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Abstract—One of the major culprits that faces Mobile Ad-hoc 

networks (MANET) is broadcasting, which constitutes a very 

important part of the infrastructure of such networks. This 

paper presents a nested genetic algorithm (GA) technique with 

fuzzy logic-based fitness that optimizes the broadcasting 

capability of such networks. While normally the optimization of 

broadcasting is considered as a multi-objective problem with 

various output parameters that require tuning, the proposed 

system taps another approach that focuses on a single output 

parameter, which is the network reachability time. This is the 

time required for the data to reach a certain percentage of 

connected clients in the network. The time is optimized by tuning 

different decision parameters of the Delayed Flooding with 

Cumulative Neighborhood (DFCN) broadcasting protocol. The 

proposed system is developed and simulated with the help of the 

Madhoc network simulator and is applied on different realistic 

real-life scenarios. The results reveal that the reachability time 

responds well to the suggested system and shows that each 

scenario responds differently to the tuning of decision 

parameters. 

Keywords—Broadcasting; DFCN; fuzzy logic; genetic 
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I. INTRODUCTION 

Mobile Ad-hoc Networks (MANETs) are dynamic types of 
network consisting of an uncontrolled setup of end-point 
communication devices known as terminals, which are able of 
arbitrarily connecting with each other without the need of a 
base station or a fixed infrastructure [1]. The types of devices 
that are usually found in MANETs are laptops and 
smartphones equipped with limited range wireless technologies 
such as Bluetooth and WiFi (802.11). This, in turn, limits the 
communication capability of such devices, but allows them to 
move while communicating. 

This makes the MANET very unpredictable as it needs to 
continuously self-reconfigure itself to accommodate these 
dynamic changes [2]. This is considered a major drawback for 
the efficiency and effectiveness of the MANETs and, by failing 
to readjust, link breakage will start to take place and some of 
the routes can become undiscoverable [3]. For the devices to be 
able to reach a certain destination, they start sending route 
discovery requests to their neighboring nodes [4] which, in 
turn, do the same thing. This results in the network being 
overwhelmed with an extreme amount of broadcast traffic 
known as a broadcasting storm [5]. 

Since it is clear that broadcasting plays a very critical role 
in network discovery and assists the nodes in MANETs in 
discovering their neighborhood [6], optimizing it constitutes a 
major step as it will save both energy and time, especially since 
most of the devices in the network have limited energy as they 
are battery powered. 

Due to the previously mentioned limitations, a key threat 
known as node ‘selfish behavior’ arises in the network, in 
which the nodes purposely tend to drop the messages that do 
not target it, in an effort to save its energy [7] [8]. In other 
words, the nodes are not encouraged to contribute to the 
forwarding process. This kind of self-regarding behavior 
negatively impacts the network because, as already stated, 
there is no solid infrastructure in MANET and all the nodes 
rely on the cooperation of other nodes in the network to deliver 
and forward their messages. Delayed Flooding with 
Cumulative Neighbors (DFCN) is a broadcasting protocol that 
can handle this behavior and, at the same time, can reduce the 
number of packets that need forwarding with minimal punitive 
actions on the final coverage [9]. This is achieved by dropping 
the forwarded message when enough of the neighborhood 
devices have already got it. Also, once a node decides to 
forward a certain packet, it waits for a specified amount of time 
before executing this action, which is then canceled if another 
node in the network actually forwards the message [10]. 

The work proposed in this paper tackles a specific type of 
MANET, known as Metropolitan Mobile Ad-Hoc Networks, 
which is characterized by a disparate density that is 
continuously changing, whereas highly dense areas can swing 
from being active to inactive over short periods of time. 
Because creating a real testbed for this type of network is very 
costly and challenging, and might also lack the reproducibility 
factor, it was decided that the best approach to handle it is by 
means of a simulation framework. The Madhoc [11] simulator 
has been selected to achieve this. An evolutionary algorithm-
based technique that combines nested GA with fuzzy-based 
fitness is proposed and implemented. The technique integrates 
the Madhoc simulator in its core and considers DFCN 
optimization over multiple real life mobility scenarios. 

