
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

176 | P a g e

www.ijacsa.thesai.org

A Defeasible Logic-based Framework for

Contextualizing Deployed Applications

Noor Sami Al-Anbaki
1
, Nadim Obeid

2
, Khair Eddin Sabri

3

King Abdullah II School for Information Technology

University of Jordan, Amman, Jordan

Abstract—In human to human communication, context

increases the ability to convey ideas. However, in human to

application and application to application communication, this

property is difficult to attain. Context-awareness becomes an

emergent need to achieve the goal of delivering more user-centric

personalized services, especially in ubiquitous environments.

However, there is no agreed-upon generic framework that can be

reused by deployed applications to support context-awareness. In

this paper, a defeasible logic-based framework for context-

awareness is proposed that can enhance the functionality of any

deployed application. The nonmonotonic nature of defeasible

logic has the capability of attaining justifiable decisions in

dynamic environments. Classical defeasible logic is extended by

meta-rules to increase its expressiveness power, facilitate its

representation of complex multi-context systems, and permit

distributed reasoning. The framework is able to produce justified

decisions depending on both the basic functionality of the system

that is itself promoted by contextual knowledge and any cross-

cutting concerns that might be added by different authorities or

due to further improvements to the system. Active concerns that

are triggered at certain contexts are encapsulated in separate

defeasible theories. A proof theory is defined along with a study

of its formal properties. The framework is applied to a

motivating scenario to approve its feasibility and the conclusions

are analyzed using argumentation as an approach of reasoning.

Keywords—Context-awareness; nonmonotonicity; defeasible

logic; distributed reasoning; argumentation

I. INTRODUCTION

It is fair to say that the ubiquitous computing paradigm
revolutionized our understanding of computing and what it can
deliver. It merges computer devices and sensors in an
integrated environment, to provide better communication and
enhanced accessibility to information sources. The final
objective is to provide users with services available whenever,
however, and wherever needed [1]. Applications should be
intelligent enough to handle the mobility of users and resources
themselves as well as the ever-changing context in a seamless
manner with minimum human intervention. In other words,
applications should be context-aware.

The term Context-Aware Computing was first introduced
in 1994 [2], this study focused on the communication aspects
related to broadcasting information from a server to its clients.
Context was considered to be the information related to the
location of users and other objects in the system and how this
information changes over time, in addition to the
communication overload. In [3], context awareness role in
mobile computing was discussed, the study considered context

to be the identity of the user, nearby users, location, time and
season. Other studies that discussed what context could be can
be found in [4] [5] [6].

In 2001, Dey [7] introduced the most well-known
definition of context: "Any information that can be used to
characterize the situation of an entity. An entity is a person,
place, or object that is considered relevant to the interaction
between a user and an application, including the user and
applications themselves". This definition was a milestone in the
growth of the notion of context as it is generic, operational and
exceeded the boundary of (time, location and user's identity)
where context was always defined accordingly. On the other
hand, Context-Awareness is considered to be the ability of the
system to sense (gather information) about its surrounding
physical and operational environment at any given time,
perceive and adapt behavior accordingly [8].

A context-aware system should support mechanisms for
collecting contextual information, representation, reasoning
and application [9]. Contextual information is domain-
dependent, it can be any piece of information that describes the
entity involved in the interaction, it could be time, location,
task, identity, etc. or a group of them. The acquisition of this
information is beyond the scope of this work, it is achieved
using different technologies. The emphasis of this work is on
the two most important phases in any framework that supports
context awareness: representation and reasoning.

In this paper, a generic framework is present that can guide
the contextualizing process of deployed applications. The
framework provides a powerful mechanism to represent multi-
context distributed systems and permits distributed reasoning.
An extension to defeasible logic theory was proposed by
adding the notion of meta-rules that are able to reason over
theories; this enhancement would open the door of new usage
of DL in the representation and reasoning of complex systems.

The significance of the study lies in its conceptual analysis
of context by considering it to be both, information that can
characterize entities and information that has the ability to
characterize a whole new behavior of the system.

Another advancement of the framework is that it permits
distributed reasoning which is a challenging area in AI, as there
is no central authority to control the context flow in the overall
system, but rather each component in the system is allowed to
add its own view of manipulating contextual knowledge. This
is achieved using a separation of concerns principle and can
highly increase users' and administrators' satisfaction.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

177 | P a g e

www.ijacsa.thesai.org

The work is of both theoretical and empirical significance
to the research in context awareness and contextual reasoning.
The theoretical importance lies in the proposed extension to the
defeasible theory that permits the representation of complex
multi-context systems and facilitates distributed reasoning,
while empirical significance lies in the ability to employ the
framework to contextualize any kind of application. It allows
the developers of context-aware applications to easily represent
and manage different behaviors of the application in different
contexts.

This paper is organized as follows: Section 2 highlights
some issues in contextual reasoning. Section 3 presents related
work. Section 4 presents the defeasible logic. An illustrative
scenario is presented in Section 5. Section 6 discusses our
interpretation of context and context-awareness. Section 7
presents the proposed framework of context-awareness.
Section 8 defines the formal proofs of the framework. An
implementation of the illustrative case study in the proposed
framework is presented in Section 9 along with its analysis. A
brief discussion is presented in Section 10 and finally,
Section 11 covers the conclusions and future work.

II. SOME ISSUES IN CONTEXTUAL REASONING

There are many alternatives in the literature that deal with
knowledge representation and reasoning issues [10] [11] [12]
[13] [15] [14] [16] [17] [18]. However, when this knowledge is
characterized as contextual knowledge (i.e. "as information that
can be used to characterize the situation of an entity"), there are
extra properties that need special treatment.

 First of all, context is domain-dependent (e.g. the
identity of a user plays a subtle role in an access control
system, but it is not important in a supermarket billing
system). This is considered an appealing property that
helps to develop personalized services.

 Second, context is a conflict-sensitive concept, i.e.
multiple sources of contextual information might lead
to infer conflicting decisions. This happens due to
multiple sources of contextual information which lead
to ambiguity. The study in [19] highlighted other
problems related to contextual information in that they
might be unknown, imprecise, and erroneous.

 Third, when reasoning is employed, context becomes
nested. In complex systems, the context of an entity is
not merely restricted to basic contextual attributes that
are collected directly from sensors (e.g. the temperature
of a room) but rather, it refers to complex contextual
attributes that are inferred from basic contextual
attributes. For example, if the temperature of the room
is between (72 F and 76 F), the room warmth is
comfortable), in this way, a room with a temperature
degree (74 F) is characterized by two contextual
attributes, its temperature is (74 F) and its warmth is
comfortable. This different level of abstraction gives
context an operational power, such that a basic
contextual attribute may lead to a whole new behavior
and direct the characterization of many other aspects in
the system e.g. a room's temperature may affect not
only the degree of relief in the room but rather may play

a role in deciding the placement of certain assets in the
room e.g. a server, or turning on the air conditioning
which is, in turn, affects the energy consumption, and
so on.

