
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 7, 2019 

509 | P a g e  

www.ijacsa.thesai.org 

Feature Fusion: H-ELM based Learned Features and 

Hand-Crafted Features for Human Activity 

Recognition 

Nouar AlDahoul1, Rini Akmeliawati2, Zaw Zaw Htike3 

Student Member, IEEE1 

Mechatronics Engineering Department, International Islamic University Malaysia, Malaysia1, 2, 3 

 

 
Abstract—Recognizing human activities is one of the main 

goals of human-centered intelligent systems. Smartphone sensors 

produce a continuous sequence of observations. These 

observations are noisy, unstructured and high dimensional. 

Therefore, efficient features have to be extracted in order to 

perform an accurate classification. This paper proposes a 

combination of Hierarchical and kernel Extreme Learning 

Machine (HK-ELM) methods to learn features and map them to 

specific classes in a short time. Moreover, a feature fusion 

approach is proposed to combine H-ELM based learned features 

with hand-crafted ones. Our proposed method was found to 

outperform state-of-the-art in terms of accuracy and training 

time. It gives an accuracy of 97.62% and takes 3.4 seconds as a 

training time by using a normal Central Processing Unit (CPU). 
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I. INTRODUCTION 

Recognizing human activities is one of the main goals of 
human-centered intelligent systems. Human Activity 
Recognition (HAR) is a type of system that automatically 
observes human activities and maps each activity to its 
corresponding class. It is connected to different applications 
such as machine computer interaction, entertainment devices and 
health monitoring. It plays an important role to permanently 
monitor children and elderly people by using home-based services. 

Different data acquisition devices such as smartphone 
sensors (Accelerometer and Gyro) [1, 2] were used to collect 
information about the activities. Different activities are 
classified and recognized by utilizing this data. Sensor based 
activity recognition is a difficult task because the sensory data 
is noisy, unstructured, and high dimensional. Therefore, the 
process of building a classification model is not an easy task. 

In the previous works of HAR, features were usually 
extracted independently from multiple sensors (accelerometers 
and gyroscopes) in a handcrafted way [1]. Different classifiers 
were used for classification such as Support Vector Machine 
[1, 3], Random Forest [4] and Hidden Markov Model [5]. 
Extreme learning machine (ELM) and back propagation neural 
networks were also used as classifiers in HAR system [6, 7]. 

Recent methods of deep learning such as convolutional 
neural networks (CNN) [8] and stack of auto encoders [9] 
focus on automatic feature learning. They were used to 

recognize different activities [2, 10]. In few applications, 
sensory signals were not used directly. In other words, signals 
from accelerometers and gyroscopes were assembled into an 
activity image [2]. This enables Deep Convolutional Neural 
Networks to automatically learn the optimal features and give 
an accuracy of 95.18% [2]. Various unsupervised feature 
learning methods were demonstrated to learn representations 
from accelerometer and gyroscope [10]. These techniques 
include Sparse Auto Encoder (SAE), and De-noising Auto 
Encoder (DAE). The SAE channel-wise extractor was found to 
outperform other techniques with an accuracy of 92.16% [10]. 

Hierarchical extreme learning machine (H-ELM) [11] is a 
fast-deep model that is utilized for automatic feature learning. 
In this mode, the speed of learning is high because the weights 
are not fine-tuned iteratively. The biases and input weights are 
given random values. The analytical calculation of output 
weights is also done. H-ELM was compared with other deep 
models such as CNN [12]. It was found that H-ELM is able to 
outperform some architectures of supervised CNN in term of 
training speed by using CPU in low cost human detection 
system. The H-ELM was able to solve the trade-off between 
the accuracy and the training speed. 

Feature extraction technique (i.e. dimensionality reduction) 
is utilized to get important and informative features from a set 
of data measured by different sensors. The power of this step 
lies within its impact on other steps such as generalization and 
classification. When high dimensional data is classified, the 
overfitting problem is raised. To avoid this problem, Feature 
learning is a key solution. Our proposed method of feature 
fusion does not depend only on traditional handcrafted features. 
It also learns the data representations (features) automatically by a 
deep learning model. The combination of learned and hand-crafted 
features requires a classifier that has high performance in 
generalization. Kernel Extreme Learning Machine [13] is the key 
solution as a candidate classifier in the proposed system. 

