
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 9, 2019 

360 | P a g e  

www.ijacsa.thesai.org 

Authentication Modeling with Five Generic Processes 

Sabah Al-Fedaghi1, MennatAllah Bayoumi2 

Computer Engineering Department 

Kuwait University, Kuwait 

 

 
Abstract—Conceptual modeling is an essential tool in many 

fields of study, including security specification in information 

technology systems. As a model, it restricts access to resources 

and identifies possible threats to the system. We claim that 

current modeling languages (e.g., Unified Modeling Language, 

Business Process Model and Notation) lack the notion of 

genericity, which refers to a limited set of elementary processes. 

This paper proposes five generic processes for modeling the 

structural behavior of a system: creating, releasing, transferring, 

receiving, and processing. The paper demonstrates these 

processes within the context of public key infrastructure, 

biometric, and multifactor authentication. The results indicate 

that the proposed generic processes are sufficient to represent 

these authentication schemes. 
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I. INTRODUCTION 

Security is a necessary feature in information technology 
(IT) systems. Security specification requires identifying risks, 
access requirements, and recovery strategies, and comprises 
well-developed security mechanism processes [1]. Early-stage 
development of security specification assists in lowering the 
possibility of security breaches. 

Authorization and authentication both play vital roles in the 
configuration of security mechanisms. Authorization is the 
process of allowing users to access system objects based on 
their identities. Authentication confirms that the user is who he 
or she claims to be. 

Conceptual modeling is a description of reality using a 
modeling language to create a more-or-less formalized schema 
[2]. A conceptual model in the security field restricts access to 
the resources and identifies possible threats to the system. In 
modeling, notations (diagrams, symbols, or abbreviated 
expressions) are required to specify technical facts and related 
concepts of systems. They are necessary to articulate complex 
ideas succinctly and precisely [3]. For a notation to convey 
accurate communication, it must effectively represent the 
different aspects of a system and be well understood among 
project participants. The historic roots of modeling notations in 
software engineering can be traced back to structured analysis 
and design, which are based on data flow diagrams [3]. 

A. Security Modeling 

Many languages and mechanisms, such as Business Process 
Model and Notation (BPMN) [4], secure Tropos [5], misuse 
cases [6], and mal-activity diagrams [7], are used in the field of 
security modeling. For space consideration, we focus here on 
the Unified Modeling Language (UML) and BPMN. 

The UML [8] has been utilized as a graphical notation to 
construct and visualize security aspects in object-oriented 
systems. It is currently utilized as a primary notation for 
security and authentication because it provides a spectrum of 
notations representing the various aspects of a system. The use 
of the UML for conceptual modeling requires special care to 
not confuse software features with aspects of the real world 
being modeled [9]. 

BPMN was designed to be used by people without much 
training in software development. ―UML diagrams look 
technical, and in practice, they are much harder for 
businesspeople to understand than BPMN diagrams‖ [10]. 
BPMN includes a rich set of model constructs for business 
process modeling. 

This paper is about conceptual modeling. It is part of a 
research project that applies a new modeling language, the 
thing machine (TM), to modeling computer attacks [11]. The 
paper concentrates on using the TM to model authentication. 
The thesis promoted in our research works is that modeling in 
the abovementioned languages lacks genericity, a notion for 
representing systems that forms the base for process modeling. 
This has caused conceptual vagueness that obstructs the 
differentiation of objects. A specific goal of the paper is to 
substantiate the viability of the TM by applying it to modeling 
authentication. 

B. Modeling Authentication 

In the twenty-first century, few matters are more pressing 
than those related to identity authentication. Authentication is a 
mechanism used to make sure that those obtaining session 
access are who they say they are. To access online systems and 
services, we all face the challenge of proving our identities 
[12]. 

In the real world, thousands have found themselves blocked 
from opening bank accounts, making payments, or travelling 
because of an unfortunate name similarity to those individuals 
or entities on a sanctions list. Hundreds of thousands have been 
victims of identity fraud, often only learning of the crime when 
they apply for credit and find their credit rating has been 
compromised by fraudulent loans obtained in their names [12]. 