These characteristics lead to challenges that cannot be
avoided especially in complex systems that operate in
ubiquitous environments where the system contains multiple
entities and the process integration spans organizations where
interactive entities in the system may belong to different
authorities and each works under different regulations. The
system should be able to reason and reach justifiable decisions
regardless of these complications.

To handle these issues, a solid representation mechanism
should be employed that can deal with ambiguity and a
concrete conflict resolution mechanism that enables inferring
justifiable non-conflicted decisions. McCarthy [20] was one of
the first scientists that point out the issue of contextual
reasoning. He suggested that the combination of nonmonotonic
reasoning and context formalism would constitute an adequate
solution to overcome the problems associated with including
contextual information in the decision-making process.
Nonmontonicity provides mechanisms that allow the system to
reason and reach justifiable decisions by retracting conclusions
that turned out to be incorrect and derive new, better-justified
conclusions instead [21]. This makes it very suitable to tackle
the reasoning process in dynamic situations with
incomplete/changing information.

Defeasible logic (DL) [22] is a well-known skeptical
nonmonotonic logic that can be used in dynamic environments
due to its characteristics: it is expressive, natural, not
ambiguous and programmable. It has attracted many
researchers to incorporate it in different application domains
such as modeling of contracts [23], legal reasoning [24],
modeling social agents [25], modeling social commitments
[15] [17] [18], etc. The most significant feature of DL is that it
preserves the consistency of the system regardless of conflicts
because it does not produce contradictory conclusions. When a
conflict occurs, conflicting rules do not arouse. It supports the
use of priorities to resolve these conflicts to allow the system
inferring with incomplete/partial information.

III. RELATED STUDIES

There are many attempts in the literature to formalize
context in order to be able to reason based on its attributes
along with its accompanied obstacles that might lead to
conflicts in the decision-making process.

As the issue of context sensing and integration in highly
connected to the technical infrastructure of the system, most of
the researches that aimed to define generic frameworks for
context awareness, pointed out the architecture aspects of the
framework, e.g. the authors in [26] proposed a context
management framework that enables the collaboration of
multiple domains by exchanging contextual information. Their
framework highlighted the architectural issues; it is based on a
peer-to-peer architecture. The framework imposes a hierarchic
ordering of context sources and multiple reasoning tools. This
facilitates adaptability as new context sources and reasoning
techniques can be added. The most important parts of the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

178 | P a g e

www.ijacsa.thesai.org

framework are the uniform interface where all of the context-
provides are attached to a reasoner where all the reasoning
methods can be employed.

Other studies presented techniques to deal with contextual
information, e.g. [27] defined a Context Toolkit that provided
an infrastructure for prototyping context-aware applications.
However, it didn’t provide a mechanism to reason about
contexts. There is no formal tool to write reasoning rules for
contexts or to infer higher-level contexts decisions.

Formal representation of context can be found in [28],
where an architecture and programming framework for
triggering application adaptation to changes in context was
proposed. It employed basic (if-then rules) to formalize the
behavior of an application in different contexts. In [29], first-
order logic was used to describe contextual information and
reasoning was done using Boolean operators and existential
and universal quantifiers.

Recent trends in context-awareness pointed out the
significance of generic frameworks in manipulating context
flow in smart environments.

A formal representation of context can be found in [30]
where the authors used ontologies to model information
gathered from IoT devices in a smart home environment and
used Description logic [31] to deduce activities depending on
the gathered contextual attributes from the devices.

Another study [32] proposed a context-aware framework
for multi-agent environment. Agents in their framework extract
contextual information from ontologies; in fact, an agent can
extract its rules and facts from one or more ontologies. Each
agent performs reasoning based on the collected information
and communicates with other agent(s) using bridge rules; the
concluded decision is used to adapt the system behavior. The
framework is used to generate preference sets for users, which
is a set of active rules for each user.

Defeasible Logic DL [16] [22] had approved to be one of
the famous logic tools that are successful to characterize
contextual reasoning; it has a nonmonotonic relation between
the premises and their consequences which is an effective way
of formalizing the dynamic nature of ubiquities computing.
Several studies succeeded to build models that could reason in
the shade of contextual information based on DL [19] [33]
[34]. However, these studies handle context in an environment
of operating agents, they consider context to be whatever local
knowledge the agent has. This view is correct and it serves the
goal of showing how collaborating agents can cooperate to
achieve a specific goal regardless of the challenges caused by
the imperfect nature of context.

These approaches can be viewed as enhanced versions of
previous approaches that aim at solving the partial knowledge
issues of autonomous agents by collaboration. This is achieved
using bridge rules [34] and mapping rules [33]. None of these
studies investigated the effect of context on the decision made
by each agent/entity and how contextual information can affect
the overall behavior of the system.

The proposed framework discusses how to enhance
deployed applications using context. Rather than considering it

to be raw agent's knowledge received from contributed sensing
devices, a conceptual view of context is adopted, it considered
it as a concern/goal that needs to be achieved, it is different
than the models in the literature as it defines the boundary
between what local knowledge the system is already designed
to manipulate (i.e. what is the input information that system
rules make decisions accordingly) and what is contextual
knowledge that could be used to enhance the system operation.
We argue that the integration of contextual information in the
reasoning process of a system that is driven by many concerns
can not only be achieved by adding additional
attributes/predicates that describe contextual information and
additional rules that manipulate them. The projection of
contextual knowledge on the system affects both the nature of
its base functionality (base concern) and the way it handles
cross-cutting objectives, concerns or exceptions. This simulates
how humans think. Humans' decisions are never static; they are
always changing based on upcoming knowledge, i.e. current
context. For example, a student might choose an academic
major based on his/her interest (a basic aspect), in addition to
the GPA, budget, family opinion, the need for the labor market
at that time (a contextual aspect).

The framework is implemented using Defeasible Logic DL,
it benefits from both the expressiveness power of logic in
representing knowledge and the nonmonotonic feature of the
defeasible theory that facilitates a smooth reasoning process in
a dynamic environment.

Based on this representation of context, the framework can
be viewed as a platform that can be used to augment ubiquitous
applications with context awareness by employing a conceptual
view of context that is able to infer high-level decisions. The
framework allows easy integration of different modes of
operations triggered by different contexts and at the same time
preserves the consistency of the decisions made by the system.