This paper proposes a combination of H-ELM based 
learned features and hand-crafted features. Fig. 1 illustrates the 
block diagram of the proposed architecture. We have built and 
tested various architectures of HELM to choose one that gives 
the best accuracy and increases the training speed. The 
proposed method was found to outperform state-of-the-art in 
terms of accuracy and training time. It gives an accuracy of 
97.62% and takes 3.4 seconds as a training time by using a 
normal Central Processing Unit (CPU). 
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Fig. 1. The Block Diagram of the Proposed System. 

The main contribution of this work is the ability to 
implement the HAR system on a low-cost embedded system 
that has a normal CPU. Above that, the HAR system was able 
to recognize activities in real time by speeding up the learning 
and utilizing ELM based sparse auto-encoders. The recognition 
accuracy was also improved with the advantage of feature 
fusion. 

The organization of this paper is as follows: In Section 2, 
the methodology of the proposed model is discussed for HAR 
feature learning and classification. Section 3 describes the 
experimental results and analysis in terms of accuracy and 
learning time. In Section 4, a summary of work outcome and 
future works are mentioned to demonstrate the efficiency of the 
proposed system. 

II. METHODOLOGY 

A. Extreme Learning Machine 

Basic ELM (Extreme learning machine) is a shallow neural 
network with only one hidden layer. This network has attracted 
researchers because the learning time is low with very good 
generalization [14]. The parameters (biases and weights) in the 
hidden layers are given random values. The weights of output 
are found analytically. 
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Where Fi (・) is an activation function of ith hidden node, 

Wi is an input weight, bi is a bias, and βi is a weight of output, 
L neurons in the hidden layer are used. 

           ,               (
 

 
       )               (2) 

Where matrices are: U is an output of hidden layer, U† is 
the Moore–Penrose generalized inverse of a matrix, T is a 
target and λ is a regulation coefficient. 

B. Hierarchical Extreme Learning Machine for Feature 

Learning 

Sometimes the data is not simple and requires more 
processing before being applied to a classifier. For visual data 
such as images, a raw data should be processed to extract or 

learn features. A hierarchical architecture of ELM can do the 
job [11]. Hierarchical extreme learning machine (H-ELM) is a 
recent deep model that is used for automatic feature learning. 
H-ELM includes two blocks: unsupervised and supervised 
training. The supervised training is done by the basic ELM. 
The main block in unsupervised learning is elm-based sparse 
auto-encoder which can achieve self-taught feature learning. 
H-ELM has a good generalization and a high-speed learning. 
In this model, an elm-based sparse encoder is utilized. Fast 
Iterative Shrinkage-Thresholding Algorithm (FISTA) was used 
to build this encoder which is considered as a main block in H-
ELM. To get deeper architecture, multiple encoders are 
stacked. In order to increase the testing speed, the number of 
neural nodes should be reduced. The model guarantees good 
data recovery. For more details, you may have a look on H-
ELM paper [11]. H-ELM works with random parameters that 
shouldn’t be fine-tuned iteratively. The advantage of the 
previous concept is the high speed of learning and training. The 
input weights of ELM based sparse auto-encoder are generated 
randomly. L1 optimization is used instead of L2 norm (utilized 
in traditional ELM auto-encoder) to give better data recovery. 
This is important to have more sparse and compact features. 
Fig. 2 illustrates the overall framework of H-ELM and its 
single layer. 

C. Kernel ELM for Classification 

Kernel ELM can handle sparse data sets [13].  Its speed is 
more than Least Square-Support Vector Machine (LS-SVM) 
by an order of magnitude. Kernel ELM has a better 
generalization than Kernel SVM. 

u (x) is a mapping for features,         is a kernel matrix 

which has a relation with the data of input and the size of 
training data. 

           
                (  )     (  )     (      )    (3) 

 

Fig. 2. (a) Overall Framework of H-ELM. (b) Sparse ELM based Auto-

Encoder. (c) Layout of Single Layer in the H-ELM [11]. 
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The K-ELM classifier output is [13]: 
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C is a regularization coefficient 

where  (      )        (
 (             

 

  
 ) is a Gaussian 

kernel, σ is a kernel parameter. 