In this paper, we focus on individual and entity 
authentication for digital interactions. We concentrate on 
authentication in the context of usability of IT systems in terms 
of who is using the system, what they are using it for, and the 
environment in which they are using it (ISO standard 9241 Part 
11). The ISO 9241 standard for identity authentication is made 
up of three components: what you are (e.g., biometric 
information), what you have (e.g., having a token), and what 
you know (e.g., PINs, passwords). 
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C. Examples of Modeling Authentication 

Fig. 1 shows a typical authentication process—in this case, 
a single sign-on (SSO) that allows a user to access multiple 
applications with one set of login credentials. This SSO is 
modeled using a UML activity diagram. With an SSO, a client 
accesses multiple resources connected to a local area network 
[13]. Partner companies act as identity providers and control 
usernames and other information used to identify and 
authenticate users for web applications. Each partner provides 
Google with the URL of its SSO service, as well as the public 
key that Google will use to verify Security Assertion Markup 
Language (SAML, a protocol that refers to what is transmitted 
regarding identity information between parties) responses. 
When a user attempts to use a hosted Google application, 
Google generates an SAML authentication request and sends a 
redirect request back to the user‘s browser that points to the 
specific identity provider. The SAML authentication request 
contains the encoded URL of the Google application that the 
user is trying to reach. This authentication process continues as 
shown in part in Fig. 1 [13]. Nevertheless, in general, ―activity 
diagrams have always been poorly integrated, lacked 
expressiveness, and did not have an adequate semantics in 
UML‖ [14]. With further development of the UML, ―several 
new concepts and notations have been introduced, e.g., 
exceptions, collection values, streams, loops, and so on‖ [14]. 

Plavsic and Secerov [15] model the classic login procedure 
using different kinds of UML diagrams: deployment diagrams, 
use case diagrams, interaction overview diagrams, sequence 
diagrams (see Fig. 2), and class diagrams. The code shown in 
Fig. 2 was generated from the class diagrams. According to 
Plavsic and Secerov [15], the use case diagram counts as a 
starting point; however, use cases do not describe system 
structure or details of behavior. Therefore, Plavsic and Secerov 
use other diagrams to follow messages that are exchanged 
between objects and realize system functionality. 

Lee [3] gives an example wherein field officers are required 
to provide authentication before they can use a system called 
FRIEND. Authentication is modeled as an authenticate-use 
case. Later, two more use cases are introduced: 
AuthenticateWithPassword, which enables field officers to 
login without any specific hardware, and 
AuthenticateWithCard, which enables field officers to log in 
using smart cards. The two use cases are represented as 
specializations of the Authenticate use case (see Fig. 3). 

 

Fig. 1. An Example of a UML Activity Diagram for SSO to Google Apps. 

(Partially Redrawn from [13]). 

 

Fig. 2. EnteruserId Sequence Diagram. (Partially Redrawn from [15]). 

 

Fig. 3. The Authenticate use Case is a High-Level use Case Describing, in 

General Terms, the Process of Authentication. AuthenticatewithPassword and 

AuthenticatewithCard are Two Specializations of Authenticate. (Partially 

Redrawn from [3]). 

In the next section, we will briefly review the TM with a 
new contribution related to the notion of genericity. In 
Section 3, we give an example. In Section 4, we apply the TM 
to model authentication. 

II. THING MACHINE WITH FIVE GENERIC PROCESSES 

We claim that a modeling methodology is based on five 
generic (a notion to be discussed later) processes: creating, 
releasing, transferring, receiving, and processing (changing). 
These elementary processes form a complex abstract machine 
called a Thing Machine, as shown in Fig. 4. Fig. 5 shows a TM 
formulated to align with the classical input–process–output 
model. 

The machines constitute a mosaic or network of machines. 
Additionally, the TM model embraces memory and triggering 
(represented as dashed arrows, relations among the processes‘ 
stages (machines). A TM manifests structure and behavior 
simultaneously. Only five elementary processes are used 
because they represent genericity in operation, the way the 
three states of water (liquid, vapor, and solid) represent three 
generic concepts. These elementary processes have been called 
different names. 

 Create: generate, produce, manufacture, give birth, 
initiate, assemble, emerge, appear (in a system), etc. 
Process: change, modify, adjust, amend, etc. 

