
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

222 | P a g e

www.ijacsa.thesai.org

A Nested Genetic Algorithm for Mobile Ad-Hoc

Network Optimization with Fuzzy Fitness

NourElDin S. Eissa
1
, Ahmed Zakaria Talha

2
, Ahmed F. Amin

3
, Amr Badr

4

Department of Computer Engineering

Arab Academy for Science, Technology and Maritime Transport (AASTMT), Cairo, Egypt
1, 2, 3

Department of Computer Science, Cairo University, Cairo, Egypt
4

Abstract—One of the major culprits that faces Mobile Ad-hoc

networks (MANET) is broadcasting, which constitutes a very

important part of the infrastructure of such networks. This

paper presents a nested genetic algorithm (GA) technique with

fuzzy logic-based fitness that optimizes the broadcasting

capability of such networks. While normally the optimization of

broadcasting is considered as a multi-objective problem with

various output parameters that require tuning, the proposed

system taps another approach that focuses on a single output

parameter, which is the network reachability time. This is the

time required for the data to reach a certain percentage of

connected clients in the network. The time is optimized by tuning

different decision parameters of the Delayed Flooding with

Cumulative Neighborhood (DFCN) broadcasting protocol. The

proposed system is developed and simulated with the help of the

Madhoc network simulator and is applied on different realistic

real-life scenarios. The results reveal that the reachability time

responds well to the suggested system and shows that each

scenario responds differently to the tuning of decision

parameters.

Keywords—Broadcasting; DFCN; fuzzy logic; genetic

algorithms; Madhoc simulator; MANET

I. INTRODUCTION

Mobile Ad-hoc Networks (MANETs) are dynamic types of
network consisting of an uncontrolled setup of end-point
communication devices known as terminals, which are able of
arbitrarily connecting with each other without the need of a
base station or a fixed infrastructure [1]. The types of devices
that are usually found in MANETs are laptops and
smartphones equipped with limited range wireless technologies
such as Bluetooth and WiFi (802.11). This, in turn, limits the
communication capability of such devices, but allows them to
move while communicating.

This makes the MANET very unpredictable as it needs to
continuously self-reconfigure itself to accommodate these
dynamic changes [2]. This is considered a major drawback for
the efficiency and effectiveness of the MANETs and, by failing
to readjust, link breakage will start to take place and some of
the routes can become undiscoverable [3]. For the devices to be
able to reach a certain destination, they start sending route
discovery requests to their neighboring nodes [4] which, in
turn, do the same thing. This results in the network being
overwhelmed with an extreme amount of broadcast traffic
known as a broadcasting storm [5].

Since it is clear that broadcasting plays a very critical role
in network discovery and assists the nodes in MANETs in
discovering their neighborhood [6], optimizing it constitutes a
major step as it will save both energy and time, especially since
most of the devices in the network have limited energy as they
are battery powered.

Due to the previously mentioned limitations, a key threat
known as node ‘selfish behavior’ arises in the network, in
which the nodes purposely tend to drop the messages that do
not target it, in an effort to save its energy [7] [8]. In other
words, the nodes are not encouraged to contribute to the
forwarding process. This kind of self-regarding behavior
negatively impacts the network because, as already stated,
there is no solid infrastructure in MANET and all the nodes
rely on the cooperation of other nodes in the network to deliver
and forward their messages. Delayed Flooding with
Cumulative Neighbors (DFCN) is a broadcasting protocol that
can handle this behavior and, at the same time, can reduce the
number of packets that need forwarding with minimal punitive
actions on the final coverage [9]. This is achieved by dropping
the forwarded message when enough of the neighborhood
devices have already got it. Also, once a node decides to
forward a certain packet, it waits for a specified amount of time
before executing this action, which is then canceled if another
node in the network actually forwards the message [10].

The work proposed in this paper tackles a specific type of
MANET, known as Metropolitan Mobile Ad-Hoc Networks,
which is characterized by a disparate density that is
continuously changing, whereas highly dense areas can swing
from being active to inactive over short periods of time.
Because creating a real testbed for this type of network is very
costly and challenging, and might also lack the reproducibility
factor, it was decided that the best approach to handle it is by
means of a simulation framework. The Madhoc [11] simulator
has been selected to achieve this. An evolutionary algorithm-
based technique that combines nested GA with fuzzy-based
fitness is proposed and implemented. The technique integrates
the Madhoc simulator in its core and considers DFCN
optimization over multiple real life mobility scenarios.