IV. DEFEASIBLE LOGIC

Defeasible logic (DL) was proposed by Nute in 2001 [22],
unlike monotonic reasoning, it has a nonmonotonic relation
between the premises and their logical consequences which
made it suitable for reasoning in dynamic environments. In
order to illustrate the nonmonotonic reasoning power, assume
the situation of the following example that resembles the
monotonic kind of reasoning.

Example 1: Bob is often invited to social events by his friends.

He usually attends these events; however, he has the following

two preferences about going to a party.

P1: If the inviting person is one of his closest friends, he

would go.

P2: He prefers not to go if Adam is invited.

Bob was invited by his best friend, Julie, and she told him

that Adam is invited as well.

In a monotonic kind of reasoning, the two rules are applied
and both of their consequences are valid (go and don’t go)
which leads to inconsistency, it is the system developer's
responsibility to design rules that avoid such conflicts.
Monotonic reasoning needs a lot of administrative effort and it

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

179 | P a g e

www.ijacsa.thesai.org

neither scales well nor can be used in an environment with
multiple administrative authorities. On the other hand, a
nonmonotonic reasoning approach is founded on the ability to
infer tentative conclusions that can be retracted based on new
evidence [14].

Formally, DL can be seen as an extension to first-order
predicate calculus FOPC [35], with the addition of the
defeasible implication (⇒) that is used to infer the tentative
conclusions, and the ambiguity-blocking priority relation (>)
that is used to preserve the consistency of the system and infer
justifiable conclusions in both static and dynamic domains.

Basically, a defeasible theory D (also called a knowledge
base in DL) is a triple (F, R, >), it consists of three main
components:

1. Facts (F): is a finite set of literals that represent

indisputable statements.

2. Rules (R): is a finite set of three types of rules (R = Rs ∪ Rd

∪ Rf) each rule comes in the form,

R: Ant(R) Conseq(R)

Where, (R) is a unique label, (Ant(R)) is an antecedent,

() is a set of one-direction arrows that identify three types

of implications (to denote strict rules, ⇒ to denote
defeasible rules and to denoted defeaters) and a
(Conseq(R)) is the head/consequence which is the conclusion
of the rule. R[B] means the set of rules in R with consequence
B.

A) Strict rules Rs: is a set of rules that cannot be defeated,

e.g. " if a country is on the equator, it would be very

hot during summer",

R1: equatorial(X) during_summer(X) → very_hot(X),

B) Defeasible rules Rd: is a set of rules that can be

defeated by contrary evidence, e.g. " if a country is on

the coast, it is usually very hot during summer",

R2: coastal(X) during_summer(X) ⇒ very_hot (X),

Rule R2 indicates that during summer, coastal

counties weather is very hot unless there is other

evidence suggesting a contrary result, such as (R3)

which states that "if it rains in summer, the weather

would not be very hot"

R3: raining_at(X) during_summer(X) ⇒ ￢very_hot(X)

C) Defeaters Rf: rules presented by (), they do not use

to conclude but rather to prevent deriving conclusions

of some defeasible rules by producing evidence to the

contrary e.g.

R2': coastal(X) during_spring(X) ￢ very_hot (X),

3. The superiority relation >: is a binary relation over the

set of defeasible rules Rd i.e. (> ⊆Rd× Rd). It is defined

externally and statically to resolve conflicts. For example,

given that defeasible rules R2 and R3 are both approved,

no conclusive decision can be made about whether the

weather is very hot or not. But, if the superiority

relationship (R3 > R2) is introduced, then R3 overrides R2

and it can be concluded that the weather is not very hot

while it is raining even during the summer season. The

superiority relation > is acyclic, that is, the transitive

closure of > is irreflexive.

The interaction of these three components permits the
conclusion of justifiable decisions. This is referred to in Fig. 1.

Fig. 1. Classical Defeasible Logic.

V. ILLUSTRATIVE SCENARIO

In this section, a motivating scenario from a ubiquitous
environment is presented in order to illustrate the challenges of
the domain and the capabilities of the proposed framework in
reasoning in such environments.

Assume a situation where a smart application for lecturers'
and employees' phone calls management inside a university
campus was installed on all lecturers' and employees' mobile
phones. This application manages the calls during the time
when the lecturer is giving an online course.

The system was originally designed after an anti-
disturbance base concern; it filters out calls based on the
identity and location of the caller. It contains three rules that
reason about two contextual attributes: (1) the identity of the
caller that is identified by either: a) the caller being in the
urgent list e.g. the dean's secretary b) the identity is unknown
i.e. the number cannot be mapped to any of the names in the
phone database, and (2) the location where the call is issued, it
can be either a local or international call. The system makes its
decision according to the following three rules:

 If the call is issued by a person on the urgent list, the
phone rings.

 If the call is an international call, the phone rings.

 If the caller was unknown, the phone wouldn’t ring.

To resolve the conflicts that might occur due to
characterizing the caller as (being in the urgent list,
international, and unknown); the user has to set priorities to
decide which argument to support if more than one attribute
hold. Sami set that if the call is international, the phone would
ring even if the caller is unknown.

To further enhance the capabilities of the system using
context awareness, the users of the application opted to
personalize the service by formulating their own preferences.
The application was attached to three different context
providers that their knowledge can be used to better

Input

Facts >

Strict

Rules

Defeasible

Rules

Defeaters

Justifiable

Decision

https://en.wikipedia.org/wiki/File:U+21DD.gif
https://en.wikipedia.org/wiki/File:U+21DD.gif
https://en.wikipedia.org/wiki/File:U+21DD.gif

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

180 | P a g e

www.ijacsa.thesai.org

personalize the functionality of the system: a location detection
service of the lecturer, schedule and the number of students
engaged with the professor in the online session. A system user
can set his/her own preferences based on the three available
contextual attributes (location, schedule, and status that could
be either busy or not busy depending on the number of students
that are active during the online session). Preferences are
activated upon turning on a flag of interest on the user's mobile
phone. For example, Professor Sami has the following rules:

 If he is located inside Samsung-Lab, the phone
wouldn’t ring.

 If there is a scheduled lecture, the phone wouldn’t ring.

 If he is engaged with less than five students in an online
session, he is not busy and the phone could ring. This
rule overrules the first two rules.

Suppose the situation when the dean asked the secretary
Linda to call Professor Sami. Linda's number is in the urgent
list; according to the anti-disturbance system rules, the phone
should ring. However, Sami is inside Samsung Lab and is in an
active session with five students, the phone should not ring.

From Linda's point of view, the phone should ring. She is
sure that her number is already listed in the urgent list;
however, she is not aware of Sami's preferences. The system is
not able to decide which argument to support, the anti-
disturbance concern argument or the users' preferences
argument. Thus, an inter-concern conflict resolution
mechanism is used to regulate the decision-making process.