 Receive: obtain, accept, collect, take, get, etc. 

 Release: allow, relieve, discharge, let, free, etc. 

 Transfer: transport, transmit, carry, communicate, etc. 

The TM model has been applied to many real systems, such 
as phone communication [16], physical security [17], vehicle 
tracking [18], unmanned aerial vehicles [19], and programming 
[20]. 
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Fig. 4. Thinging Machine. 

 

Fig. 5. Another form of Description of a TM. 

A. Philosophical Foundation of Things and Thinging 

The TM model is constructed on the philosophical 
foundations of Heidegger‘s notions of a thing and thinging 
[21]. Heidegger‘s philosophy gives an alternative analysis of 
―(1) eliciting knowledge of routine activities, (2) capturing 
knowledge from domain experts and (3) representing 
organizational reality in authentic ways‖ [22]. Additional 
information about the philosophical foundations of the TM can 
be found in Al-Fedaghi [23-24]. 

Briefly, in a TM, a thing is defined as that which can be 
created, processed, released, transferred, and received. It 
encounters humans through its givenness (Heidegger‘s term). 
―In contrast to object-orientation, which represents things as 
quantifiable objects to be controlled and dominated, 
Heidegger‘s definition of a thing encompasses a particular 
concrete existence along with its interconnectedness to the 
world‖ [25]. According to Heidegger [21], thinging expresses 
how a ―thing things‖, which he explained as gathering or tying 
together its constituent parts. 

A TM operates by creating, processing, receiving, 
releasing, and transferring things. For example, a tree is a 
machine ―through which flows of sunlight, water, carbon 
dioxide, minerals in the soil, etc. flow. Through a series of 
operations, the machine transforms those flows of matter, those 
other machines that pass through it into various sorts of cells‖ 
[26]. In the TM approach, a thing is not just an entity; it is also 
a machine that handles other things. 

B. Genericity 

The TM‘s five processes are categorical. Members of each 
category have the following features: 

 They focus on essential properties and ignore 
variations in the created category—for example, 
newness regardless of who, what, how, etc. 

 They capture the blueprint aspect: e.g., creation is a 
―popping up‖ phenomenon wherein a thing either 
―emerges into‖ the system or as a result of existing 
things being processed to trigger the creation of other 
things. 

 Things have attributes similar to objects—a created 
thing comes to ―life‖, and a processed (changed) thing 
remains the same thing. 

 Things have actions similar to subjects (machines)—
creating a thing is ―bringing it to life‖ and processing a 
thing changes it in some way. 

A sketch of the proof of the necessity for the five generic 
processes can be outlined as shown in Fig. 6. Thus, informal 
justification for the five TM stages can be specified as follows: 

 Things become entities in the system either by being 
imported from the outside (transfer/input) or by being 
internally constructed (creation). See Fig. 6(a). 

 Things coming from the outside are either rejected 
from or received (receive) into the system. See 
Fig. 6(b). 

 Things may flow outside the system (transfer/output). 
See Fig. 6(c). 

 Deported things may be queued before transfer 
(release). See Fig. 6(d). 

 Things inside the system may be processed (process). 
See Fig. 6(e). 

 
(a) Things become Entities in the System Either by being Imported from the 

Outside or by being Constructed Internally. 

 
(b) Things Coming from the Outside are Either Rejected from or Received 

into the System. 

 
(c) Things may flow Outside the System. 

 
(d) Deported things may be Queued before Transfer. 

 
(e) Things Inside the System may be Processed. 

Fig. 6. Informal Sketch of the Generic Processes. 
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This is what we mean by generic processes. Even though 
they are used differently according to the setting, members of 
each generic process seem to be synonymous with respect to 
things. In language, such a phenomenon appears in the case of 
the adjectives big, great, and large, which are seemingly 
synonymous words but are likely to be used in different ways 
in different settings [27]. Processes recognized as being of the 
same kind of ―meaning‖ in the above sense are said to possess 
a generic property. Generic processes are conduits through 
which various types of processes flow. 