The rest of this paper is organized as follows. Section II 
introduces the Madhoc simulator and gives an insight about its 
capabilities and the different modes of operations. In 
Section III, a review of the related work concerning the 
optimization of broadcasting techniques in MANETs is 
presented. Section IV highlights the main problems that this 
research aims to solve. Section V demonstrates the algorithms 
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and techniques used to solve the problem. Section VI shows 
the obtained results and discusses them. Finally, Section VII 
concludes this work and proposes the potential future work. 

II. MADHOC SIMULATOR 

Madhoc is a metropolitan MANET simulator completely 
written in Java and available to use publicly [12] on the 
author’s website [13]. The simulator provides the ability to 
simulate MANET using different parameters and real-life 
constraints such as working area size, mobility speed, wall 
thickness, etc. It also supports many different wireless 
technologies (e.g. WiFi, Bluetooth, GSM, etc.). Most 
importantly, it implements the full DFCN broadcasting 
protocol with all the required decision parameters to optimize 
it. Madhoc can be executed as a standalone application or as an 
Application Programming Interface (API). 

To be able to collect the required statistics and results, a 
Madhoc monitor class is used. A monitor is not a part of the 
physical network and does not have an instance in real 
networks, and is regarded to as an abstraction entity that only 
exists at simulation level. It mainly aims at maintaining a 
global perspective on all nodes and for carrying out the 
required operations such as node deployment and initialization. 
It mainly serves as an observer of the Ad-hoc decentralized 
process. Another major attribute of the Madhoc simulator is 
that it does not use an event-driven simulation architecture, but 
instead, the simulator’s kernel iterates upon a discrete time 
domain, where the distance between two intervals is known as 
the resolution. 

This parameter is defined by the user and should be fixed 
throughout all the related applications to guarantee comparable 
and consistent results. The higher this value is, the less accurate 
the simulation will become. This value should be carefully 
used according to the required application. In the case of 
DFCN, this value must be at least twice lower than the 
maximum RAD, otherwise the benefits of using RAD will be 
completely lost. 

Another important factor to consider while choosing the 
resolution is the mobility scheme of the nodes, the resolution 
must be small enough to make sure that the nodes move in 
reasonable steps, otherwise, some connections that could have 
taken place in real life would not be simulated. 

III. RELATED WORK 

In the literature, most research has been dedicated to 
solving the broadcasting issues by using a multitude of 
different methods. Evolutionary multi-objective approaches 
have been proven to be effective in solving broadcasting 
problems [14], however, they suffer from time and 
performance issues [15]. Other methods focus on combinatory 
numerical models but most of them fail to adequately reduce 
the routing overhead with highly scalable networks, which is a 
main feature of MANET. Those who focused on the DFCN 
protocol did not formulate a trending mobility model for 
optimizing the decision parameters. Some of the researchers 
directly focused on detecting the selfish nodes in the network 
and avoiding them to increase the efficiency of the 
broadcasting protocols, the most notable work in this regard is 
by S. Subramaniyan et al. [16], where a Record-and-Trust-

Based Detection (RTBD) technique was simulated that can 
efficiently detect selfish nodes in MANET. The main focus of 
this work was to accelerate the detection of misbehaving 
selfish nodes. The proposed method managed to diminish the 
overhead, latency and overhead ratio which improved the 
broadcasting performance of the MANET. However, the 
authors did not demonstrate how the acquired security could be 
transferred to the neighboring nodes in the network so that they 
could avoid being compromised by the selfish nodes detected 
by RTBD, meaning that the technique is not scalable on larger 
networks and the performance will be degraded. Another key 
focus in the literature is intelligent rebroadcasting techniques 
that reduce the overhead by estimating the usefulness of 
rebroadcasts and the probability of causing a collision. S. S. 
Basurra et al. [17] discussed a Zone based Routing with 
Parallel Collision Guided Broadcasting Protocol (ZCG) to 
reduce redundant broadcasting and to accelerate the path 
discovery process. The authors compared ZCG with two other 
techniques, Dynamic Source Routing (DSR) and Adhoc 
Ondemand Distance Vector Routing (AODV). It was 
concluded that ZCG can speed up the routing process in 
MANET due to its on-demand parallel collision guided 
broadcasting. However, the proposed method lacked 
distribution fairness among the nodes and did not protect zone 
members from selfish behavior attributed to the Zone Leader. 
Another interesting finding in the literature is the clustering of 
MANETs as a mean to reduce the complexity of the routing 
table. M. Ahmad et al. [18] provided a comprehensive survey 
about the different clustering algorithms that address this issue. 
It concluded that the effectiveness of the clustering algorithms 
depends on a set of specific parameters, which the nodes are 
remaining power, the relative mobility, the overhead data, the 
trust value, and the node reputation. 

