
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

360 | P a g e

www.ijacsa.thesai.org

Authentication Modeling with Five Generic Processes

Sabah Al-Fedaghi1, MennatAllah Bayoumi2

Computer Engineering Department

Kuwait University, Kuwait

Abstract—Conceptual modeling is an essential tool in many

fields of study, including security specification in information

technology systems. As a model, it restricts access to resources

and identifies possible threats to the system. We claim that

current modeling languages (e.g., Unified Modeling Language,

Business Process Model and Notation) lack the notion of

genericity, which refers to a limited set of elementary processes.

This paper proposes five generic processes for modeling the

structural behavior of a system: creating, releasing, transferring,

receiving, and processing. The paper demonstrates these

processes within the context of public key infrastructure,

biometric, and multifactor authentication. The results indicate

that the proposed generic processes are sufficient to represent

these authentication schemes.

Keywords—Security; authentication; conceptual modeling;

diagrammatic representation; generic processes

I. INTRODUCTION

Security is a necessary feature in information technology
(IT) systems. Security specification requires identifying risks,
access requirements, and recovery strategies, and comprises
well-developed security mechanism processes [1]. Early-stage
development of security specification assists in lowering the
possibility of security breaches.

Authorization and authentication both play vital roles in the
configuration of security mechanisms. Authorization is the
process of allowing users to access system objects based on
their identities. Authentication confirms that the user is who he
or she claims to be.

Conceptual modeling is a description of reality using a
modeling language to create a more-or-less formalized schema
[2]. A conceptual model in the security field restricts access to
the resources and identifies possible threats to the system. In
modeling, notations (diagrams, symbols, or abbreviated
expressions) are required to specify technical facts and related
concepts of systems. They are necessary to articulate complex
ideas succinctly and precisely [3]. For a notation to convey
accurate communication, it must effectively represent the
different aspects of a system and be well understood among
project participants. The historic roots of modeling notations in
software engineering can be traced back to structured analysis
and design, which are based on data flow diagrams [3].

A. Security Modeling

Many languages and mechanisms, such as Business Process
Model and Notation (BPMN) [4], secure Tropos [5], misuse
cases [6], and mal-activity diagrams [7], are used in the field of
security modeling. For space consideration, we focus here on
the Unified Modeling Language (UML) and BPMN.

The UML [8] has been utilized as a graphical notation to
construct and visualize security aspects in object-oriented
systems. It is currently utilized as a primary notation for
security and authentication because it provides a spectrum of
notations representing the various aspects of a system. The use
of the UML for conceptual modeling requires special care to
not confuse software features with aspects of the real world
being modeled [9].

BPMN was designed to be used by people without much
training in software development. ―UML diagrams look
technical, and in practice, they are much harder for
businesspeople to understand than BPMN diagrams‖ [10].
BPMN includes a rich set of model constructs for business
process modeling.

This paper is about conceptual modeling. It is part of a
research project that applies a new modeling language, the
thing machine (TM), to modeling computer attacks [11]. The
paper concentrates on using the TM to model authentication.
The thesis promoted in our research works is that modeling in
the abovementioned languages lacks genericity, a notion for
representing systems that forms the base for process modeling.
This has caused conceptual vagueness that obstructs the
differentiation of objects. A specific goal of the paper is to
substantiate the viability of the TM by applying it to modeling
authentication.

B. Modeling Authentication

In the twenty-first century, few matters are more pressing
than those related to identity authentication. Authentication is a
mechanism used to make sure that those obtaining session
access are who they say they are. To access online systems and
services, we all face the challenge of proving our identities
[12].

In the real world, thousands have found themselves blocked
from opening bank accounts, making payments, or travelling
because of an unfortunate name similarity to those individuals
or entities on a sanctions list. Hundreds of thousands have been
victims of identity fraud, often only learning of the crime when
they apply for credit and find their credit rating has been
compromised by fraudulent loans obtained in their names [12].