III. THING MACHINE MODELING EXAMPLE 

Guizzardi and Wagner [2] give an example of a service 
queue system in which customers arrive at random times at a 
service desk. They have to wait in a queue when the service 
desk is busy. Otherwise, when the service desk is not busy, 
they are immediately served by the clerk. Whenever a service 
is completed, the next customer from the queue (if any) is 
served [28]. 

Fig. 7 shows the TM model of the example. The customer 
arrives (circle 1) to get into the queue (Q). We assume a 
circular queue structure stored in Q(0:n - 1) with mod n 
operation; rear points to the last item and front is one position 
counterclockwise from the first item in Q. As typically 

described, the queue has a rear, which, upon the arrival of the 
customer (2), is retrieved/released (3) and incremented (4). 
Hence: 

 If Q is full (the maximum capacity of the queue when 
(rear+1)mod n =front), the system blocks any newly 
arriving customers. 

 The new rear value is stored (6). 

Accordingly, the customer is assigned a position (given a 
number) in the queue and joins the other customers waiting in 
the queue (8). 

Whenever the service agent is not busy (9): 

 The first customer in the queue is released to the 
service area (10). 

 The arrival of the customer to the service area changes 
its state to busy (11). 

 The customer is then processed (12). 

 The customer is released (13), which triggers the not 
busy state (14). 

 The customer leaves the service area (15). 

 

Fig. 7. Static TM Description of the Example.
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Triggering the not busy state results in taking a new 
customer from the queue, as mentioned previously (10), and 
also updates the queue data (16). Thus, 

 The front value is retrieved (17) and decremented (18), 
and the new value is stored (19). 

 The original front value (before decrementing it) is 
checked (20), and if the Q was full, the blockage of 
new customers from entering the queue is lifted (21). 

Initially, we assume that the entrance is not blocked, the 
queue is empty, and the service is not busy. 

The dynamic behavior of the system can be developed 
based on events. An event in a TM is treated as a 
thing/machine—that is, it can be created, processed, released, 
transferred, and received. For example, the event a customer 
moves from the queue to the service desk is represented as 
shown in Fig. 8. It has two submachines: time and region 
where the event takes place. An event also denotes a change. 
All stages in the static description of Fig. 7 indicate elementary 
changes; however, we are typically interested in larger events 
that include several stages, as demonstrated in the event a 
customer moves from the queue to the service. Accordingly, 
we identify the following events in this example (see Fig. 9): 

Event 1 (E1): The service is open. 
Event 2 (E2): The service is closed (blocked). 

Event 3 (E3): A customer joins the queue. 
Event 4 (E4): Top is retrieved and incremented, and the new 
value is stored. 
Event 5 (E5): The queue is full (i.e., new value = max). 
Event 6 (E6): The queue is not full. 
Event 7 (E7): A customer joins the queue. 
Event 8 (E8): The service agent is not busy. 
Event 9 (E9): A customer moves from the queue to the service. 
Event 10 (E10): The service becomes busy. 
Event 11 (E11): The customer leaves the service. 
Event 12 (E12): Top is retrieved and decremented, and the new 
value is stored. 
Event 13 (E13): Top becomes less than max. 

Fig. 10 shows the behavior of the system in terms of the 
chronology of its events. 

 

Fig. 8. Event with Region and Time Submachines. 

 

Fig. 9. Identifying the Events in the Static Description of the Example. 
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Fig. 10. Chronology of Events. 

IV. CASE STUDY: MODELING AUTHENTICATION 

To apply a TM to modeling authentication, we adopt a 
security case study that involves insider attackers as presented 
by Nostro et al. [29]. This case study is interesting because it 
adopts a modeling approach using UML diagrammatic and 
textual use cases in line with the level of modeling applied in 
this paper. Additionally, UML use cases give us an opportunity 
to contrast use case diagrams with TM diagrams. 

The case study includes the taxonomy of users physically 
or logically involved within the system and investigates their 
roles as potential insiders. The users are system administrator 
(SA), system expert, unknown user, domain expert, human 
sensor, and operator. Nostro et al. [29] explore only the SA and 
system expert, and we, in this paper, focus on the SA 
performing a software update. Fig. 11 shows the use case 
related to the SA; the darkened part indicates our region of 
emphasis. Fig. 12 shows the textual description of the use case. 