IV. PROBLEM STATEMENT 

In order to optimize the DFCN protocol, multiple decision 
parameters need to be considered. These parameters dictate 
how DFCN operates and they characterize the search space. 
Since the optimization heavily relies on each specific scenario, 
an individual optimization trend is expected for each scenario. 

The reachability time tr is the output benchmark that is used 
to measure the optimization result. It is the amount of time 
required for the network to reach a certain number of pre-
defined nodes. The goal of this research is to optimize the 
DFCN parameters to decrease the reachability time of the 
nodes inside the MANET. The problem is formulated as 
follows: 

𝑚: 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑀𝑎𝑑ℎ𝑜𝑐 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟, 𝑡𝑟: 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑖𝑚𝑒. 

𝑡𝑟  =  𝑚(𝐿𝑜𝑤𝑒𝑟𝑅𝐴𝐷,
𝑈𝑝𝑝𝑒𝑟𝑅𝐴𝐷, 𝑃𝑟𝑜𝐷, 𝑀𝑖𝑛𝐺𝑎𝑖𝑛, 𝑆𝑎𝑓𝑒𝐷𝑒𝑛𝑠𝑖𝑡𝑦)          (1) 

𝑓(𝐿𝑜𝑤𝑒𝑟𝑅𝐴𝐷, 𝑈𝑝𝑝𝑒𝑟𝑅𝐴𝐷, 𝑃𝑟𝑜𝐷, 𝑀𝑖𝑛𝐺𝑎𝑖𝑛, 𝑆𝑎𝑓𝑒𝐷𝑒𝑛𝑠𝑖𝑡𝑦)  
=  𝑚𝑖𝑛 (𝑡𝑟) 

The function 𝑓 corresponds to the proposed system where 
the target is to minimize the reachability time tr for each 
instance of the simulator m. Table I below shows the DFCN 
parameters along with their respective threshold and domain 
values. 
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TABLE. I. DFCN PARAMETER DESCRIPTION 

Parameter 

Name 
Domain Description Unit 

Threshold 

Value 

LowerRAD Real (ℝ) 

Minimum time 
required to 

rebroadcast. 

Second [0, UpperRAD] 

UpperRAD Real (ℝ) 

Maximum time 
required to 

rebroadcast 

Second 
[LowerRAD, 

10] 

ProD 
Integer 

(ℤ) 

Maximum 

Density for which 
it is still required 

to use proactive 

behavior (reacting 
to new neighbors) 

Device [0, 100] 

MinGain Real (ℝ) 
Minimum gain for 

rebroadcasting. 
- [0, 1] 

SafeDensity 
Integer 

(ℤ) 

Maximum 
density, below 

which the 
protocol will 

always broadcast. 

Device [0, 100] 

As already stated, this will be done on three different 
mobility model scenarios, namely, Highway, Mall and Human 
mobility. The description for these scenarios is shown next. 

A. Highway Scenario 

The main feature of the highway mobility model is that the 
nodes move at significantly higher speeds compared to the 
other mobility models and the nodes are lower in numbers. The 
spot density is also set to one spot per square kilometer, which 
is very sparse, and the number of spots per simulation area is 
limited to three. In this scenario, most of the generated traffic 
comes from nodes moving in opposite directions to simulate 
cars moving on different and opposing lanes of a highway. 
Table II below shows the properties of this scenario. 