In this paper, we focus on individual and entity
authentication for digital interactions. We concentrate on
authentication in the context of usability of IT systems in terms
of who is using the system, what they are using it for, and the
environment in which they are using it (ISO standard 9241 Part
11). The ISO 9241 standard for identity authentication is made
up of three components: what you are (e.g., biometric
information), what you have (e.g., having a token), and what
you know (e.g., PINs, passwords).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

361 | P a g e

www.ijacsa.thesai.org

C. Examples of Modeling Authentication

Fig. 1 shows a typical authentication process—in this case,
a single sign-on (SSO) that allows a user to access multiple
applications with one set of login credentials. This SSO is
modeled using a UML activity diagram. With an SSO, a client
accesses multiple resources connected to a local area network
[13]. Partner companies act as identity providers and control
usernames and other information used to identify and
authenticate users for web applications. Each partner provides
Google with the URL of its SSO service, as well as the public
key that Google will use to verify Security Assertion Markup
Language (SAML, a protocol that refers to what is transmitted
regarding identity information between parties) responses.
When a user attempts to use a hosted Google application,
Google generates an SAML authentication request and sends a
redirect request back to the user‘s browser that points to the
specific identity provider. The SAML authentication request
contains the encoded URL of the Google application that the
user is trying to reach. This authentication process continues as
shown in part in Fig. 1 [13]. Nevertheless, in general, ―activity
diagrams have always been poorly integrated, lacked
expressiveness, and did not have an adequate semantics in
UML‖ [14]. With further development of the UML, ―several
new concepts and notations have been introduced, e.g.,
exceptions, collection values, streams, loops, and so on‖ [14].

Plavsic and Secerov [15] model the classic login procedure
using different kinds of UML diagrams: deployment diagrams,
use case diagrams, interaction overview diagrams, sequence
diagrams (see Fig. 2), and class diagrams. The code shown in
Fig. 2 was generated from the class diagrams. According to
Plavsic and Secerov [15], the use case diagram counts as a
starting point; however, use cases do not describe system
structure or details of behavior. Therefore, Plavsic and Secerov
use other diagrams to follow messages that are exchanged
between objects and realize system functionality.

Lee [3] gives an example wherein field officers are required
to provide authentication before they can use a system called
FRIEND. Authentication is modeled as an authenticate-use
case. Later, two more use cases are introduced:
AuthenticateWithPassword, which enables field officers to
login without any specific hardware, and
AuthenticateWithCard, which enables field officers to log in
using smart cards. The two use cases are represented as
specializations of the Authenticate use case (see Fig. 3).

Fig. 1. An Example of a UML Activity Diagram for SSO to Google Apps.

(Partially Redrawn from [13]).

Fig. 2. EnteruserId Sequence Diagram. (Partially Redrawn from [15]).

Fig. 3. The Authenticate use Case is a High-Level use Case Describing, in

General Terms, the Process of Authentication. AuthenticatewithPassword and

AuthenticatewithCard are Two Specializations of Authenticate. (Partially

Redrawn from [3]).

In the next section, we will briefly review the TM with a
new contribution related to the notion of genericity. In
Section 3, we give an example. In Section 4, we apply the TM
to model authentication.

II. THING MACHINE WITH FIVE GENERIC PROCESSES

We claim that a modeling methodology is based on five
generic (a notion to be discussed later) processes: creating,
releasing, transferring, receiving, and processing (changing).
These elementary processes form a complex abstract machine
called a Thing Machine, as shown in Fig. 4. Fig. 5 shows a TM
formulated to align with the classical input–process–output
model.

The machines constitute a mosaic or network of machines.
Additionally, the TM model embraces memory and triggering
(represented as dashed arrows, relations among the processes‘
stages (machines). A TM manifests structure and behavior
simultaneously. Only five elementary processes are used
because they represent genericity in operation, the way the
three states of water (liquid, vapor, and solid) represent three
generic concepts. These elementary processes have been called
different names.

 Create: generate, produce, manufacture, give birth,
initiate, assemble, emerge, appear (in a system), etc.
Process: change, modify, adjust, amend, etc.

 Receive: obtain, accept, collect, take, get, etc.

 Release: allow, relieve, discharge, let, free, etc.

 Transfer: transport, transmit, carry, communicate, etc.