Based on such a use case model that ―guides the whole 
process,‖ Nostro et al. [29] identify and assess insider threats 
and develop countermeasures that are oriented toward 
prevention, deterrence, or detection. They also use an ad hoc 
attack execution graph called ADVISE (see Fig. 13). 

 

Fig. 11. UML use Case Diagram Involving the SA. (Partially redrawn from 

[29]). 

 

Fig. 12. Description of UML use Case Diagram—SA. (Partially Taken from 

[29]). 

 

Fig. 13. Sample Attack Execution Graph. (Partially Redrawn from [29]). 

We claim in this paper that the TM model presents a 
systematic alternative (one kind of notion) in modeling 
security. Without loss of generality, we will focus on the 
authentication part of Nostro et al. [29] to demonstrate the 
viability of the TM model. 

V. MODELING AUTHENTICATION 

Authentication plays an important role in the security of 
computing, hence the existence of several authentication 
techniques. An authentication process attempts to verify a 
user‘s identity prior to the user‘s access to any resources in 
order to protect the system against various attack types. Once 
authenticated, the user is permitted to connect with cloud 
servers to request services [30-33]. Without loss of generality 
and due to space limitations, we will apply the TM model to 
only three authentication methods: public key infrastructure 
(PKI) authentication, biometric authentication, and multifactor 
authentication. As discussed in the case study in Section IV, 
the authentication of the SA is a precondition of all four use 
cases (system maintenance, data management, profile 
management, and crisis management, as represented in 
Fig. 11). The login session allows the SA to begin requesting 
services from the system. However, no requests from any of 
these four use cases will be serviced until the SA is 
authenticated by the system. 
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The first SA role to be investigated is the system 
maintenance case. This case is an umbrella to three subcases 
involving software updates, installing software, and managing 
servers. 

A. Public Key Infrastructure Authentication 

Fig. 14 shows the TM representation of SA roles under the 
PKI framework system, whereas Fig. 15 shows the 
corresponding dynamic system, assuming the SA is already 
certified. The figure comprises two main machines: the SA and 
the system (highlighted in yellow). 

 The SA logs into his or her account (Circle 1 in 
Fig. 14). 

 Assuming correct credentials, the system creates (2) a 
session. 

 The SA issues a request (3) for system maintenance, 
such as a software update. 

 Upon receiving the request, the system performs the 
authentication process (4) [34] as follows: 

o The system generates random data (5) using the 

SA‘s public key and sends it to him or her (6). 

o The SA processes (7) the random data using his or 

her private key (8) and sends its encrypted version 

to the system (9). 

o The system uses the SA‘s public key (10) to decrypt 

(11) the incoming encrypted data, producing 

decrypted data (12). 

o The decrypted data are compared (13) to the original 

random data; if they are equivalent, a system 

maintenance session is opened for the SA (14). 

A selected set of events are described as follows (see Fig. 
15): 

Event 1 (E1): The SA logs into his or her account, and the system 

creates a session accordingly. 

Event 2 (E2): The SA issues a request to maintain the system. 

Event 3 (E3): The system starts the authentication process by 

generating random data and sending it to the SA. 

Event 4 (E4): The SA processes the random data using his or her 

private key and sends the encrypted data to the system. 

Event 5 (E5): The system uses the SA‘s public key to decrypt the 

incoming encrypted data, producing a decrypted dataset. 

Event 6 (E6): The original random data are transferred to the 

comparison module. 

Event 7 (E7): The decrypted data are compared to the original 

random data. 

Event 8 (E8): If the data are equivalent, a system maintenance session 

is opened for the SA. 

Fig. 16 shows the chronology of these events that model 
the behavior of the PKI-based authentication system. 

 

Fig. 14. TM Representation of UML use Case Involving the SA in PKI Authentication. 
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Fig. 15. Meaningful Events During PKI Authentication. 

 

Fig. 16. Control of the PKI Event Sequence. 

B. Biometric Authentication 

Fig. 17 and 18 show the static and dynamic TM 
representations of the SA‘s roles under a physical biometric 
authentication system. A typical physical biometric system 
carries out authentication in two stages—the enrollment stage 
and the verification stage. 