B. Mall Scenario 

The mall mobility scenario is composed of separate regions 
connected by relatively narrow areas. It represents a group of 
shops interconnected using corridors. In this scenario, the 
surface area is smaller than the highway one and the velocity is 
much slower. Also, the nodes move randomly for most of the 
time with no clear targets, representing humans wandering 
around and shopping in arbitrary shops. Table III illustrates the 
different parameters for this scenario. 

C. Human Mobility Scenario 

This scenario is more distinctive than the mall one and is 
considered one of the most daunting models. In this context, 
the focus is on the human mobility scheme, where the 
movements are not random, but instead, there is a list of target 
destinations that each node mostly moves towards. These 
targets can be far away, as well as a few meters around. Also, 
the targets can dynamically change with time depending on 
human behavior. For instance, a waiter in a restaurant can be 
regularly moving back and forth between the kitchen and 
customers’ tables. 

TABLE. II. HIGHWAY MOBILITY SCENARIO PARAMETERS 

Parameter Value Units 

Surface Area 1 x 1 km2 

Nodes Density 80 nodes / km2 

Velocity [20 40] m.s-1 

TABLE. III. MALL MOBILITY SCENARIO PARAMETERS 

Parameter Value Units 

Surface Area 0.3 x 0.3 km2 

Nodes Density 6,500 nodes / km2 

Velocity [0.3 1] m.s-1 

TABLE. IV. HUMAN MOBILITY SCENARIO PARAMETERS 

Parameter Value Units 

Surface Area 0.05 x 0.05 km2 

Nodes Density 80,500 nodes / km2 

Velocity [0.3 1.5] m/s-1 

The human mobility scheme is defined as a round 
simulation area, where fixed places that act as target spots are 
scattered and where the distance between two places cannot be 
less than 10 meters. Table IV shows the parameters for the 
human mobility model. 

V. PROPOSED SYSTEM 

The proposed technique consists of nested GA with fuzzy-
based fitness. The aim is to optimize the DFCN decision 
parameters according to the reachability time and to find 
certain trends for each one of the different scenarios. The 
benchmark used is the reachability time for 10% of the nodes, 
which is the time required so that 10% of the nodes in the 
network successfully deliver their messages. The outer GA 
contains the DFCN parameters and the to-be-calculated output 
from the simulator. The inner GA evolves a set of rules for the 
fuzzy system, where each chromosome represents a complete 
fuzzy set and the inference output represents the inner fitness. 
The final inner fitness value that is calculated after the 
convergence has completed sets the fitness value of the outer 
GA. The proposed system is developed using C# language on 
Microsoft Visual Studio 2017 under 64-bit Windows 10 with 
8GB of RAM and an Intel Core i5-6500 CPU. Because the 
proposed system is built using C# and the Madhoc simulator 
operates fully in Java, a mechanism that interfaces them was 
required. To be able to accomplish this, each time the simulator 
is required to calculate the reachability time, it is executed by 
the developed application as a command line program running 
inside a virtual sandbox process, where all the standard inputs 
and outputs are redirected to the application. Fig. 1 shows an 
overview of the system. 

Fig. 2 shows the pseudo-code of the proposed system. 
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Fig. 1. Proposed System Illustration. 
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FUNCTION RunInnerGA(innerGenerationsCount, oChromosome) 

      i ← 0; 

      Pi ← InitializeInnerPopulation(innerPopulationSize, keyMin, keyMax ); 

      WHILE ( i < innerGenerationsCount -1 ) 

            FL ← BuildFuzzySystem_VariableSets( oChromosome ); 

            Pi+1 ← NULL; 

            j ← 0; 

            WHILE ( j < innerPopulationSize) 

               FL ← InitializeFuzzySystemLinguistics( Pi[ j ] );  

               Fitness( Pi[ j ] ) ← FuzzySystem_InferenceResult( ); 

               j ← j + 1; 

            END WHILE 

            j ← 0; 

            WHILE ( j < innerPopulationSize / 2 - 1) 

                  parents = RouletteSelect( Pi ); 

                  offspring[0,1] = Crossover(parents, innerGACrossoverProbability); 