The rest of this paper is organized as follows. Section II
introduces the Madhoc simulator and gives an insight about its
capabilities and the different modes of operations. In
Section III, a review of the related work concerning the
optimization of broadcasting techniques in MANETs is
presented. Section IV highlights the main problems that this
research aims to solve. Section V demonstrates the algorithms

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

223 | P a g e

www.ijacsa.thesai.org

and techniques used to solve the problem. Section VI shows
the obtained results and discusses them. Finally, Section VII
concludes this work and proposes the potential future work.

II. MADHOC SIMULATOR

Madhoc is a metropolitan MANET simulator completely
written in Java and available to use publicly [12] on the
author’s website [13]. The simulator provides the ability to
simulate MANET using different parameters and real-life
constraints such as working area size, mobility speed, wall
thickness, etc. It also supports many different wireless
technologies (e.g. WiFi, Bluetooth, GSM, etc.). Most
importantly, it implements the full DFCN broadcasting
protocol with all the required decision parameters to optimize
it. Madhoc can be executed as a standalone application or as an
Application Programming Interface (API).

To be able to collect the required statistics and results, a
Madhoc monitor class is used. A monitor is not a part of the
physical network and does not have an instance in real
networks, and is regarded to as an abstraction entity that only
exists at simulation level. It mainly aims at maintaining a
global perspective on all nodes and for carrying out the
required operations such as node deployment and initialization.
It mainly serves as an observer of the Ad-hoc decentralized
process. Another major attribute of the Madhoc simulator is
that it does not use an event-driven simulation architecture, but
instead, the simulator’s kernel iterates upon a discrete time
domain, where the distance between two intervals is known as
the resolution.

This parameter is defined by the user and should be fixed
throughout all the related applications to guarantee comparable
and consistent results. The higher this value is, the less accurate
the simulation will become. This value should be carefully
used according to the required application. In the case of
DFCN, this value must be at least twice lower than the
maximum RAD, otherwise the benefits of using RAD will be
completely lost.

Another important factor to consider while choosing the
resolution is the mobility scheme of the nodes, the resolution
must be small enough to make sure that the nodes move in
reasonable steps, otherwise, some connections that could have
taken place in real life would not be simulated.

III. RELATED WORK

In the literature, most research has been dedicated to
solving the broadcasting issues by using a multitude of
different methods. Evolutionary multi-objective approaches
have been proven to be effective in solving broadcasting
problems [14], however, they suffer from time and
performance issues [15]. Other methods focus on combinatory
numerical models but most of them fail to adequately reduce
the routing overhead with highly scalable networks, which is a
main feature of MANET. Those who focused on the DFCN
protocol did not formulate a trending mobility model for
optimizing the decision parameters. Some of the researchers
directly focused on detecting the selfish nodes in the network
and avoiding them to increase the efficiency of the
broadcasting protocols, the most notable work in this regard is
by S. Subramaniyan et al. [16], where a Record-and-Trust-

Based Detection (RTBD) technique was simulated that can
efficiently detect selfish nodes in MANET. The main focus of
this work was to accelerate the detection of misbehaving
selfish nodes. The proposed method managed to diminish the
overhead, latency and overhead ratio which improved the
broadcasting performance of the MANET. However, the
authors did not demonstrate how the acquired security could be
transferred to the neighboring nodes in the network so that they
could avoid being compromised by the selfish nodes detected
by RTBD, meaning that the technique is not scalable on larger
networks and the performance will be degraded. Another key
focus in the literature is intelligent rebroadcasting techniques
that reduce the overhead by estimating the usefulness of
rebroadcasts and the probability of causing a collision. S. S.
Basurra et al. [17] discussed a Zone based Routing with
Parallel Collision Guided Broadcasting Protocol (ZCG) to
reduce redundant broadcasting and to accelerate the path
discovery process. The authors compared ZCG with two other
techniques, Dynamic Source Routing (DSR) and Adhoc
Ondemand Distance Vector Routing (AODV). It was
concluded that ZCG can speed up the routing process in
MANET due to its on-demand parallel collision guided
broadcasting. However, the proposed method lacked
distribution fairness among the nodes and did not protect zone
members from selfish behavior attributed to the Zone Leader.
Another interesting finding in the literature is the clustering of
MANETs as a mean to reduce the complexity of the routing
table. M. Ahmad et al. [18] provided a comprehensive survey
about the different clustering algorithms that address this issue.
It concluded that the effectiveness of the clustering algorithms
depends on a set of specific parameters, which the nodes are
remaining power, the relative mobility, the overhead data, the
trust value, and the node reputation.

IV. PROBLEM STATEMENT

In order to optimize the DFCN protocol, multiple decision
parameters need to be considered. These parameters dictate
how DFCN operates and they characterize the search space.
Since the optimization heavily relies on each specific scenario,
an individual optimization trend is expected for each scenario.