D. Activity Image 

Most of smartphones contain a gyroscope and an 
accelerometer. Angular velocity and tri-axis acceleration are 
measured by these sensors. The data of these sensors is utilized 
to classify human activities. The sequences of this data are high 
dimensional and need to be represented efficiently to get better 
results. In our experiment, both of accelerometer and 
gyroscope were used. An activity image that is based on 
signals of gyroscope, total acceleration, and linear acceleration 
was proposed in [2]. A signal image that has a stacked row in a 
specific order according to specific algorithm was used. After 
that, signal images were transformed by using two-dimensional 
Discrete Fourier Transform. The amplitudes of resulted images 
are named as activity images. Fig. 3 shows activity images for 
different activities. 

 

Fig. 3. Activity images for different activities. 

III. EXPERIMENTAL RESULTS 

A. Dataset 

In this research, UCI Machine Learning Repository dataset 
was used for activities recognition task [1, 15]. A group of 30 
people with 19 to 48 ages was the target. Each participant has a 
Samsung galaxy smartphone on his waist. Six different 
activities were chosen: walking in three states: normal, upstairs 
and downstairs, laying, standing, and sitting. The experiment 
was repeated twice. Refer to [1, 15] for more details. The 
sensors used in this work were accelerometer and gyroscope 
with sampling rate of 50Hz. The signals of linear accelerations 
and angular velocities for three axes were recorded. The 
experiments were running on a desktop computer (CPU: Intel 
Core i7 @ 3.5 GHz) with Windows 8.1 x64. The number of 
training examples is 7352. The number of testing examples is 
2947. 

B. The Hand-Crafted Features 

A set of 561 features was produced for one activity [1]. The 
extracted features were collected in frequency and time 
domains. Different measures such as correlation, frequency 

energy and angles between vectors were selected as 
discriminative features. The list of these features is available in 
[15, 16, 17]. 

C. The Learned Features 

Different Hierarchical ELM architectures (various hyper-
parameters such as number of hidden nodes and layers) were 
built and tested. The objective is to select the architecture that 
has the best performance in term of accuracy for activity 
classification. The architecture in Fig. 4 has the best accuracy. 
The input is one activity image for each activity with 68*36 = 
2448 elements, where 68 is the number of signal samples and 
36 is the number of different signals organized in a specific 
order. For more details on how these numbers were selected, 
please refer to [2]. The H-ELM model was utilized to learn 500 
features which are the number of neurons in the hidden layer. 
These features were produced from the output of ELM based 
auto-encoder. Basic ELM classifier was removed from the last 
layer. 

D. The Proposed Architecture of Features Fusion 

The feature fusion was achieved by combining the learned 
features in the hidden layer of H-ELM which is  HELM = 500 
with  HF = 561 of features produced in a handcrafted way. The 
output of the fusion feature layer can be written as: 

 Fusion= [ HELM,  HF] 

The final vector  Fusion is entered to the kernel ELM which 
was used as a classifier to produce six classes for six different 
activities. 

The experiments were implemented in Matlab2016a on a 
desktop computer running Windows 8.1 (64 bits) environment. 
The Intel core i7 @ 3.5 GHz CPU was utilized to run the 
program of the proposed method. 

E. Accuracy Analysis 

Table I compares the performance of the proposed method 
and that of state-of-the-art. In some works (grey color fields in 
the table), the input of model is the values from different 
sensory channels. These values were collected and applied to 
the classifier.  They used various deep models such as stacked 
Auto Encoders (SAEs) and De-noising Auto Encoders (DAEs) 
[10]. In our work, we have applied H-ELM on this collection 
of different channels. The obtained accuracy was found to be 
better than that of SAE, DAE and Principle Component 
Analysis (PCA). H-ELM produced better accuracy with 500 
hidden nodes (91.31%) than one of 128 nodes (90.77%). 

 

Fig. 4. Hierarchical ELM based Model. 
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In white color fields of the table, the input of model is an 
activity image. H-ELM was also demonstrated to learn features 
from this activity image. It gives good accuracy of 94.5%.  The 
proposed combination of handcrafted and automatic learned 
features (H-ELM+) outperformed the existing HAR methods in 
term of accuracy that arrives to 97.62 %.  The confusion matrix 
of testing is shown in Fig. 5. In Table I, the comparison with 
deep convolutional neural network (DCNN) [2] is shown. The 
same input which is an activity image was applied. The DCNN 
extracted the structure of the activity image. Hand-crafted 
features in DCNN+ were also used to aid and complement the 
learned features when the activity image is not confident. 