                  Pi+1 ← Pi+1 + offspring[0,1 ]; 

            END WHILE 

            j ← 0; 

            WHILE ( j < innerPopulationSize) 

                  Pi[ j ] = Mutate( Pi[j ], innerGAMutationProbability); 

                  j ← j + 1;  

            END WHILE 

            Pi+1 ← Pi+1 + GetFittest( Pi ); 

            i ← i + 1; 

      END WHILE 

      RETURN GetHighestFitnessValue( Pi ); 

END FUNCTION  

FUNCTION RunOuterGA(outerGenerationsCount): MAIN 

      i ← 0; 

      Pi ← InitializePopulation(outerGenerationsCount, thresholdsValues[ ]); 

      WHILE ( i < outerGenerationsCount -1 ) 

            Pi+1 ← NULL; 

            j ← 0;   

            WHILE( j < outerPopulationSize) 

                  Output( Pi[ j ]) ← GetMadhocOutput( Pi[ j ]); 

                  Fitness( Pi[ j ] ) ← RunInnerGA ( Pi[ j ] ); 

                  j ← j+1; 

            END WHILE 

            j ← 0; 

            WHILE( j < OP_ outerPopulationSize  / 2 - 1) 

                  parents = RouletteSelect(Pi) ;  

                  offspring[0,1] = Crossover(parents, outerGACrossoverProbability); 

                  Pi+1 ← Pi+1 + offspring[0,1]; 

            END WHILE 

            j ← 0; 

            WHILE ( j < outerPopulationSize) 

                  Pi[ j ] = Mutate( Pi[ j ], outerGAMutationProbability); 

                  j ← j + 1;  

            END WHILE 

            Pi+1 ← Pi+1 + GetFittest( Pi ); 

            i ← i + 1; 

            ExtractParametersAndOutput( Pi );  

      END WHILE 

END FUNCTION 

Fig. 2. Pseudo-Code for the Proposed System. 

The RunOuterGA function is the entry point of the 
program. The InitializeInnerPopulation function creates the 

initial population with random fuzzy logic keys that correspond 
to the linguistic strings. The oChromosome variable is the 
outer chromosome passed from the outer GA to the inner one, 
per generation. The keyMin and keyMax variables represent 
the range for the allowed number of keys per chromosome. At 
line 5, the fuzzy logic system is initialized and the fuzzy sets 
are created using the oChromsome genes, then at line 9, the 
linguistics are generated using the inner chromosome Pi[j], and 
finally at line 10, the fitness is calculated by getting the 
inference result for the developed fuzzy logic system. 

The ExtractParametersAndOutput function is called per 
each outer GA generation to extract the current values of the 
decision parameters and the output from the fittest 
chromosome. 

A. The Fuzzy Logic System 

The fuzzy system is used to calculate the fitness for the 
inner GA. Each chromosome from the inner GA will act as 
complete fuzzy set. Each DFCN parameter will act as a 
linguistic variable with LOW, MED and HIGH as values. All 
of the variables have a triangular membership function that is 
equally divided over the maximum threshold of the respective 
parameters it represents. The rules for the fuzzy set are 
generated and optimized using the inner GA, which will be 
highlighted later. 

In order to accomplish this, the inner chromosome is 
decoded from a numerical form to equivalent linguistic strings, 
according to Table V. To get the output values, the inference 
system uses a centroid defuzzifier with an interval of 1000. The 
interval represents the number of segments that the linguistic 
universe will be split into to perform the numerical 
approximation of the area center. 

B. Outer Genetic Algorithm 

The chromosome structure for the outer GA contains a 
hybrid of floating-point and integer values that correspond to 
the DFCN parameters, and also contain the output parameter 
which corresponds to the reachability time that will be 
calculated using the Madhoc simulator. 