The reachability time tr is the output benchmark that is used
to measure the optimization result. It is the amount of time
required for the network to reach a certain number of pre-
defined nodes. The goal of this research is to optimize the
DFCN parameters to decrease the reachability time of the
nodes inside the MANET. The problem is formulated as
follows:

𝑚: 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑀𝑎𝑑ℎ𝑜𝑐 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟, 𝑡𝑟: 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑖𝑚𝑒.

𝑡𝑟 = 𝑚(𝐿𝑜𝑤𝑒𝑟𝑅𝐴𝐷,
𝑈𝑝𝑝𝑒𝑟𝑅𝐴𝐷, 𝑃𝑟𝑜𝐷, 𝑀𝑖𝑛𝐺𝑎𝑖𝑛, 𝑆𝑎𝑓𝑒𝐷𝑒𝑛𝑠𝑖𝑡𝑦) (1)

𝑓(𝐿𝑜𝑤𝑒𝑟𝑅𝐴𝐷, 𝑈𝑝𝑝𝑒𝑟𝑅𝐴𝐷, 𝑃𝑟𝑜𝐷, 𝑀𝑖𝑛𝐺𝑎𝑖𝑛, 𝑆𝑎𝑓𝑒𝐷𝑒𝑛𝑠𝑖𝑡𝑦)
= 𝑚𝑖𝑛 (𝑡𝑟)

The function 𝑓 corresponds to the proposed system where
the target is to minimize the reachability time tr for each
instance of the simulator m. Table I below shows the DFCN
parameters along with their respective threshold and domain
values.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

224 | P a g e

www.ijacsa.thesai.org

TABLE. I. DFCN PARAMETER DESCRIPTION

Parameter

Name
Domain Description Unit

Threshold

Value

LowerRAD Real (ℝ)

Minimum time
required to

rebroadcast.

Second [0, UpperRAD]

UpperRAD Real (ℝ)

Maximum time
required to

rebroadcast

Second
[LowerRAD,

10]

ProD
Integer

(ℤ)

Maximum

Density for which
it is still required

to use proactive

behavior (reacting
to new neighbors)

Device [0, 100]

MinGain Real (ℝ)
Minimum gain for

rebroadcasting.
- [0, 1]

SafeDensity
Integer

(ℤ)

Maximum
density, below

which the
protocol will

always broadcast.

Device [0, 100]

As already stated, this will be done on three different
mobility model scenarios, namely, Highway, Mall and Human
mobility. The description for these scenarios is shown next.

A. Highway Scenario

The main feature of the highway mobility model is that the
nodes move at significantly higher speeds compared to the
other mobility models and the nodes are lower in numbers. The
spot density is also set to one spot per square kilometer, which
is very sparse, and the number of spots per simulation area is
limited to three. In this scenario, most of the generated traffic
comes from nodes moving in opposite directions to simulate
cars moving on different and opposing lanes of a highway.
Table II below shows the properties of this scenario.

B. Mall Scenario

The mall mobility scenario is composed of separate regions
connected by relatively narrow areas. It represents a group of
shops interconnected using corridors. In this scenario, the
surface area is smaller than the highway one and the velocity is
much slower. Also, the nodes move randomly for most of the
time with no clear targets, representing humans wandering
around and shopping in arbitrary shops. Table III illustrates the
different parameters for this scenario.

C. Human Mobility Scenario

This scenario is more distinctive than the mall one and is
considered one of the most daunting models. In this context,
the focus is on the human mobility scheme, where the
movements are not random, but instead, there is a list of target
destinations that each node mostly moves towards. These
targets can be far away, as well as a few meters around. Also,
the targets can dynamically change with time depending on
human behavior. For instance, a waiter in a restaurant can be
regularly moving back and forth between the kitchen and
customers’ tables.

TABLE. II. HIGHWAY MOBILITY SCENARIO PARAMETERS

Parameter Value Units

Surface Area 1 x 1 km2

Nodes Density 80 nodes / km2

Velocity [20 40] m.s-1

TABLE. III. MALL MOBILITY SCENARIO PARAMETERS

Parameter Value Units

Surface Area 0.3 x 0.3 km2

Nodes Density 6,500 nodes / km2

Velocity [0.3 1] m.s-1

TABLE. IV. HUMAN MOBILITY SCENARIO PARAMETERS

Parameter Value Units

Surface Area 0.05 x 0.05 km2

Nodes Density 80,500 nodes / km2

Velocity [0.3 1.5] m/s-1

The human mobility scheme is defined as a round
simulation area, where fixed places that act as target spots are
scattered and where the distance between two places cannot be
less than 10 meters. Table IV shows the parameters for the
human mobility model.