The TM model has been applied to many real systems, such
as phone communication [16], physical security [17], vehicle
tracking [18], unmanned aerial vehicles [19], and programming
[20].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

362 | P a g e

www.ijacsa.thesai.org

Fig. 4. Thinging Machine.

Fig. 5. Another form of Description of a TM.

A. Philosophical Foundation of Things and Thinging

The TM model is constructed on the philosophical
foundations of Heidegger‘s notions of a thing and thinging
[21]. Heidegger‘s philosophy gives an alternative analysis of
―(1) eliciting knowledge of routine activities, (2) capturing
knowledge from domain experts and (3) representing
organizational reality in authentic ways‖ [22]. Additional
information about the philosophical foundations of the TM can
be found in Al-Fedaghi [23-24].

Briefly, in a TM, a thing is defined as that which can be
created, processed, released, transferred, and received. It
encounters humans through its givenness (Heidegger‘s term).
―In contrast to object-orientation, which represents things as
quantifiable objects to be controlled and dominated,
Heidegger‘s definition of a thing encompasses a particular
concrete existence along with its interconnectedness to the
world‖ [25]. According to Heidegger [21], thinging expresses
how a ―thing things‖, which he explained as gathering or tying
together its constituent parts.

A TM operates by creating, processing, receiving,
releasing, and transferring things. For example, a tree is a
machine ―through which flows of sunlight, water, carbon
dioxide, minerals in the soil, etc. flow. Through a series of
operations, the machine transforms those flows of matter, those
other machines that pass through it into various sorts of cells‖
[26]. In the TM approach, a thing is not just an entity; it is also
a machine that handles other things.

B. Genericity

The TM‘s five processes are categorical. Members of each
category have the following features:

 They focus on essential properties and ignore
variations in the created category—for example,
newness regardless of who, what, how, etc.

 They capture the blueprint aspect: e.g., creation is a
―popping up‖ phenomenon wherein a thing either
―emerges into‖ the system or as a result of existing
things being processed to trigger the creation of other
things.

 Things have attributes similar to objects—a created
thing comes to ―life‖, and a processed (changed) thing
remains the same thing.

 Things have actions similar to subjects (machines)—
creating a thing is ―bringing it to life‖ and processing a
thing changes it in some way.

A sketch of the proof of the necessity for the five generic
processes can be outlined as shown in Fig. 6. Thus, informal
justification for the five TM stages can be specified as follows:

 Things become entities in the system either by being
imported from the outside (transfer/input) or by being
internally constructed (creation). See Fig. 6(a).

 Things coming from the outside are either rejected
from or received (receive) into the system. See
Fig. 6(b).

 Things may flow outside the system (transfer/output).
See Fig. 6(c).

 Deported things may be queued before transfer
(release). See Fig. 6(d).

 Things inside the system may be processed (process).
See Fig. 6(e).

(a) Things become Entities in the System Either by being Imported from the

Outside or by being Constructed Internally.

(b) Things Coming from the Outside are Either Rejected from or Received

into the System.

(c) Things may flow Outside the System.

(d) Deported things may be Queued before Transfer.

(e) Things Inside the System may be Processed.

Fig. 6. Informal Sketch of the Generic Processes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

363 | P a g e

www.ijacsa.thesai.org

This is what we mean by generic processes. Even though
they are used differently according to the setting, members of
each generic process seem to be synonymous with respect to
things. In language, such a phenomenon appears in the case of
the adjectives big, great, and large, which are seemingly
synonymous words but are likely to be used in different ways
in different settings [27]. Processes recognized as being of the
same kind of ―meaning‖ in the above sense are said to possess
a generic property. Generic processes are conduits through
which various types of processes flow.

III. THING MACHINE MODELING EXAMPLE

Guizzardi and Wagner [2] give an example of a service
queue system in which customers arrive at random times at a
service desk. They have to wait in a queue when the service
desk is busy. Otherwise, when the service desk is not busy,
they are immediately served by the clerk. Whenever a service
is completed, the next customer from the queue (if any) is
served [28].