As the end goal is to deliver personalized context-aware
service, the designer sets that the decision inferred by users'
preferences overrules the base system decision. In this
arrangement, Sami won't be informed about the call.

One of the stakeholders, namely, the dean, was not satisfied
with the services provided by this system, as his secretary uses
the schedule of all professors and the administrative staff to
determine the time of urgent meetings and she calls them based
on this knowledge. However, according to the above settings,
even though the user has no scheduled lecture at the time of the
call but is inside the lab giving advice to some students on an
online session, he/she was not informed of urgent meetings.

To resolve this issue, the system should address
stakeholders' concerns such as urgent invitations. The system is
connected to a meeting database that is controlled by several
stakeholders, it saves the time, location, invitees of meetings,
some of them are saved in prior e.g. a workshop and some of
them are set up in an ad-hoc manner e.g. urgent meeting to
discuss exams results. This concern manages the system as
follows:

 If a person is invited, he/she should be informed.

 However, if the invitee has a scheduled lecture, he/she
should not be informed.

The inter-concern conflict resolution mechanism should be
carefully designed to represent the directions of the
stakeholders as they represent a higher administrative

authority. Such that the decision made according to the urgent
invitations concern would be supported.

This simple scenario clarifies the challenges of using
contextual knowledge in the decision-making process. In
addition to the challenges of distributed reasoning in systems
that encompass multiple authorities, each has its own
preferences/regulations and its own interpretation of internal
contextual knowledge. Each authority aims at making the
decision referring to its own rules. This motivates the need to
employ a distributed reasoning mechanism that can handle the
production of justified and solid decisions in multi-context
ubiquitous environments.

VI. CONTEXT AND CONTEXT AWARENESS

Due to the enormous improvement of how computers,
diffused sensors, and other devices collect situational/
contextual information, a lot of researchers tried to define
context in several manners. Basically, context is identified by
its attributes i.e. contextual information/variables that:
(1) describe the user in an interaction with an application, the
application/process, the environment and the interaction itself,
(2) can be used to deliver more user-centric personalized
services. The range of this information is quite vast and it
depends on the domain itself, it could be time, location,
number of users, the identity of the user, user's emotional
states, the focus of attention, etc. [8] [9] [36] [37].

In order to build a framework that is able to enhance the
operation of any application using contextual knowledge, it is
very important to define the system's manipulated knowledge
and enhancing contextual knowledge. Thus, throughout this
work Dey's definition of context is extended to best suit this
purpose: "For a deployed application, context is any
information used to characterize the situation of an entity and
can be sensed, collected and represented. This information is
not part of the group of information that already describes that
entity in the deployed application. An entity is a person, place,
or object that is considered relevant to the interaction between
a user and an application, including the user and applications
themselves".

In this work, the set of contextual information that
represents domain knowledge C in an environment would be
classified according to its presence in the system, as shown in
Fig. 2:

1) Information that is collected from the environment in

the digital form or can be presented digitally, collected context,

(C
o
 C) e.g. identity of the user, light, sound, location, size,

etc.

2) Information that the system is designed to manipulate

(C
u
 C

o
) e.g. in an access control model, the identity of the

user and his role is used to determine what object(s) he/she can

access.

3) Contextual information that can be added to enhance the

functionality of the system (C
h
 C

o
) e.g. in an access control

model in a dynamic environment, the time and location of the

user requesting access is of major importance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

181 | P a g e

www.ijacsa.thesai.org

Fig. 2. Spectrum of Context.

A context of an entity is the net of all contextual attributes
that describe that entity, the attributes might be physically
collected by sensors, e.g. a GPS service can return the location
of a person, LocatedIn(sami, home) to state that Sami is
located at home (different schemes can be used to describe the
location of an entity, e.g. XY coordinates) or logically
constructed.

The proposed framework is built on defeasible logic; first-
order literals are used to represent contextual attributes. Each
literal represents a property that an entity holds or can be
characterized by, it contains a name and a value e.g.
location("university", near), role("mary", manger),
connected_users(5) and so on. A literal is an atomic formula or

its negation if α is an atomic formula; α is its complement
[38]. It should be defined in advance what is the meaning of
the name and what is the range of values the literal may hold.

In the proposed framework, enhancing contextual attributes
are referenced in four different ways:

1) According to the way they are gathered:

 Basic contextual attributes, to refer to the attributes that
are collected directly from sensors, e.g.
Humidity(basement, 40%), Temperature(basement, 65
F).

 Complex contextual attributes, to refer to the attributes
that can be assembled as a result of logical operations
on basic or other complex attributes, e.g.

Humidity(basement, 40%) Temperature(basement,
65 F) ⇒ Comfortable(basement).

 Due to the multiple sources of contextual information,
the decidability of complex attributes needs extra care,
e.g. Noise(basement, 120 dB) ⇒
~Comfortable(basement).

In this case, any reasoning mechanism should uses
priorities to resolve this issue.

2) According to the way they are manipulated:

 Internal contextual attributes, to refer to the attributes
that are manipulated locally by the entity/administrative
domain.

 External contextual attributes, to refer to the attributes
that are manipulated outside the entity/administrative
domain.

A context of a system that contains multiple collaborative
sub-systems or components is a snapshot of the system's
situation at a given point/interval of time. This encapsulates the
external contextual attributes, internal contextual attributes of
each sub-system and component in addition to the relationship
between those subsystems and components.

A context-aware system is a system that is able to make a
solid justified decision for every upcoming context. A
contextualized deployed application is a system that is able to
adapt its behavior in the shade of collected enhancing
contextual attributes. In the proposed framework, the
defeasible logic machinery would be employed for knowledge
representation and reasoning and a concern-based model for
context integration.

VII. DEFEASIBLE LOGIC FRAMEWORK FOR CONTEXT

AWARENESS

A deployed application, a base system, can be seen as a
domain of knowledge that is governed by static rules that
manipulate its local knowledge, i.e. (C

u
); it is designed to serve

a certain purpose. Augmenting such a system with context
awareness can considerably improve its functionality by
making it adaptable to the processing environment in order to
provide a better experience to the user, better utilization of
resources, etc. Contextual knowledge that is integrated into the
system (C

h
) can be embedded either implicitly or explicitly. In

other words, it can be used to contextualize the base system's
rules, if it is added by the same administrative authority and it
serves the same purpose/concern of the base system, or it can
be used to characterize other entities concerns that could be
compatible or crosscutting to the base system's concern, they
are triggered at some exceptional situations, normally this
knowledge is perceived by other participating authorities or
components in the system and it indicates their concerns from
their own viewpoint. A context-aware system should be
carefully designed to permit distributed reasoning and at the
same time make justifiable decisions in spite of the fact that the
distributed entities might have conflicting concerns.