The chromosome size for the outer GA has a fixed length 
of six genes. Fig. 3 illustrates the chromosome structure. The 
crossover is a standard single-point operator that takes into 
consideration the gene placement to make sure the swapped 
parameters are still compatible and are within the specified 
thresholds. The mutation is performed through a non-uniform 
operator, which can be used to limit the lower and upper 
boundaries for the genes - which is crucial to avoid out-of-
boundaries parameters - and also because it prevents the 
population from stagnating during the early evolution stages. 
The outer population size is fixed at 100 chromosomes and 
runs for a maximum of 300 generations. The crossover and 
mutation probabilities are fixed at 30% and 10%, respectively. 

 

Fig. 3. Outer Chromosome Structure (Size=6). 
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TABLE. V. NUMERICAL-TO-LINGUISTIC STRING CONVERSION TABLE 

Value Equivalent Linguistic 

1 LOW 

2 MED 

3 HIGH 

-1 NOT LOW 

-2 NOT MED 

-3 NOT HIGH 

0 NOT APPLICABLE 

The selection is done through a traditional Roulette-Wheel 
operator. It is worth noting that the last gene (reachability time) 
is excluded from the evolution process and is stored inside the 
chromosome and passed later to the fuzzy system. All of the 
other aforementioned decision parameters are randomly 
generated within the threshold. 

C. Inner Genetic Algorithm 

The inner GA uses the same operators as the outer one. 
However, the chromosome structure is different. It consists of a 
variable number of genes ranging from 3 to 15. Each gene 
represents a key that encodes a linguistic string into numerical 
values as shown previously. This had to be done in order to be 
able to evolve the rules using the GA. Each key has a fixed 
length of 6 which corresponds to the number of input 
parameters and the output parameter. 

 The population size for the inner GA is set to 50 and the 
maximum number of generations is 100. Fig. 4 illustrates a 
sample inner GA with a population size of 7 and random 
chromosome sizes, denoted with Sn, where n is the 
chromosome number inside the population. It also shows an 
example of how the key is decoded into a linguistic string. The 
inner GA makes a complete run of 50 generations for each 
outer chromosome. The target is to diversify the linguistics of 
the fuzzy logic to reach the best possible output. 

The defuzzified output value represents the fitness of the 
outer chromosome. After doing this for all the outer GA 
chromosomes, the best one is chosen and the outer GA transits 
into the next generation. 

 

Fig. 4. Inner Genetic Algorithm Illustration. 

VI.  RESULTS AND DISCUSSION 

The experiments are run five times and the results are 
averaged. The results show the convergence of decision 
parameters and the output (solid black line). The logarithmic 

trendline (red dotted line) is also calculated to provide a 
mathematical model for the decision parameters. Fig. 5 shows 
the results for the highway mobility environment. Table VI 
shows the output trendline for each decision parameter and the 
equivalent logarithmic regression expressions. 

 

 

 

 

Fig. 5. Convergence for the High Way Mobility Model. 

TABLE. VI. TRENDLINE PARAMETERS FOR HIGHWAY SCENARIO 

Parameter Trendline Expression 

LowerRAD ↓ −0.117 ∗ 𝑙𝑛(𝐺)  +  4.2076 

UpperRAD ↓ −0.105 ∗ 𝑙𝑛(𝐺)  +  6.6723 

ProD ↑ 3.3079 ∗ 𝑙𝑛(𝐺)  +  47.885 

MinGain ↓ −0.014 ∗ 𝑙𝑛(𝐺)  +  0.5087 

SafeDensity ↓ −1.818 ∗ 𝑙𝑛(𝐺)  +  43.76 
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Fig. 6 shows the results for the Mall mobility scenario and 
Table VII shows the trendline for the decision parameters. The 
results for the human mobility model are shown in Fig. 7 and 
the respective trendline parameters are shown in Table VIII. 

 

 

 

 

Fig. 6. Convergence for the Mall Mobility Model. 