Fig. 7 shows the TM model of the example. The customer
arrives (circle 1) to get into the queue (Q). We assume a
circular queue structure stored in Q(0:n - 1) with mod n
operation; rear points to the last item and front is one position
counterclockwise from the first item in Q. As typically

described, the queue has a rear, which, upon the arrival of the
customer (2), is retrieved/released (3) and incremented (4).
Hence:

 If Q is full (the maximum capacity of the queue when
(rear+1)mod n =front), the system blocks any newly
arriving customers.

 The new rear value is stored (6).

Accordingly, the customer is assigned a position (given a
number) in the queue and joins the other customers waiting in
the queue (8).

Whenever the service agent is not busy (9):

 The first customer in the queue is released to the
service area (10).

 The arrival of the customer to the service area changes
its state to busy (11).

 The customer is then processed (12).

 The customer is released (13), which triggers the not
busy state (14).

 The customer leaves the service area (15).

Fig. 7. Static TM Description of the Example.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

364 | P a g e

www.ijacsa.thesai.org

Triggering the not busy state results in taking a new
customer from the queue, as mentioned previously (10), and
also updates the queue data (16). Thus,

 The front value is retrieved (17) and decremented (18),
and the new value is stored (19).

 The original front value (before decrementing it) is
checked (20), and if the Q was full, the blockage of
new customers from entering the queue is lifted (21).

Initially, we assume that the entrance is not blocked, the
queue is empty, and the service is not busy.

The dynamic behavior of the system can be developed
based on events. An event in a TM is treated as a
thing/machine—that is, it can be created, processed, released,
transferred, and received. For example, the event a customer
moves from the queue to the service desk is represented as
shown in Fig. 8. It has two submachines: time and region
where the event takes place. An event also denotes a change.
All stages in the static description of Fig. 7 indicate elementary
changes; however, we are typically interested in larger events
that include several stages, as demonstrated in the event a
customer moves from the queue to the service. Accordingly,
we identify the following events in this example (see Fig. 9):

Event 1 (E1): The service is open.
Event 2 (E2): The service is closed (blocked).

Event 3 (E3): A customer joins the queue.
Event 4 (E4): Top is retrieved and incremented, and the new
value is stored.
Event 5 (E5): The queue is full (i.e., new value = max).
Event 6 (E6): The queue is not full.
Event 7 (E7): A customer joins the queue.
Event 8 (E8): The service agent is not busy.
Event 9 (E9): A customer moves from the queue to the service.
Event 10 (E10): The service becomes busy.
Event 11 (E11): The customer leaves the service.
Event 12 (E12): Top is retrieved and decremented, and the new
value is stored.
Event 13 (E13): Top becomes less than max.

Fig. 10 shows the behavior of the system in terms of the
chronology of its events.

Fig. 8. Event with Region and Time Submachines.

Fig. 9. Identifying the Events in the Static Description of the Example.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

365 | P a g e

www.ijacsa.thesai.org

Fig. 10. Chronology of Events.

IV. CASE STUDY: MODELING AUTHENTICATION

To apply a TM to modeling authentication, we adopt a
security case study that involves insider attackers as presented
by Nostro et al. [29]. This case study is interesting because it
adopts a modeling approach using UML diagrammatic and
textual use cases in line with the level of modeling applied in
this paper. Additionally, UML use cases give us an opportunity
to contrast use case diagrams with TM diagrams.

The case study includes the taxonomy of users physically
or logically involved within the system and investigates their
roles as potential insiders. The users are system administrator
(SA), system expert, unknown user, domain expert, human
sensor, and operator. Nostro et al. [29] explore only the SA and
system expert, and we, in this paper, focus on the SA
performing a software update. Fig. 11 shows the use case
related to the SA; the darkened part indicates our region of
emphasis. Fig. 12 shows the textual description of the use case.

Based on such a use case model that ―guides the whole
process,‖ Nostro et al. [29] identify and assess insider threats
and develop countermeasures that are oriented toward
prevention, deterrence, or detection. They also use an ad hoc
attack execution graph called ADVISE (see Fig. 13).

Fig. 11. UML use Case Diagram Involving the SA. (Partially redrawn from

[29]).

Fig. 12. Description of UML use Case Diagram—SA. (Partially Taken from

[29]).

Fig. 13. Sample Attack Execution Graph. (Partially Redrawn from [29]).