V. PROPOSED SYSTEM

The proposed technique consists of nested GA with fuzzy-
based fitness. The aim is to optimize the DFCN decision
parameters according to the reachability time and to find
certain trends for each one of the different scenarios. The
benchmark used is the reachability time for 10% of the nodes,
which is the time required so that 10% of the nodes in the
network successfully deliver their messages. The outer GA
contains the DFCN parameters and the to-be-calculated output
from the simulator. The inner GA evolves a set of rules for the
fuzzy system, where each chromosome represents a complete
fuzzy set and the inference output represents the inner fitness.
The final inner fitness value that is calculated after the
convergence has completed sets the fitness value of the outer
GA. The proposed system is developed using C# language on
Microsoft Visual Studio 2017 under 64-bit Windows 10 with
8GB of RAM and an Intel Core i5-6500 CPU. Because the
proposed system is built using C# and the Madhoc simulator
operates fully in Java, a mechanism that interfaces them was
required. To be able to accomplish this, each time the simulator
is required to calculate the reachability time, it is executed by
the developed application as a command line program running
inside a virtual sandbox process, where all the standard inputs
and outputs are redirected to the application. Fig. 1 shows an
overview of the system.

Fig. 2 shows the pseudo-code of the proposed system.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

225 | P a g e

www.ijacsa.thesai.org

Fig. 1. Proposed System Illustration.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

FUNCTION RunInnerGA(innerGenerationsCount, oChromosome)

 i ← 0;

 Pi ← InitializeInnerPopulation(innerPopulationSize, keyMin, keyMax);

 WHILE (i < innerGenerationsCount -1)

 FL ← BuildFuzzySystem_VariableSets(oChromosome);

 Pi+1 ← NULL;

 j ← 0;

 WHILE (j < innerPopulationSize)

 FL ← InitializeFuzzySystemLinguistics(Pi[j]);

 Fitness(Pi[j]) ← FuzzySystem_InferenceResult();

 j ← j + 1;

 END WHILE

 j ← 0;

 WHILE (j < innerPopulationSize / 2 - 1)

 parents = RouletteSelect(Pi);

 offspring[0,1] = Crossover(parents, innerGACrossoverProbability);

 Pi+1 ← Pi+1 + offspring[0,1];

 END WHILE

 j ← 0;

 WHILE (j < innerPopulationSize)

 Pi[j] = Mutate(Pi[j], innerGAMutationProbability);

 j ← j + 1;

 END WHILE

 Pi+1 ← Pi+1 + GetFittest(Pi);

 i ← i + 1;

 END WHILE

 RETURN GetHighestFitnessValue(Pi);

END FUNCTION

FUNCTION RunOuterGA(outerGenerationsCount): MAIN

 i ← 0;

 Pi ← InitializePopulation(outerGenerationsCount, thresholdsValues[]);

 WHILE (i < outerGenerationsCount -1)

 Pi+1 ← NULL;

 j ← 0;

 WHILE(j < outerPopulationSize)

 Output(Pi[j]) ← GetMadhocOutput(Pi[j]);

 Fitness(Pi[j]) ← RunInnerGA (Pi[j]);

 j ← j+1;

 END WHILE

 j ← 0;

 WHILE(j < OP_ outerPopulationSize / 2 - 1)

 parents = RouletteSelect(Pi) ;

 offspring[0,1] = Crossover(parents, outerGACrossoverProbability);

 Pi+1 ← Pi+1 + offspring[0,1];

 END WHILE

 j ← 0;

 WHILE (j < outerPopulationSize)

 Pi[j] = Mutate(Pi[j], outerGAMutationProbability);

 j ← j + 1;

 END WHILE

 Pi+1 ← Pi+1 + GetFittest(Pi);

 i ← i + 1;

 ExtractParametersAndOutput(Pi);

 END WHILE

END FUNCTION

Fig. 2. Pseudo-Code for the Proposed System.

The RunOuterGA function is the entry point of the
program. The InitializeInnerPopulation function creates the

initial population with random fuzzy logic keys that correspond
to the linguistic strings. The oChromosome variable is the
outer chromosome passed from the outer GA to the inner one,
per generation. The keyMin and keyMax variables represent
the range for the allowed number of keys per chromosome. At
line 5, the fuzzy logic system is initialized and the fuzzy sets
are created using the oChromsome genes, then at line 9, the
linguistics are generated using the inner chromosome Pi[j], and
finally at line 10, the fitness is calculated by getting the
inference result for the developed fuzzy logic system.

The ExtractParametersAndOutput function is called per
each outer GA generation to extract the current values of the
decision parameters and the output from the fittest
chromosome.