The proposed context-aware framework based on
defeasible logic is a theory L<G, β, D, λ>, that consists of the
following components.

A. Triggers G

Triggers is a finite set of positive and negative ground
literals that represents external basic contextual attributes
acquired from the application domain. Triggers are imported
from the system's global knowledge that is not necessarily
known by the participating entities/users. They have a certain
property is that they are issued by/collected from multiple
participating sub-domains or different authorities in the
application domain. It should be noted that not all contextual
attributes can be used as triggers, a trigger's impact extends far
beyond changing a single rule, yet, it can add/remove/change
different rules and regulations in different components of the
system e.g. an emergency situation that leads to a break glass
procedure.

Formally, each trigger is an atomic formula. A valid
framework can have no two complementary triggers i.e. an
atomic formula and its negation. Triggers activate concerns

Domain Knowledge C

Co

Cu

Ch

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

182 | P a g e

www.ijacsa.thesai.org

using meta-rules. Meta-rules are rules that consequences are
rules; they have been used in the literature as a powerful
machine that facilitates reasoning about rules for
contextualizing the provability of goals [34]. In the proposed
framework their use would be extended; meta-rules are rules
that consequences are defeasible theories.

Each trigger activates one concern using a defeasible meta-
rule such that

G ={g1,g2,….,gn} where, n≥0 is the number crosscutting
concerns in the system

Mi :gi ⇒ Di

When a meta-rule contains an empty bode i.e. no
antecedent, it denotes the activation of the base system,

M0 :⇒ β

For the illustrative scenario, the trigger that activates the
preferences concern is the flag on the user's mobile phone.

B. The Base System β

The base system is the actual deployed application that is
governed by rules that reflect obligations; these rules are put at
the design phase to achieve a certain purpose or goal. In this
framework β is represented using defeasible theory, it contains
rules that reason about local attributes of the system (C

u
) in

order to serve a certain goal. When the need arises to integrate
a new contextual knowledge in the decision-making process,
the designer has two options, (1) If the newly added contextual
knowledge is a simple attribute that does not crosscut the base
concern of the system and is issued by the same administrative
authority, it can be added implicitly to the base system, either
as a new rule or as a predicate in an existing rule. (2) However,
if the newly added contextual knowledge serves a concern that
crosscuts the base system or is issued by a different
administrative authority, it will be encapsulated as a distinct
concern that is formalized.

Formally, the base system is a defeasible theory denoted as
β(F

β
, R

β
, >

β
), The formal definition of β flows naturally from

the definition of classical defeasible theory, however, the
components of the base system theory would be superscripted
with the base system name β.

C. Distributed Contextual Concerns Theories D

Based on the separation of concerns principle, when the
collected contextual knowledge refers to a cross-cutting
concern or is issued by a different administrative authority, it
will be encapsulated in a distinct theory(s). This would
considerably enhance the development, maintenance, and
security of the overall system and can enable reaching
justifiable decisions even if only partial knowledge is available.

A concern refers to the context of participating
entities/authorities regarding the service provided by the base
system; it reflects their interpretation of the service based on
their own manipulating of internal contextual knowledge that
they can access. For example, suppose an energy-saving
software to control an air conditioning system in a building, its
base/main concern is to manage energy consumption; it turns
ACs off for uninhabited areas when the energy level exceeds a

certain threshold. At the same time, the system is affected by
an asset safety concern, the IT department controls the air
conditioning system operation regarding the safety of certain
assets in the building e.g. servers. On the other hand, the
operation of the system is further influenced by the
maintenance department rules that turn off ACs in case of any
problems related to the hardware parts of the AC, etc.

Concerns are used to alter the behavior of the base system
by applying their conclusion. It should be noted that concerns
do not only affect the base system, but rather affect other
concerns of the system; for example, the user's preferences in
the illustrative scenario.

Concerns are represented as a set of distributed defeasible
theories D. Each theory has a unique name. System
components are referred to as,

Sys-c = {β} ⋃ D, where D = {D1,…, Dn}, n is the number
of concerns in L

The formal definition of each theory in D flows naturally
from the definition of classical defeasible theory, however, the
components of each theory would be superscripted with the
concern name, e.g. concern theory Di is a tuple (F

Di
, R

Di
, >

Di
).

Each concern is activated by one trigger using a meta-rule.

It should be mentioned that throughout the work of this
paper, the decision inferred by β is called a base conclusion,
while the decision inferred by any concern theory is
superscripted with the name of the concern, e.g. Pass

D1
(X),

means that according to concern D1, the conclusion Pass(X) is
inferred.

D. Inter-Concerns Conflict Resolution λ

Basically, concerns conclusions overrule the base system
conclusion. In other words, when a query is issued for a service
provided by a system that includes multiple concerns, if any of
these concerns concluded a decision that contradicts the
conclusion concluded by the base system, the concerns
conclusion would be preferred; this is exactly where the effect
of context in changing the behavior of the system, is captured.

However, in certain contexts several concerns can be
activated; this might lead to conflicts in the decision-making
process. This case happens when the conclusion inferred from
one concern i.e. defeasible theory contradicts the conclusion
inferred from another concern(s). In this case, the system
would use λ, a conflict resolution mechanism that follows a
prioritized ordering scheme to resolve inter-concern conflicts.

λ = {(Di, Dj) ∈ Sys-c2 | (Di⊐ Dj) Di,Dj ∈ D and

(Dk ⊐ β) ∀k Dk ∈ D}

λ is a total ordering relation that is defined over system
components, it uses the operator ⊐ to denote priority, such that
Di⊐ Dj states that the conclusion of Di is preferred over the
conclusion of Dj, and so on. However, it has another property;
the definition also implies that the conclusion of any concern is
preferred over the base conclusion.

It is important to notice that a total ordering relation is used
instead of a partial ordering relation to prioritized concerns.
Whenever a new concern is added, λ should be re-evaluated;

https://en.wikipedia.org/wiki/Advice_in_aspect-oriented_programming

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

183 | P a g e

www.ijacsa.thesai.org

and the relation between the newly added concern and all other
system components should be set in a proper way. It is the
designer's responsibility to decide how to prioritize concerns
based on the criticality level in the decision-making process.

VIII. FORMAL PROOFS

The provability of the framework would be discussed
according to the concern-level local distributed theory and the
system level theory.

A. Concern Level Proof

Each concern is represented as a defeasible theory D, the
probability of a defeasible logic is based on the concept of a
derivation (or proof) from the theory [22]. A derivation is a
finite sequence Pn=(P(1), . . ., P(n)) of tagged literals satisfying
the following four conditions (i.e. the inference rules for each
of the four kinds of conclusion).

Let P(1..i) denote the initial part of the sequence Pn of
length i where i ≤ n. Then a conclusion, proved subsequently
[16], could be either:

(1) Definitely provable in D.