We claim in this paper that the TM model presents a
systematic alternative (one kind of notion) in modeling
security. Without loss of generality, we will focus on the
authentication part of Nostro et al. [29] to demonstrate the
viability of the TM model.

V. MODELING AUTHENTICATION

Authentication plays an important role in the security of
computing, hence the existence of several authentication
techniques. An authentication process attempts to verify a
user‘s identity prior to the user‘s access to any resources in
order to protect the system against various attack types. Once
authenticated, the user is permitted to connect with cloud
servers to request services [30-33]. Without loss of generality
and due to space limitations, we will apply the TM model to
only three authentication methods: public key infrastructure
(PKI) authentication, biometric authentication, and multifactor
authentication. As discussed in the case study in Section IV,
the authentication of the SA is a precondition of all four use
cases (system maintenance, data management, profile
management, and crisis management, as represented in
Fig. 11). The login session allows the SA to begin requesting
services from the system. However, no requests from any of
these four use cases will be serviced until the SA is
authenticated by the system.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

366 | P a g e

www.ijacsa.thesai.org

The first SA role to be investigated is the system
maintenance case. This case is an umbrella to three subcases
involving software updates, installing software, and managing
servers.

A. Public Key Infrastructure Authentication

Fig. 14 shows the TM representation of SA roles under the
PKI framework system, whereas Fig. 15 shows the
corresponding dynamic system, assuming the SA is already
certified. The figure comprises two main machines: the SA and
the system (highlighted in yellow).

 The SA logs into his or her account (Circle 1 in
Fig. 14).

 Assuming correct credentials, the system creates (2) a
session.

 The SA issues a request (3) for system maintenance,
such as a software update.

 Upon receiving the request, the system performs the
authentication process (4) [34] as follows:

o The system generates random data (5) using the

SA‘s public key and sends it to him or her (6).

o The SA processes (7) the random data using his or

her private key (8) and sends its encrypted version

to the system (9).

o The system uses the SA‘s public key (10) to decrypt

(11) the incoming encrypted data, producing

decrypted data (12).

o The decrypted data are compared (13) to the original

random data; if they are equivalent, a system

maintenance session is opened for the SA (14).

A selected set of events are described as follows (see Fig.
15):

Event 1 (E1): The SA logs into his or her account, and the system

creates a session accordingly.

Event 2 (E2): The SA issues a request to maintain the system.

Event 3 (E3): The system starts the authentication process by

generating random data and sending it to the SA.

Event 4 (E4): The SA processes the random data using his or her

private key and sends the encrypted data to the system.

Event 5 (E5): The system uses the SA‘s public key to decrypt the

incoming encrypted data, producing a decrypted dataset.

Event 6 (E6): The original random data are transferred to the

comparison module.

Event 7 (E7): The decrypted data are compared to the original

random data.

Event 8 (E8): If the data are equivalent, a system maintenance session

is opened for the SA.

Fig. 16 shows the chronology of these events that model
the behavior of the PKI-based authentication system.

Fig. 14. TM Representation of UML use Case Involving the SA in PKI Authentication.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

367 | P a g e

www.ijacsa.thesai.org

Fig. 15. Meaningful Events During PKI Authentication.

Fig. 16. Control of the PKI Event Sequence.

B. Biometric Authentication

Fig. 17 and 18 show the static and dynamic TM
representations of the SA‘s roles under a physical biometric
authentication system. A typical physical biometric system
carries out authentication in two stages—the enrollment stage
and the verification stage.

Fig. 17 comprises two main machines: the SA and the
system (highlighted in yellow).

 Initially, in the enrollment stage, the SA requests (1)
the biometric trait desired, such as a face or fingerprint.

 In response, the system requests (2) the SA to present
his or her chosen biometric trait.

 The SA then presents (3) the trait to the scanning
hardware.

 The system then extracts (4) the scanned trait for
encryption and storage (5).

 To initiate an interaction with the system, the SA logs
into his or her account (6). With the correct credentials,
the system creates (7) a session.

 The SA issues a request (8) to maintain the system
(e.g., software update).