TABLE. VII. TRENDLINE PARAMETERS FOR MALL SCENARIO 

Parameter Trendline Expression 

LowerRAD ↓ −0.463 ∗ 𝑙𝑛(𝑥)  +  5.7409 

UpperRAD ↓ −0.106 ∗ 𝑙𝑛(𝑥)  +  7.3855 

ProD ↑ 0.9608 ∗ 𝑙𝑛(𝑥)  +  82.223 

MinGain ↑ 0.0502 ∗ 𝑙𝑛(𝑥)  +  0.445 

SafeDensity ↑ 2.0984 ∗ 𝑙𝑛(𝑥)  +  60.488 

In the highway mobility scenario, the time to reach the 
destination decreased from 26.44 to 23.41 seconds, which 
amounts to 11.45%. Given that the number of nodes in this 
network is 80, the average time for a node to deliver a message 
decreased from 3.3 to 2.92 seconds. 

 

 

 

 

Fig. 7. Convergence for the Human Mobility Model. 

TABLE. VIII. TRENDLINE PARAMETERS FOR HUMAN MOBILITY SCENARIO 

Parameter Trendline Expression 

LowerRAD ↓ −0.088 ∗ 𝑙𝑛(𝑥)  +  5.2098 

UpperRAD ↑ 0.3832 ∗ 𝑙𝑛(𝑥)  +  6.526 

ProD ↓ −0.757 ∗ 𝑙𝑛(𝑥)  +  22.479 

MinGain ↓ −0.012 ∗ 𝑙𝑛(𝑥)  +  0.5084 

SafeDensity ↓ −7.621 ∗ 𝑙𝑛(𝑥)  +  66.544 
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For the mall mobility scenario, the time to reach the nodes 
decreased from 4.98 seconds to 3.57 seconds which amounts to 
28.3%, which brings down the average required time to deliver 
a message from 7.6ms to 5.49ms. 

As for the human mobility scenario, the time to deliver the 
messages to their respective destinations decreased from 4.07 
to 3.78 seconds, which amounts to 7.12%. The average time to 
deliver a message decreased from 0.5ms to 0.46ms. 

By inspecting all the previous results, it appears that the 
mall mobility model benefited the most from the optimization 
of the DFCN decision parameters and the human mobility 
model benefited the least. While these two models have very 
close features, the major difference between them, as stated 
previously, is the randomness of the movements. The human 
mobility model is governed by human intentions of moving 
between a dynamic list of targets while the mall one is 
governed by random motion of shoppers moving between 
random shops. Also, by inspecting the highway scenario, it 
seems that the lack of enough nodes has significantly raised the 
average delivery time six times (6x) the delivery time in other 
scenarios. 

To demonstrate the consistency of the results, a 5% 
confidence interval for the final reachability time is calculated 
and is shown in Table IX. 

TABLE. IX. 5% CONFIDENCE INTERVAL FOR THE FINAL REACHABILITY 

TIME 

Mobility Model 5% Confidence Interval (seconds) 

Highway 23.4 ± 0.75 

Mall 3.57 ± 0.34 

Human 3.78 ± 0.02 

VII. CONCLUSION AND FUTURE WORK 

The proposed system managed to decrease the message 
delivery time for the three real-life scenarios (the highway, the 
mall and the human mobility models) by optimizing the 
decision parameters for the DFCN protocol. The mall mobility 
model benefited the most from the optimization of the DFCN 
parameters, which is mainly attributed to the randomness of the 
mobility, since the human mobility model also shares very 
close parameters but only differs in the movement intention. In 
the human mobility model, the mobility is governed by the 
intentions of the humans to reach a certain dynamic list of 
destinations and, therefore, the randomness significantly 
decreases. Also, the highway mobility model yielded the 
highest average message delivery time, which is attributed to 
the lack of nodes and the very high mobility speed, and since 
the DFCN protocol relies on 1-hop neighbors to deliver the 
messages to their destinations, this scenario severely affects it. 

In the future, a mathematical model based on the found 
trendlines can be established and tested. This will help to 
achieve the results faster, instead of relying solely on 
metaheuristic techniques, which require a significant amount of 
time to converge to the optimal solution. 

Also, Genetic Programming (GP) can be experimented 
with, to evolve programs and expressions related to each 
scenario. This way, the resulting programs can be used as a 

rigid optimization model, without the need to repeat the 
evolution process each time. 
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