A. The Fuzzy Logic System

The fuzzy system is used to calculate the fitness for the
inner GA. Each chromosome from the inner GA will act as
complete fuzzy set. Each DFCN parameter will act as a
linguistic variable with LOW, MED and HIGH as values. All
of the variables have a triangular membership function that is
equally divided over the maximum threshold of the respective
parameters it represents. The rules for the fuzzy set are
generated and optimized using the inner GA, which will be
highlighted later.

In order to accomplish this, the inner chromosome is
decoded from a numerical form to equivalent linguistic strings,
according to Table V. To get the output values, the inference
system uses a centroid defuzzifier with an interval of 1000. The
interval represents the number of segments that the linguistic
universe will be split into to perform the numerical
approximation of the area center.

B. Outer Genetic Algorithm

The chromosome structure for the outer GA contains a
hybrid of floating-point and integer values that correspond to
the DFCN parameters, and also contain the output parameter
which corresponds to the reachability time that will be
calculated using the Madhoc simulator.

The chromosome size for the outer GA has a fixed length
of six genes. Fig. 3 illustrates the chromosome structure. The
crossover is a standard single-point operator that takes into
consideration the gene placement to make sure the swapped
parameters are still compatible and are within the specified
thresholds. The mutation is performed through a non-uniform
operator, which can be used to limit the lower and upper
boundaries for the genes - which is crucial to avoid out-of-
boundaries parameters - and also because it prevents the
population from stagnating during the early evolution stages.
The outer population size is fixed at 100 chromosomes and
runs for a maximum of 300 generations. The crossover and
mutation probabilities are fixed at 30% and 10%, respectively.

Fig. 3. Outer Chromosome Structure (Size=6).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

226 | P a g e

www.ijacsa.thesai.org

TABLE. V. NUMERICAL-TO-LINGUISTIC STRING CONVERSION TABLE

Value Equivalent Linguistic

1 LOW

2 MED

3 HIGH

-1 NOT LOW

-2 NOT MED

-3 NOT HIGH

0 NOT APPLICABLE

The selection is done through a traditional Roulette-Wheel
operator. It is worth noting that the last gene (reachability time)
is excluded from the evolution process and is stored inside the
chromosome and passed later to the fuzzy system. All of the
other aforementioned decision parameters are randomly
generated within the threshold.

C. Inner Genetic Algorithm

The inner GA uses the same operators as the outer one.
However, the chromosome structure is different. It consists of a
variable number of genes ranging from 3 to 15. Each gene
represents a key that encodes a linguistic string into numerical
values as shown previously. This had to be done in order to be
able to evolve the rules using the GA. Each key has a fixed
length of 6 which corresponds to the number of input
parameters and the output parameter.

 The population size for the inner GA is set to 50 and the
maximum number of generations is 100. Fig. 4 illustrates a
sample inner GA with a population size of 7 and random
chromosome sizes, denoted with Sn, where n is the
chromosome number inside the population. It also shows an
example of how the key is decoded into a linguistic string. The
inner GA makes a complete run of 50 generations for each
outer chromosome. The target is to diversify the linguistics of
the fuzzy logic to reach the best possible output.

The defuzzified output value represents the fitness of the
outer chromosome. After doing this for all the outer GA
chromosomes, the best one is chosen and the outer GA transits
into the next generation.

Fig. 4. Inner Genetic Algorithm Illustration.

VI. RESULTS AND DISCUSSION

The experiments are run five times and the results are
averaged. The results show the convergence of decision
parameters and the output (solid black line). The logarithmic

trendline (red dotted line) is also calculated to provide a
mathematical model for the decision parameters. Fig. 5 shows
the results for the highway mobility environment. Table VI
shows the output trendline for each decision parameter and the
equivalent logarithmic regression expressions.

Fig. 5. Convergence for the High Way Mobility Model.

TABLE. VI. TRENDLINE PARAMETERS FOR HIGHWAY SCENARIO

Parameter Trendline Expression

LowerRAD ↓ −0.117 ∗ 𝑙𝑛(𝐺) + 4.2076

UpperRAD ↓ −0.105 ∗ 𝑙𝑛(𝐺) + 6.6723

ProD ↑ 3.3079 ∗ 𝑙𝑛(𝐺) + 47.885

MinGain ↓ −0.014 ∗ 𝑙𝑛(𝐺) + 0.5087

SafeDensity ↓ −1.818 ∗ 𝑙𝑛(𝐺) + 43.76

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

1
2

4
4

7
7

0
9

3
1

1
6

1
3

9
1

6
2

1
8

5
2

0
8

2
3

1
2

5
4

2
7

7
3

0
0

Lo
w

er
R

A
D

 (
se

co
n

d
)