 The system starts the authentication process (9)
(verification stage) [35].

o The system requests (10) the SA to present his or

her chosen biometric trait.

o The SA then presents (11) the trait to the scanning

hardware.

o The system then extracts (12) the scanned trait for

comparison purposes.

o The originally encrypted trait is decrypted (13) and

compared with the trait extracted from the scanning

hardware (14). If they are equivalent, a system

maintenance session is opened to the SA (15).

Fig. 18 shows the dynamic description of the model. A
selected set of events is described as follows:

Event 1 (E1): The SA requests the biometric trait desired for the

enrollment stage, and the system requests the SA to present the chosen

biometric trait.

Event 2 (E2): The SA presents the trait to the scanning hardware for

extraction.

Event 3 (E3): The extracted data are then encrypted and stored.

Event 4 (E4): The SA logs into his or her account, and the system

creates a session accordingly.

Event 5 (E5): The SA issues a request for system maintenance.

Event 6 (E6): The system starts the authentication process by

requesting the SA to present the chosen biometric trait.

Event 7 (E7): The SA presents the trait to the scanning hardware for

extraction.

Event 8 (E8): The system decrypts the originally encrypted trait.

Event 9 (E9): The extracted trait is compared to the decrypted data.

Event 10 (E10): If the data are equivalent, a system maintenance

session is opened to the SA.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

368 | P a g e

www.ijacsa.thesai.org

Fig. 17. TM Representation of UML use Case Involving the SA in Physical Biometric Authentication.

Fig. 18. Meaningful Events During Physical Biometric Authentication.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

369 | P a g e

www.ijacsa.thesai.org

Fig. 19. Control of the Physical Biometric Event Sequence.

Fig. 19 shows the chronology of events modeling the
behavior of the biometric authentication system.

C. Multifactor Authentication

The diagrams for multifactor authentication are not shown
for space considerations. A typical multifactor system carries
out authentication in two or more stages—the login stage and
other verification stage(s) involving other types of
authentication.

D. Multifactor Authentication

The diagrams for multifactor authentication are not shown
for space considerations. A typical multifactor system carries
out authentication in two or more stages—the login stage and
other verification stage(s) involving other types of
authentication.

This paper assumes the common choice of randomly
generated one-time passwords (OTPs) with two-factor
authentication. The TM model comprises two main machines:
the SA and the system (highlighted in yellow).

 To initiate an interaction with the system, the SA logs
into his or her account. With the correct credentials, the
system creates a session.

 The SA issues a request to maintain the system (e.g.,
software update).

 The system starts the authentication process [36].

o The system identifies the SA‘s registered phone

number and uses it to generate an OTP.

o This password is embedded in an SMS and

transferred to the system‘s phone.

o The system sends the SA an SMS containing the

OTP.

o The SA then inputs the requested OTP in the

displayed form.

o The system extracts the entered OTP for

comparison.

o The OTP entered is compared to the one initially

sent. If they are the same, a system maintenance

session is opened to the SA.

VI. CONCLUSION

In this paper, we presented the thesis that five generic
processes—creating, releasing, transferring, receiving, and
processing—have the expressive power to model key public
infrastructure, biometric, and multifactor authentications.
Expressiveness refers to things said in a description in a
language [2]. The interesting aspect of the TM is the question

of whether TM‘s five generic processes express all things
required in conceptual modeling in software engineering.
Indicators including modeling authentication in this paper point
to the viability of this hypothesis. Further research should
pursue this line of thinking.

REFERENCES

[1] G. Kotonya and I. Sommerville, Requirements Engineering: Processes
and Techniques. Hoboken: John Wiley & Sons, 1998.

[2] S. Patig, ―Measuring Expressiveness in Conceptual Modeling,‖ in
Advanced Information Systems Engineering, A. Persson and J. Stirna,
Eds. Berlin: Springer, 2004, pp. 127–141 [CAiSE 2004, Lecture Notes
in Computer Science, vol. 3084].

[3] R. Y. Lee, ―Chapter 4: Modeling with UML,‖ in Object-Oriented
Software Engineering with UML: A Hands-On Approach. Hauppauge,
NY: Nova Science Publishers, Inc., January 2019.