Table II compares the performance of basic ELM, Kernel 
ELM, SVM and feature selection classification methods by 
using only handcrafted features. 

TABLE I.  COMPARISON BETWEEN STATE OF THE ARTS DEEP MODELS 

AND THE H-ELM MODEL 

Methods Accuracy % 

DAEs-m [10] 82.78 

SAEs-m[10] 83.81 

PCA-m [10] 89.79 

H-ELM_m with 

128 hidden nodes (ours) 
90.77 

H-ELM_m with 

500 hidden nodes (ours) 
91.31 

DCNN [2] 95.18 

DCNN+ [2] 97.59 

H-ELM (ours) 94.5 

H-ELM+ (ours) 97.62 

 

Fig. 5. The Testing Accuracy (Confusion Matrix). 

TABLE II.  PERFORMANCE COMPARISON BETWEEN STATE OF THE ARTS 

CLASSIFIERS AND K-ELM BY UTILIZING HANDCRAFTED FEATURES 

Methods Accuracy % 

Feature selections [17] 94 

SVM [1] 96 

Basic ELM (ours) 96.1 

Kernel-ELM (ours) 97.15 

Fig. 6 illustrates the bar plot to compare between different 
deep learning models applied on sensory channels and activity 
images. Fig. 7 visualizes the comparison between different 
classifiers with hand crafted features. Fig. 8 and 9 show the 
accuracy of K-ELM classifier with different regularization 
coefficients C and kernel parameters σ. 

F. Speed Analysis 

Table III compares between two feature learning models 
(H-ELM and Stacked Auto Encoder [9]) in term of training 
time. The proposed H-ELM based method outperforms SAE in 
term of training speed. The reason behind that is the ability of 
H-ELM to generate random parameters that are not fine-tuned 
iteratively. This fast deep model can reduce the time of training 
by an order of magnitude. Fig. 10 shows the difference. 

 

Fig. 6. The Accuracy of Methods in Table I. Compared to ours. 

 

Fig. 7. The Accuracy of Methods in Table II. Compared to ours. 

 

Fig. 8. The Accuracy for Various Regularization Coefficients. 
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Fig. 9. The Accuracy for Various Kernel Parameters. 

TABLE III.  TIME OF FEATURE LEARNING FOR H-ELM AND TRADITIONAL 

STACKED AUTO ENCODERS 

Method Total Training time (s) 

Stacked Auto encoder [9] 840 

H-ELM 3.4 

 

Fig. 10. The Training Time of H-ELM vs SAE. 

IV. DISCUSSION AND CONCLUSION 

In this paper, the application of smartphone sensors based 
human activity recognition is addressed. Automatic feature 
learning was achieved by H-ELM with a little training time. 
Fourier based activity image was used as an input to H-ELM 
model.  A combination of hand-crafted and H-ELM based 
learned features was demonstrated to improve the system 
performance. The results were compared with state of the arts 
on UCI dataset. The proposed method was found to outperform 
other existing methods in terms of accuracy and time 
efficiency. 

The work results are summarized as follows: 

 H-ELM is an effective model in HAR system for 
automatic feature learning in a short time. Compared to 
a stack of auto-encoders, H-ELM doesn’t need to fine 
tune the weights iteratively. 

 Feature fusion can build a robust activity recognition 
system with a high accuracy. 

 K-ELM has a high generalization for activity 
classification by utilizing both hand-crafted and 
learned features. 

 The existing CNN models utilize Graphical Processing 
Unit (GPU) to reduce the training time. Using CNN 
with CPU leads to low training speed. A low-cost 
embedded system has usually a normal CPU. The 
advantage of the proposed method is its ability to be 
implemented on a normal CPU with high speed 
training. 

This work focuses on learning features of sensory data of 
accelerometers and gyroscopes using UCI dataset. This may 
open the door to future work by utilizing the proposed model 
with other datasets such as UCF. UCF dataset uses a video 
camera as a sensor to classify videos of various human 
activities. The concept of feature fusion also spots the light on 
the importance of combing learned and handcrafted features to 
reduce the probability of overfitting and increase the test 
accuracy. Applying feature fusion on other sensory data such 
as images or audio files may have a significant impact on 
system’s performance. 
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