+: If P(i+1) = +B then

(1) B ∈ F or

(2) (∃R1 ∈ Rs[B])(∀A∈Ant(R1): +A ∈P(1..i)).

(2) Not definitely provable in D.

-: If P(i+1) = -B then

 (∀R1 ∈ Rs[B]) (∃A∈Ant(R1): -A ∈P(1..i)).

(3) Defeasibly provable in D.

 +δ: If P(i + 1)= +δ B then

 (1) +B ∈ P (1..i) or

(2) (2.1) (∃R1∈ R[B])(∀A ∈ Ant(R1): +δA ∈ P(1..i)

 and (2.2) (−¬B ∈ P (1..i))

 and (2.3) (∀R1 ∈ R[¬B]) either

 (2.3.1) ((∃A ∈ Ant(R1): −δA ∈ P(1..i)) or

 (2.3.2) ((∃R2 ∈ R[B]) such that (R2>R1) and

 (∀A ∈Ant(R2): + δA ∈P(1..i))

B is defeasibly provable from D, if either: (1) B is
definitely provable or (2) use the defeasible part of D which
requires: (2.1) finding a strict or defeasible rule with

consequent B which can be applied, and (2.2) showing that ￢

B is not definitely provable and (2.3) counterattacking each
rule that attacks the conclusion B by either (2.3.1) proving that
the attacking rule is not defeasible proved or (2.3.2) finding a
stronger rule that defeasible prove B.

Not defeasibly provable in D [38].

-δ: If P(i + 1)= -δB then

(1) -B ∈ P (1..i) or

(2) (2.1) (∀R1∈R[B]) (∃A ∈ Ant(R1): -δA ∈ P(1..i)

or (2.2) (+¬B ∈ P (1..i)) or

 (2.3) (∃R2 ∈ R[¬B]) such that

 (2.3.1) ((∀A ∈ Ant(R2): +δA ∈ P(1..i)) and

 (2.3.2) ((∀R3 ∈ R[B]) either (R2>R3) or

 (∃A ∈Ant(R3) : - δ A ∈P(1..i)) ∎

B. System-Level Proof

For a conclusion to be inferred from the framework it
should be either strictly or defeasibly approved by the base
system (when no concerns are addressed) or by a higher
priority concern. Two types of tagged literals are introduced to
approve/not approve a conclusion:

 +θ B, globally approved in system L, which means that
there is a reasoning chain that strictly or defeasibly
approves B in concern Di that is not defeated by any
applicable reasoning chain of a higher priority concern
Dj, where both Di and Dj ∈ Sys-c.

 -θ B, not globally approved in system L, which means
that every reasoning chain that strictly or defeasibly
approves B in concern Di is defeated by an applicable
reasoning chain of a higher priority concern Dj, where
both Di and Dj ∈ Sys-c.

The tagged literals can be formally defined by the
following proof conditions:

 Globally defeasibly provable in L
:

+θ: If P(i + 1)= +θ B then

 (1) ((+B
β
) or (+δ B

β
)) and (D = {})) or

 (2) (∃Mi∈ M[+δ Di] (∀gi ∈ Ant(Mi): +gi ∈ P(1..i)) and

 (∃Mj∈ M[+δ Dj] (∀gj ∈ Ant(Mj): +gj ∈ P(1..i)) and

 ((+B
Di

) or (+ δB
Di

)) and either

 (2.1) (∀Dj ∈ D) ((+¬B
Dj

) or (+δ¬B
Dj

)) and (Di⊐Dj)

or (2.2) (∀Dj ∈ D) ((-¬B
Dj

) or (-δ¬B
Dj

)) and

(Dj⊐ Di)

 Globally not defeasibly provable in L

-θ: If P(i + 1)= -θ B then

 (1) ((+¬B
β
) or (+δ¬B

β
)) and (D = {})) or

 (2) (∃Mi∈ M[+δ Di] (∀gi ∈ Ant(Mi): +gi ∈ P(1..i))

and

 (∃Mj∈ M[+δ Dj] (∀gj ∈ Ant(Mj): +gj ∈ P(1..i))

and

 ((+¬B
Di

) or (+δ¬B
Di

)) and either

 (2.1) (∀Dj ∈ D) ((+B
Dj

) or (+δB
Dj

)) and

(Di⊐Dj) or

 (2.2) (∀Dj ∈ D) ((-B
Dj

) or (-δB
Dj

)) and (Dj⊐

Di)∎

IX. CASE STUDY AND ANALYSIS

In this section, a formalization of the illustrative scenario
would be presented and analyzed.

A. Case Study

The illustrative scenario's base system is represented in the
proposed framework as follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

184 | P a g e

www.ijacsa.thesai.org

β = (F
β
, R

β
, >

β
),

F
β
 = {calling(X,Y), unknown(X), international(X)}

R1
β
 :calling(X,Y) in-urgent(X) ⇒ ring(Y)

R2
β
 :calling(X,Y) international(X)⇒ ring(Y)

R3
β
 :calling(X,Y) unknown ⇒ ￢ring(Y)

>
β
 = {(R1

β
 > R3

β
), (R2

β
 > R3

β
) }

However, Concern D1 encodes the lecturer's preferences
regarding call management. The lecturer makes his decision
based on three contextual attributes, his location, schedule and
his status that could be either busy or not based on the number
of students that are active during the online session. Professor
Sami's preferences are formalized by a contextual concern
theory D1 which is activated using meta-rule M1 due to a flag
on the user's phone.

M1: flag(on) ⇒ D1

F
D1

 = {calling(X,Y), samsung-lab(Y), lecture-time(Y),

busy(Y), nStudents(Y)}

R1
D1

 :calling(X,Y) samsung-lab(Y) ⇒ ￢ring(Y)

R2
D1

 :calling(X,Y) lecture-time(Y) ⇒ ￢ring(Y)

R3
D1

 : nStudents(Y) <5⇒ ￢busy(Y)

R4
D1

 : ￢busy(Y) ⇒ ring(Y)

>
D1

 = {(R4
D1

 > R2
D1

), (R4
D1

 > R1
D1

) }

Stakeholders concern for urgent meetings is formalized by
the following context theory D2:

D2 = (F
D2

, R
D2

, >
D2

),

F
D2

 = {calling(X,Y), lecture-time(Y), invited(Y)}

R1
D2

 :calling(X,Y) lecture-time(Y) ⇒ ￢ring(Y)

R2
D2

 :calling(X,Y) invited(Y) ⇒ ring(Y)

>
D2

 = {(R1
D2

 > R2
D2

)}

When an urgent meeting is set up, the stakeholder activates
an immediate indication. The meta-rule that activates this
concern is M2,

M2: urgent-meeting ⇒ D2

As this concern is added by a higher authority, the dean, the
designer decided to set λ as,

λ = {(D2⊐D1), (D2⊐ β), (D1⊐β)}

B. Analysis

In this framework, Argumentation is used to analyze the
conclusions of the contextual distributed theories.
Argumentation is a mechanism used for tracing the reasoning
process over a knowledge base that contains possibly partial
and/or conflicting knowledge [39] [40]. It can be used to obtain
useful conclusions from the defeasible logic theory.