[4] O. Altuhhova, R. Matulevičius, and N. Ahmed, ―Towards definition of
secure business process,‖ in Lecture Notes in Business Information
Research. Berlin: Springer, 2012, pp. 1–15 [CAiSE 2012 Workshop on
Information Systems Security Engineering, 2012].

[5] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini,
―TROPOS: An agent-oriented software development methodology,‖ J.
Auton. Agents Multi-Agent Syst, vol. 8, no. 3, pp. 203–236, May 2004.

[6] I. Soomro and N. Ahmed, ―Towards security risk-oriented misuse
cases,‖ in Business Process Management Workshops. Berlin: Springer,
vol. 132, 2013, pp. 689–700.

[7] G. Sindre, Mal-Activity Diagrams for Capturing Attacks on Business
Processes. In: Sawyer P., Paech B., Heymans P. (eds) Requirements
Engineering: Foundation for Software Quality. REFSQ 2007. Lecture
Notes in Computer Science, vol 4542. Springer, Berlin, Heidelberg, pp.
pp 355-366, 2007.

[8] Object Management Group, OMG Unified Modeling Language
Superstructure. Version 2.2, http://www.omg.org.

[9] J. Evermann, ―Thinking ontologically: Conceptual versus design models
in UML,‖ in Ontologies and Business Analysis, M. Rosemann and P.
Green, Eds., Location: Idea Group Publishing, 2005.

[10] M. Brambilla and P. Fraternali, ―Chapter 11: Tools for model-driven
development of interactive applications,‖ In View on ScienceDirect
Interaction Flow Modeling Language, M. Brambilla, P. Fraternali, and
M. Kaufmann (eds.), Elsevier Science, pp. 335-358, 2015.

[11] S. Al-Fedaghi and M. Bayoumi, ―Computer attacks as machines of
things that flow,‖ 2018 International Conference on Security and
Management, Las Vegas, NV, July 30–August 2, 2018.

[12] H. Morris, To Be, To Have, To Know: Smart Ledgers & Identity
Authentication, Z/Yen Group, February 2019. https://www.zyen.com/
media/documents/To_Be_To_Have_To_Know_Smart_Ledgers__Identit
y_Authentication.pdf

[13] The Unified Modeling Language, Single Sign-On for Google Apps
UML Activity Diagram Example, accessed 3/8/2019. https://www.uml-
diagrams.org/google-sign-on-uml-activity-diagram-example.html

[14] H. Storrle and J. H. Hausmann, ―Towards a formal semantics of UML
2.0 activities,‖ Software Engineering 2005, vol. P-64 of Lecture Notes
on Informatics, Bonn, Germany, pp. 117-128, 2005.

[15] V. Plavsic and E. Secerov, ―Modeling of login procedure for wireless
application with interaction overview diagrams,‖ Comput. Sci. Inf. Syst.
vol. 5, no. 1, pp. 87–108, June 2008.

[16] S. Al-Fedaghi and G. Aldamkhi, ―Conceptual modeling of an IP phone
communication system: A case study,‖ 18th Annual Wireless
Telecommunications Symposium, New York, NY, April 9–12, 2019.

[17] S. Al-Fedaghi and O. Alsumait, ―Toward a conceptual foundation for
physical security: Case study of an IT department,‖ Int. J. Saf. Secur.
Eng., vol. 9, no. 2, pp. 137–156, 2019.

[18] S. Al-Fedaghi and Y. Atiyah, ―Modeling with thinging for intelligent
monitoring system,‖ IEEE 89th Vehicular Technology Conference:
VTC2019-Spring Kuala Lumpur, Malaysia, April 28–May 1, 2019.

[19] S. Al-Fedaghi and J. Al-Fadhli, ―Modeling an unmanned aerial vehicle
as a thinging machine,‖ 5th International Conference on Control,
Automation and Robotics, Beijing, China, April 19–22, 2019.

https://www.uml-diagrams.org/google-sign-on-uml-activity-diagram-example.html
https://www.uml-diagrams.org/google-sign-on-uml-activity-diagram-example.html

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 9, 2019

370 | P a g e

www.ijacsa.thesai.org

[20] S. Al-Fedaghi and E. Haidar, ―Programming is diagramming is
programming,‖ 3rd International Conference on Computer, Software
and Modeling, Barcelona, Spain, July 14–16, 2019.