Generations

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

1
2

4
4

7
7

0
9

3
1

1
6

1
3

9
1

6
2

1
8

5
2

0
8

2
3

1
2

5
4

2
7

7
3

0
0

U
p

p
er

R
A

D
 (

se
co

n
d

)

Generations

22

32

42

52

62

72

1
2

4
4

7
7

0
9

3
1

16
1

39
1

62
1

85
2

08
2

31
2

54
2

77
3

00

P
ro

D
 (

d
ev

ic
e)

Generations

0.35

0.4

0.45

0.5

0.55

0.6

0.65

1
2

4
4

7
7

0
9

3
1

16
1

39
1

62
1

85
2

08
2

31
2

54
2

77
3

00

M
in

G
ai

n

Generations

22

27

32

37

42

47

1
2

4
4

7
7

0
9

3
1

16
1

39
1

62
1

85
2

08
2

31
2

54
2

77
3

00

Sa
fe

D
en

si
ty

 (
d

ev
ic

e)

Generations

22.9

23.4

23.9

24.4

24.9

25.4

25.9

26.4

1
2

4
4

7
7

0
9

3
1

16
1

39
1

62
1

85
2

08
2

31
2

54
2

77
3

00

Ti
m

e
(s

ec
o

n
d

)

Generations

103

104

105

106

107

108

109

1
2

4
4

7
7

0
9

3
1

16
1

39
1

62
1

85
2

08
2

31
2

54
2

77
3

00

Fi
tn

es
s

Generations

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

227 | P a g e

www.ijacsa.thesai.org

Fig. 6 shows the results for the Mall mobility scenario and
Table VII shows the trendline for the decision parameters. The
results for the human mobility model are shown in Fig. 7 and
the respective trendline parameters are shown in Table VIII.

Fig. 6. Convergence for the Mall Mobility Model.

TABLE. VII. TRENDLINE PARAMETERS FOR MALL SCENARIO

Parameter Trendline Expression

LowerRAD ↓ −0.463 ∗ 𝑙𝑛(𝑥) + 5.7409

UpperRAD ↓ −0.106 ∗ 𝑙𝑛(𝑥) + 7.3855

ProD ↑ 0.9608 ∗ 𝑙𝑛(𝑥) + 82.223

MinGain ↑ 0.0502 ∗ 𝑙𝑛(𝑥) + 0.445

SafeDensity ↑ 2.0984 ∗ 𝑙𝑛(𝑥) + 60.488

In the highway mobility scenario, the time to reach the
destination decreased from 26.44 to 23.41 seconds, which
amounts to 11.45%. Given that the number of nodes in this
network is 80, the average time for a node to deliver a message
decreased from 3.3 to 2.92 seconds.

Fig. 7. Convergence for the Human Mobility Model.

TABLE. VIII. TRENDLINE PARAMETERS FOR HUMAN MOBILITY SCENARIO

Parameter Trendline Expression

LowerRAD ↓ −0.088 ∗ 𝑙𝑛(𝑥) + 5.2098

UpperRAD ↑ 0.3832 ∗ 𝑙𝑛(𝑥) + 6.526

ProD ↓ −0.757 ∗ 𝑙𝑛(𝑥) + 22.479

MinGain ↓ −0.012 ∗ 𝑙𝑛(𝑥) + 0.5084

SafeDensity ↓ −7.621 ∗ 𝑙𝑛(𝑥) + 66.544

2.2

2.7

3.2

3.7

4.2

4.7

5.2

1
2

4
4

7
7

0
9

3
1

1
6

1
3

9
1

6
2

1
8

5
2

0
8

2
3

1
2

5
4

2
7

7
3

0
0

Lo
w

er
R

A
D

 (
se

co
n

d
)

Generations

4.9

5.4

5.9

6.4

6.9

7.4

7.9

1
2

4
4

7
7

0
9

3
1

1
6

1
3

9
1

6
2

1
8

5
2

0
8

2
3

1
2

5
4

2
7

7
3

0
0

U
p

p
er

R
A

D
 (

se
co

n
d

)

Generations

70

75

80

85

90

95

1
2

4
4

7
7

0
9

3
1

16
1

39
1

62
1

85
2

08
2

31
2

54
2

77
3

00

P
ro

D
 (

d
ev

ic
e)

Generations

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

1
2

4
4

7
7

0
9

3
1

16
1

39
1

62
1

85
2

08
2

31
2

54
2

77
3

00

M
in

G
ai

n

Generations

43

48

53

58

63

68

73

78

83

1
2

4
4

7
7

0
9

3
1

16
1

39
1

62
1

85
2

08
2

31
2

54
2

77
3

00

Sa
fe

D
en

si
ty

 (
d

ev
ic

e)