Fig. 17 comprises two main machines: the SA and the 
system (highlighted in yellow). 

 Initially, in the enrollment stage, the SA requests (1) 
the biometric trait desired, such as a face or fingerprint. 

 In response, the system requests (2) the SA to present 
his or her chosen biometric trait. 

 The SA then presents (3) the trait to the scanning 
hardware. 

 The system then extracts (4) the scanned trait for 
encryption and storage (5). 

 To initiate an interaction with the system, the SA logs 
into his or her account (6). With the correct credentials, 
the system creates (7) a session. 

 The SA issues a request (8) to maintain the system 
(e.g., software update). 

 The system starts the authentication process (9) 
(verification stage) [35]. 

o The system requests (10) the SA to present his or 

her chosen biometric trait. 

o The SA then presents (11) the trait to the scanning 

hardware. 

o The system then extracts (12) the scanned trait for 

comparison purposes. 

o The originally encrypted trait is decrypted (13) and 

compared with the trait extracted from the scanning 

hardware (14). If they are equivalent, a system 

maintenance session is opened to the SA (15). 

Fig. 18 shows the dynamic description of the model. A 
selected set of events is described as follows: 

Event 1 (E1): The SA requests the biometric trait desired for the 

enrollment stage, and the system requests the SA to present the chosen 

biometric trait. 

Event 2 (E2): The SA presents the trait to the scanning hardware for 

extraction. 

Event 3 (E3): The extracted data are then encrypted and stored. 

Event 4 (E4): The SA logs into his or her account, and the system 

creates a session accordingly. 

Event 5 (E5): The SA issues a request for system maintenance. 

Event 6 (E6): The system starts the authentication process by 

requesting the SA to present the chosen biometric trait. 

Event 7 (E7): The SA presents the trait to the scanning hardware for 

extraction.  

Event 8 (E8): The system decrypts the originally encrypted trait. 

Event 9 (E9): The extracted trait is compared to the decrypted data.  

Event 10 (E10): If the data are equivalent, a system maintenance 

session is opened to the SA. 
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Fig. 17. TM Representation of UML use Case Involving the SA in Physical Biometric Authentication. 

 

Fig. 18. Meaningful Events During Physical Biometric Authentication. 
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Fig. 19. Control of the Physical Biometric Event Sequence. 

Fig. 19 shows the chronology of events modeling the 
behavior of the biometric authentication system. 

C. Multifactor Authentication 

The diagrams for multifactor authentication are not shown 
for space considerations. A typical multifactor system carries 
out authentication in two or more stages—the login stage and 
other verification stage(s) involving other types of 
authentication. 

D. Multifactor Authentication 

The diagrams for multifactor authentication are not shown 
for space considerations. A typical multifactor system carries 
out authentication in two or more stages—the login stage and 
other verification stage(s) involving other types of 
authentication. 

This paper assumes the common choice of randomly 
generated one-time passwords (OTPs) with two-factor 
authentication. The TM model comprises two main machines: 
the SA and the system (highlighted in yellow). 

 To initiate an interaction with the system, the SA logs 
into his or her account. With the correct credentials, the 
system creates a session. 

 The SA issues a request to maintain the system (e.g., 
software update). 

 The system starts the authentication process [36]. 

o The system identifies the SA‘s registered phone 

number and uses it to generate an OTP. 

o This password is embedded in an SMS and 

transferred to the system‘s phone. 

o The system sends the SA an SMS containing the 

OTP. 

o The SA then inputs the requested OTP in the 

displayed form. 

o The system extracts the entered OTP for 

comparison. 

o The OTP entered is compared to the one initially 

sent. If they are the same, a system maintenance 

session is opened to the SA. 

VI. CONCLUSION 

In this paper, we presented the thesis that five generic 
processes—creating, releasing, transferring, receiving, and 
processing—have the expressive power to model key public 
infrastructure, biometric, and multifactor authentications. 
Expressiveness refers to things said in a description in a 
language [2]. The interesting aspect of the TM is the question 

of whether TM‘s five generic processes express all things 
required in conceptual modeling in software engineering. 
Indicators including modeling authentication in this paper point 
to the viability of this hypothesis. Further research should 
pursue this line of thinking. 
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