[21] M. Heidegger, ―The thing,‖ in Poetry, Language, Thought, A.
Hofstadter, Trans. New York: Harper & Row, 1975, pp. 161–184.

[22] K. Riemer, R. B. Johnston, D. Hovorka, and M. Indulska, ―Challenging
the philosophical foundations of modeling organizational reality: The
case of process modeling,‖ International Conf. on Information Systems,
Milan, Italy, 2013. http://aisel.aisnet.org/icis2013/proceedings/
BreakthroughIdeas/4/.

[23] S. Al-Fedaghi, ―Five generic processes for behaviour description in
software engineering,‖ Int. J. Comp. Sci. Inf. Secur., vol. 17, no. 7, July
2019.

[24] S. Al-Fedaghi, ―Toward maximum grip process modeling in software
engineering,‖ Int. J. Comput. Sci. Inf. Secur., vol. 17, no. 6, June 2019.

[25] L. W. Howe, ―Heidegger‘s discussion of ‗the Thing‘: A theme for deep
ecology,‖ Between Species, vol. 9, no. 2, art. 11, 1993.
doi:10.15368/bts.1993v9n2.9.

[26] L. R. Bryant, ―Towards a machine-oriented aesthetics: On the power of
art,‖ paper presented at The Matter of Contradiction Conference,
Limousin, France, 2012.

[27] P. Byrd, Generic Meaning, accessed 5/8/2019.
http://www2.gsu.edu/~eslhpb/grammar/lecture_5/generic.html

[28] G. Guizzardi and G. Wagner, ―Tutorial: Conceptual simulation
modeling with onto-UML,‖ Proceedings of the 2012 Winter Simulation
Conference, Berlin, Germany, December 9–12, 2012.

[29] N. Nostro, A. Ceccarelli, A. Bondavalli, and F. Brancati, ―Insider threat
assessment: A model-based methodology,‖ Op. Syst. Rev., vol. 48, no.
2, pp. 3–12, December 2014.

[30] S. M. Dejamfar and S. Najafzadeh, ―Authentication techniques in cloud
computing: A review,‖ Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol.
7, no. 1, pp. 95–99, January 2017.

[31] A. Banerjee and M. Hasan, Token-Based Authentication Techniques on
Open Source Cloud Platforms, Systems and Telematics, Vol. 16, No.
47, pp. 9-29, October-December, 2018.

[32] M. Qasaimeh, R. Turab, R. S. Al-Qassas, Authentication techniques in
smart grid: a systematic review, TELKOMNIKA, Vol.17, No.3,
pp.1584-1594, June 2019.

[33] A. Agarkar and H. Agrawal, A review and vision on authentication and
privacy preservation schemes in smart grid network, Security and
Privacy, Vol. 2, No. 2, pp. 1-18,March/April 2019.

[34] M. Furuhed (2018). Public key infrastructure (PKI) explained in 4
minutes, Nexusgroup.com, accessed 5/8/2019. https://www.
nexusgroup.com/blog/crash-course-pki.

[35] W. Yang, S. Wang, J. Hu, G. Zheng, and C. Valli, ―Security and
accuracy of fingerprint-based biometrics: A review,‖ Symmetry, vol. 11,
no. 2, art. 141, January 2019. https://www.mdpi.com/2073-
8994/11/2/141.

[36] K. Garska (2018). Two-Factor Authentication (2FA) Explained: Email
and SMS OTPs, Identity Automation Site, September 27, 2018.
https://blog.identityautomation.com/two-factor-authentication-2fa-
explained-email-and-sms-otps.

https://doi.org/10.15368/bts.1993v9n2.9
http://www2.gsu.edu/~eslhpb/grammar/lecture_5/generic.html
https://www.mdpi.com/2073-8994/11/2/141
https://www.mdpi.com/2073-8994/11/2/141
https://blog.identityautomation.com/two-factor-authentication-2fa-explained-email-and-sms-otps
https://blog.identityautomation.com/two-factor-authentication-2fa-explained-email-and-sms-otps