Generations

3.4

3.9

4.4

4.9

5.4

5.9

6.4

1
2

4
4

7
7

0
9

3
1

16
1

39
1

62
1

85
2

08
2

31
2

54
2

77
3

00

Ti
m

e
(s

ec
o

n
d

)

Generations

202.9

252.9

302.9

352.9

402.9

452.9

502.9

1
2

4
4

7
7

0
9

3
1

16
1

39
1

62
1

85
2

08
2

31
2

54
2

77
3

00

Fi
tn

es
s

Generations

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

1
2

4
4

7
7

0
9

3
1

1
6

1
3

9
1

6
2

1
8

5
2

0
8

2
3

1
2

5
4

2
7

7
3

0
0

Lo
w

er
R

A
D

 (
se

co
n

d
)

Generations

4.9

5.4

5.9

6.4

6.9

7.4

7.9

8.4

8.9

9.4

1
2

4
4

7
7

0
9

3
1

1
6

1
3

9
1

6
2

1
8

5
2

0
8

2
3

1
2

5
4

2
7

7
3

0
0

U
p

p
er

R
A

D
 (

se
co

n
d

)

Generations

17

22

27

32

37

1
2

4
4

7
7

0
9

3
1

16
1

39
1

62
1

85
2

08
2

31
2

54
2

77
3

00

P
ro

D
 (

se
co

n
d

)

Generations

0.4

0.45

0.5

0.55

0.6

1
2

4
4

7
7

0
9

3
1

16
1

39
1

62
1

85
2

08
2

31
2

54
2

77
3

00

M
in

G
ai

n

Generations

12

22

32

42

52

62

72

1
2

4
4

7
7

0
9

3
1

16
1

39
1

62
1

85
2

08
2

31
2

54
2

77
3

00

Sa
eD

en
si

ty
 (

d
ev

ic
e)

Generations

3.75

3.8

3.85

3.9

3.95

4

4.05

4.1

1
2

4
4

7
7

0
9

3
1

16
1

39
1

62
1

85
2

08
2

31
2

54
2

77
3

00

TI
m

e
(s

ec
o

n
d

)

Generations

238

240

242

244

246

248

250

1
2

4
4

7
7

0
9

3
1

16
1

39
1

62
1

85
2

08
2

31
2

54
2

77
3

00

Fi
tn

es
s

Generations

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

228 | P a g e

www.ijacsa.thesai.org

For the mall mobility scenario, the time to reach the nodes
decreased from 4.98 seconds to 3.57 seconds which amounts to
28.3%, which brings down the average required time to deliver
a message from 7.6ms to 5.49ms.

As for the human mobility scenario, the time to deliver the
messages to their respective destinations decreased from 4.07
to 3.78 seconds, which amounts to 7.12%. The average time to
deliver a message decreased from 0.5ms to 0.46ms.

By inspecting all the previous results, it appears that the
mall mobility model benefited the most from the optimization
of the DFCN decision parameters and the human mobility
model benefited the least. While these two models have very
close features, the major difference between them, as stated
previously, is the randomness of the movements. The human
mobility model is governed by human intentions of moving
between a dynamic list of targets while the mall one is
governed by random motion of shoppers moving between
random shops. Also, by inspecting the highway scenario, it
seems that the lack of enough nodes has significantly raised the
average delivery time six times (6x) the delivery time in other
scenarios.

To demonstrate the consistency of the results, a 5%
confidence interval for the final reachability time is calculated
and is shown in Table IX.

TABLE. IX. 5% CONFIDENCE INTERVAL FOR THE FINAL REACHABILITY

TIME

Mobility Model 5% Confidence Interval (seconds)

Highway 23.4 ± 0.75

Mall 3.57 ± 0.34

Human 3.78 ± 0.02

VII. CONCLUSION AND FUTURE WORK

The proposed system managed to decrease the message
delivery time for the three real-life scenarios (the highway, the
mall and the human mobility models) by optimizing the
decision parameters for the DFCN protocol. The mall mobility
model benefited the most from the optimization of the DFCN
parameters, which is mainly attributed to the randomness of the
mobility, since the human mobility model also shares very
close parameters but only differs in the movement intention. In
the human mobility model, the mobility is governed by the
intentions of the humans to reach a certain dynamic list of
destinations and, therefore, the randomness significantly
decreases. Also, the highway mobility model yielded the
highest average message delivery time, which is attributed to
the lack of nodes and the very high mobility speed, and since
the DFCN protocol relies on 1-hop neighbors to deliver the
messages to their destinations, this scenario severely affects it.

In the future, a mathematical model based on the found
trendlines can be established and tested. This will help to
achieve the results faster, instead of relying solely on
metaheuristic techniques, which require a significant amount of
time to converge to the optimal solution.