Definition: Suppose D (F, R, >), is a defeasible logic theory
and B is a ground literal. Arg is said to be an argument that
supports the conclusion B from D, denoted by <Arg, B>, if Arg
is a minimal set of defeasible rules (Arg ⊆ Rd), such that:

1) B can be defeasibly derivate from (Arg ∪ F ∪Rs),

2) No pair of contradictory literals can be defeasibly

derived from (Arg ∪ F ∪Rs), and

3) Arg contains no rule that contains an antecedent that is

complementary to an antecedent of another rule in Arg.

With respect to analyzing the behavior of the theory in the
case study using argumentation, suppose the situation when the
dean asked the secretary Linda to call Professor Sami.
Professor Sami has the preferences flag set on. Linda's number
is in the urgent list; Sami is inside Samsung Lab and is in an
active session with five students.

There are two arguments that support conflicting

conclusions:

< Arg1,β , ring
β
> = ({calling(linda,sami) in-urgent(linda)},

ring(sami))

< Arg1,D1 ,￢ring
D1

> = ({calling(linda,sami) samsung-

lab(sami)}, ￢ring(sami))

Although argument A1,β supports the conclusion ringβ,
argument A1,D1 counterarguments A1,β i.e. it attacks its
conclusion and vice versa. The global conflict resolution
mechanism λ is used to support the conclusion of the higher

priority theory. In this case λ = {(D1⊐β)} and (￢ring
D1

) is

globally approved.

Now, suppose the preferences flag is on and the urgent
meeting indication is active, meta-rule M1 will activate concern
D1 and meta-rule M2 will activate concern D2. Linda called
Professor Sami. Sami is invited and he is in the Samsung-lab
but he has no lecture at this time, he is giving advice to 5
students. The argumentation process would go as follows:

<Arg1,β , ring
β
> = ({calling(linda,sami) in-

urgent(linda)}, ring(sami))

<Arg1,D1 ,￢ring
D1

> = ({calling(linda,sami) samsung-

lab(sami)}, ￢ring(sami))

<Arg1,D2 , ring
D2

> = ({calling(linda,sami)

invited(sami)}, ring(sami))

According to D1, (ring) cannot be inferred as it is defeasibly
approved that Sami is not busy which blocks the conclusion of

(ring), add to that (￢ring) is defeasibly approved by R1
D1

.

However, according to λ, Arg1,D1 is attacked by a higher
priority argument Arg1,D2 that supports the conclusion (ring

D2
).

As long as the external contextual attribute (urgent-meeting) is
active, (ring

D2
) is globally approved.

X. DISCUSSION

The proposed framework differs from all the approaches in
literature in that it captures the effect of the different
conceptual aspects of context using defeasible logic. It
provides a powerful mechanism to manipulate multi-context

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

185 | P a g e

www.ijacsa.thesai.org

distributed systems. It complies with the main characteristics of
ubiquitous and distributed systems in providing transparency,
reliability, and scalability. At the same time, it enables the
evaluation of distributed decisions and produces globally
justifiable conclusions. This is achieved using triggers and the
relation between active concerns, unlike the bridge rules and
mapping rules that were used in literature.

The consistency of the system is attained by the consistency
of defeasible logic itself as for any statement; there is a
proof/reasoning chain that can determine whether or not that
statement holds and inconsistencies can be detected using the
proof theory.

XI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel framework for context-
awareness that can contextualize any deployed application. The
framework is based on a conceptual analysis of context; it
captures the behavior of contextual knowledge as it penetrates
into deployed applications. It fairly simulates how the human
being perceives context either as plain attributes or as concerns
that need to be considered in order to make better decisions,
change behavior and personalize services.

The framework is efficiently mapped to defeasible theory.
It is generic, flexible and scalable. It allows the system to make
justifiable decisions regardless of the number of available
contextual attributes, concerns, or the number of administrative
authorities that control the decision-making process. Its main
strength lies in its distributed approach of reasoning and its
ability to represent concerns in defeasible theories.

The analysis showed that the framework is able to capture
both the contextual aspects and the concerns of different
authorities in the system. The consistency in the system is
attained by two levels of conflict resolution mechanisms,
concern level, and system level.

The proposed extension of the defeasible theory using
meta-rules improved the expressiveness power of the logic
through enabling nonmonotonic reasoning over sets of
defeasible theories rather than defeasible rules.

We have investigated the capabilities of the system in
reasoning in environments with multiple entities that have
cross-cutting concerns. Future work may exploit the flexibility
of the proposed framework and its augmented power of
expressing complex systems in providing personalized services
i.e. entities/users that share the same concern but each one of
them preserves its own right of manipulating contextual
knowledge in its own way. For example, according to the
scenario, more than one user has the same concern (e.g.
preferences) but each of them has its own setting of
preferences.

Further work would also consider investigating the
capabilities of this framework by implementing it on real-
world ubiquitous systems where context plays an important
role.

Another aspect to be considered in contextual reasoning is
the effect of context on the manipulation of the prioritizing
scheme of both the classical defeasible logic and the proposed

framework. We believe the management of this issue can
present a magnificent step in the field of context-awareness.

REFERENCES

[1] Park, I. S., Kim, W. T., & Park, Y. J. (2004, February). A ubiquitous
streaming framework for multimedia broadcasting services with QoS
based mobility support. In International Conference on Information
Networking (pp. 65-74). Springer Berlin Heidelberg.

[2] Schilit, B. N., & Theimer, M. M. (1994). Disseminating active map
information to mobile hosts. IEEE network, 8(5), 22-32.

[3] Brown, P. J., Bovey, J. D., & Chen, X. (1997). Context-aware
applications: from the laboratory to the marketplace. IEEE personal
communications, 4(5), 58-64.

[4] Capurso, N., Mei, B., Song, T., Cheng, X., & Yu, J. (2018). A survey on
key fields of context awareness for mobile devices. Journal of Network
and Computer Applications, 118, 44-60.

[5] Schmidt, A., Beigl, M., & Gellersen, H. W. (1999). There is more to
context than location. Computers & Graphics, 23(6), 893-901.

