usefulness. At the time being, the
following features are candidates for future implementations.

 Generation of get / set methods for member variables.

 Generation of virtual clone methods for classes.

 More native-like syntax for variable declaration, like
PublicVar(int foo = 5).

 Generation of enum classes.

 Constructor initialization through parameters.

 Generation of a method that deletes all pointers.

REFERENCES

[1] List of Microsoft Visual Studio versions: https://visualstudio.microsoft.c
om/vs/older-downloads/, (Accessed on Jun 2019).

[2] D programming language: https://dlang.org/, (Accessed on Jun 2019).

[3] C#: Auto-Implemented Properties: https://docs.microsoft.com/en-us/do
tnet/csharp/programming-guide/classes-and-structs/auto-implemented-
properties, (Accessed on Jun 2019).

[4] Java: Initialize member variable at declaration time: https://docs.oracl
e.com/javase/tutorial/java/javaOO/initial.html, (Accessed Jun 2019)

[5] Microsoft Visual Studio: https://visualstudio.microsoft.com/, (Accessed
on Jun 2019).

[6] Eclipse (for C++ developers) : https://www.eclipse.org/downloads/packa
ges/release/2019-03/r/eclipse-ide-cc-developers, (Accessed on Jun
2019).

[7] JetBrains CLion: https://www.jetbrains.com/clion/, (Accessed on Jun
2019).

[8] JetBrains ReSharper: https://www.jetbrains.com/resharper-cpp/,
(Accessed on Jun 2019).

[9] Domain Specific Language by Microsoft: https://docs.microsoft.com/en-
us/visualstudio/modeling/about-domain-specific-languages?view=vs-
2019, (Accessed on Jun 2019).

[10] Domain Specific Language by Martin Fowler: https://www.martinfowler
.com/books/dsl.html, (Accessed on Jun 2019).

[11] Domain Specific Language by JetBrains:
https://www.jetbrains.com/mps /concepts/domain-specific-languages/,
(Accessed on Jun 2019).

[12] Lzz: The Lazy C++ Programmer’s Tool: https://www.lazycplusplu
s.com/, (Accessed on Jun 2019).

[13] Flex (lexer): https://github.com/westes/flex, (Accessed on Jun 2019).

[14] GNU Bison: https://www.gnu.org/software/bison/, (Accessed on Jun
2019).

[15] “Variadic macros became a standard part of the C language with C99”:
https://gcc.gnu.org/onlinedocs/cpp/Variadic-Macros.html, (Accessed on
Jun 2019).

AUTHORS’ PROFILE

Kohei Arai received BS, MS and PhD degrees in 1972, 1974 and 1982,
respectively. He was with The Institute for Industrial Science and Technology
of the University of Tokyo from April 1974 to December 1978 and also was
with National Space Development Agency of Japan from January, 1979 to
March, 1990. During from 1985 to 1987, he was with Canada Centre for
Remote Sensing as a Post Doctoral Fellow of National Science and
Engineering Research Council of Canada. He moved to Saga University as a
Professor in Department of Information Science on April 1990. He was a
Councilor for the Aeronautics and Space related to the Technology
Committee of the Ministry of Science and Technology during from 1998 to
2000. He was a councilor of Saga University for 2002 and 2003. He also was
an executive councilor for the Remote Sensing Society of Japan for 2003 to
2005. He is an Adjunct Professor of University of Arizona, USA since 1998.
He also is Vice Chairman of the Commission-A of ICSU/COSPAR since
2008. He wrote 30 books and published 570 journal papers.

Koichi Nakayama is an Associate Professor of Faculty of Science and
Engineering at Saga University. He received his Ph.D from Kyoto University
in 2005. He proposed a genetic algorithm to apply multi-agent systems. He
was a researcher at ATR (Advanced Telecommunications Research Institute
International) and NICT (National Institute of Information and
Communications Technology). His research interest is an information system
optimization method using block chain technology.