Also, Genetic Programming (GP) can be experimented
with, to evolve programs and expressions related to each
scenario. This way, the resulting programs can be used as a

rigid optimization model, without the need to repeat the
evolution process each time.

REFERENCES

[1] V. Rishiwal, S. K. Agarwal and M. Yadav, "Performance of AODV
protocol for H-MANETs," in International Conference on Advances in
Computing, Communication, & Automation (ICACCA) (Spring),
Dehradun, India, 2016.

[2] L. J. G. Villalba, J. G. Matesanz, A. L. S. Orozco and J. D. M. Díaz,
"Auto-Configuration Protocols in Mobile Ad Hoc Networks," Sensors
(Basel), vol. 11, no. 4, p. 3652–3666, 2011.

[3] C. Dhakad and A. S. Bisen, "Efficient route selection by using link failure
factor in MANET," in International Conference on Electrical, Electronics,
and Optimization Techniques (ICEEOT), Chennai, India, 2016.

[4] P.-J. Chuang, P.-H. Yen and T.-Y. Chu, "Efficient Route Discovery and
Repair in Mobile Ad-hoc Networks," in IEEE 26th International
Conference on Advanced Information Networking and Applications,
Fukuoka, Japan, 2012.

[5] V. Sharma and A. Vij, "Broadcasting methods in mobile ad-hoc
networks," in 2017 International Conference on Computing,
Communication and Automation (ICCCA), Greater Noida, India, 2017.

[6] M. Bakhouya, "Broadcasting approaches for Mobile Ad hoc Networks,"
in International Conference on High Performance Computing &
Simulation (HPCS), Helsinki, Finland, 2013.

[7] H. Yadav and H. K. Pati, "A Survey on Selfish Node Detection in
MANET," in International Conference on Advances in Computing,
Communication Control and Networking (ICACCCN), Greater Noida
(UP), India, 2018.

[8] N. Ramya and S. Rathi, "Detection of selfish Nodes in MANET - a
survey," in International Conference on Advanced Computing and
Communication Systems (ICACCS), Coimbatore, India, 2016.

[9] L. Hogie, P. Bouvry, M. Seredynski and F. Guinand, "A Bandwidth-
Efficient Broadcasting Protocol for Mobile Multi-hop Ad hoc Networks,"
in International Conference on Networking, International Conference on
Systems and International Conference on Mobile Communications and
Learning Technologies (ICNICONSMCL), Morne, Mauritius, 2006.

[10] B. Dorronsoro, P. Ruiz, G. Danoy, Y. Pigné and P. Bouvry,
"BROADCASTING PROTOCOL," in Evolutionary Algorithms for
Mobile Ad Hoc Networks, John Wiley & Sons, Inc, 2014, pp. 135-138.

[11] L. Hogie and P. Bouvry, "An Overview of MANETs Simulation,"
Electronic Notes in Theoretical Computer Science, vol. 150, no. 1, pp.
81-101, 2006.

[12] L. Hogie, F. Guinand and P. Bouvry, The Madhoc metropolitan ad hoc
network simulator, France: Luxembourg University and Le Havre
University, 2006.

[13] L. Hogie, "Madhoc Metropolitan ad hoc network simulator," 2006.
[Online]. Available: http://www.i3s.unice.fr/~hogie/madhoc/. [Accessed
25 January 2019].

[14] R. M. Chintalapalli and V. R. Ananthula, "M-LionWhale: multi-objective
optimisation model for secure routing in mobilead-hocnetwork," IET
Communications, vol. 12, no. 12, pp. 1406 - 1415, 2018.

[15] E. Alba, B. Dorronsoro, F. Luna and P. Bouvry, "A cellular multi-
objective genetic algorithm for optimal broadcasting strategy in
metropolitan MANETs," in IEEE International Parallel and Distributed
Processing Symposium, Denver, CO, USA, 2005.

[16] S. Subramaniyan, W. Johnson and K. Subramaniyan, "A distributed
framework for detecting selfish nodes in MANET using Record- and
Trust-Based Detection (RTBD) technique," EURASIP Journal on
Wireless Communications and Networkingvolume, p. Article 205, 2014.

[17] S. S. Basurra, M. D. Vos, J. Padget, Y. Ji, T. Lewis and S. Armou,
"Energy Efficient Zone based Routing Protocol for MANETs," Ad Hoc
Networks, vol. 25, pp. 16-37, 2015.

[18] M. Ahmad, A. Hameed, A. A. Ikram and I. Wahid, "State-of-the-Art
Clustering Schemes in Mobile Ad Hoc Networks: Objectives, Challenges,
and Future Directions," IEEE ACCESS, vol. 7, pp. 17067 - 17081, 2019.