[6] Gruber, T. R., Brigham, C. D., Keen, D. S., Novick, G., & Phipps, B. S.
(2018). U.S. Patent No. 9,858,925. Washington, DC: U.S. Patent and
Trademark Office.

[7] Dey, A. K. (2001). Understanding and using context. Personal and
ubiquitous computing, 5(1), 4-7.

[8] Fischer, G. (2012). Context-aware systems: the 'right' information, at the
'right' time, in the 'right' place, in the 'right' way, to the 'right' person. In
Proceedings of the International Working Conference on Advanced
Visual Interfaces (pp. 287-294). ACM.

[9] Ryan, N., Pascoe, J., & Morse, D. (1999). Enhanced reality fieldwork:
the context aware archaeological assistant. Bar International Series, 750,
 .269-274

[10] Pollock, J. L. (1996). OSCAR: A general-purpose defeasible
reasoner. Journal of applied non-classical logics, 6(1), 89-113.

[11] Moubaiddin, A., & Obeid, N. (2009). Partial information basis for agent-
based collaborative dialogue. Applied Intelligence, 30(2), 142-167.

[12] Obeid, N., & Moubaiddin, A. (2010). Towards a formal model of
knowledge sharing in complex systems. In Smart Information and
Knowledge Management (pp. 53-82). Springer, Berlin, Heidelberg.

[13] Obeid, N., & Rao, R. B. (2010). On integrating event definition and
event detection. Knowledge and information systems, 22(2), 129-158.

[14] Obeid, N. (2012). Three-Values Logic and Non-Monotonic
Reasoning. COMPUTING AND INFORMATICS, 15(6), 509-530.

[15] Moubaiddin, A., & Obeid, N. (2013). On formalizing social
commitments in dialogue and argumentation models using temporal
defeasible logic. Knowledge and information systems, 37(2), 417-452.

[16] Sabri, K. E., & Obeid, N. (2016). A temporal defeasible logic for
handling access control policies. Applied Intelligence, 44(1), 30-42.

[17] Moubaiddin, A., Salah, I., & Obeid, N. (2018). A temporal modal
defeasible logic for formalizing social commitments in dialogue and
argumentation models. Applied Intelligence, 48(3), 608-627.

[18] Mobaiddin, A., & Obeid, N. (2018, June). On Commitments Creation,
Compliance and Violation. In International Conference on Industrial,
Engineering and Other Applications of Applied Intelligent Systems (pp.
465-476). Springer, Cham.

[19] Bikakis, A. and Antoniou, G. (2010). Rule-based contextual reasoning in
ambient intelligence. In International Workshop on Rules and Rule
Markup Languages for the Semantic Web (pp. 74-88). Springer Berlin
Heidelberg.

[20] McCarthy, J. (1987). Generality in Artificial
Intelligence. Communications of the ACM, 30(12), 1030-1035.

[21] Antoniou, G., & Williams, M. A. (1997). Nonmonotonic reasoning. Mit
Press.

[22] Nute, D. (2001, October). Defeasible logic. In International Conference
on Applications of Prolog (pp. 151-169). Springer Berlin Heidelberg.

[23] Governatori G (2005) Representing business contracts in RuleML.
International Journal of Cooperative Information Systems 14(2-3):181–
216.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

186 | P a g e

www.ijacsa.thesai.org

[24] Governatori, G., Olivieri, F., Scannapieco, S., & Cristani, M. (2012).
Revision of defeasible logic preferences. arXiv preprint
arXiv:1206.5833.

[25] Governatori G, Rotolo A, Padmanabhan V (2006) The cost of social
agents. In: Proceedings of the AAMAS 2006, pp 513–520.

[26] Van Kranenburg, H., Bargh, M. S., Iacob, S., & Peddemors, A. (2006).
A context management framework for supporting context-aware
distributed applications. IEEE Communications Magazine, 44(8), 67-74.

[27] Dey AK et al. (2001) A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Cont Aw
Comput-HCI J 16:97–116.

[28] Schilit WN (1995). A context-aware system architecture for mobile
distributed computing. Dissertation, Columbia University.

[29] Ranganathan, A., & Campbell, R. H. (2003). An infrastructure for
context-awareness based on first order logic. Personal and Ubiquitous
Computing, 7(6), 353-364.

[30] Alirezaie, M., Renoux, J., Köckemann, U., Kristoffersson, A., Karlsson,
L., Blomqvist, E., ... & Loutfi, A. (2017). An ontology-based context-
aware system for smart homes: E-care@ home. Sensors, 17(7), 1586.

[31] Obeid, M., Obeid, Z., Moubaiddin, A., & Obeid, N. (2019, July). Using
Description Logic and Abox Abduction to Capture Medical Diagnosis.
In International Conference on Industrial, Engineering and Other
Applications of Applied Intelligent Systems (pp. 376-388). Springer,
Cham.

[32] Uddin, I., Rakib, A., Haque, H. M. U., & Vinh, P. C. (2018). Modeling
and reasoning about preference-based context-aware agents over
heterogeneous knowledge sources. Mobile Networks and
Applications, 23(1), 13-26.

[33] Antoniou, G., Bikakis, A., Karamolegou, A., & Papachristodoulou, N.
(2006). A Context-Aware Meeting Alert Using Semantic Web and Rule
Technology-Preliminary Report. Semantic Web Technology For
Ubiquitous & Mobile Applications (SWUMA’06), 23.

[34] Dastani, M., Governatori, G., Rotolo, A., Song, I., & Van Der Torre, L.
(2007, November). Contextual agent deliberation in defeasible logic.
In Pacific Rim International Conference on Multi-Agents (pp. 98-109).
Springer, Berlin, Heidelberg.

[35] Harel, D. (1979). First-order dynamic logic (Vol. 68). Berlin: Springer.

[36] Al-Zyoud, M., Salah, I., & Obeid, N. (2012, November). Towards a
model of context awareness using web services. In International
Conference on Computational Collective Intelligence (pp. 121-131).
Springer, Berlin, Heidelberg.

[37] Musumba, G. W. and Nyongesa, H. O. (2013). Context awareness in
mobile computing: A review. International Journal of Machine Learning
and Applications, 2(1), 5-pages.

[38] Antoniou, G., Maher, M. J., & Billington, D. (2000). Defeasible logic
versus logic programming without negation as failure. The Journal of
Logic Programming, 42(1), 47-57.

[39] Moubaiddin, A., & Obeid, N. (2008). Dialogue and argumentation in
multi-agent diagnosis. In New Challenges in Applied Intelligence
Technologies (pp. 13-22). Springer, Berlin, Heidelberg.

[40] García, A. J., & Simari, G. R. (2014). Defeasible logic programming:
Delp-servers, contextual queries, and explanations for
answers. Argument & Computation, 5(1), 63-88.

