
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 9, 2019 

376 | P a g e  

www.ijacsa.thesai.org 

CBRm: Case based Reasoning Approach for 

Imputation of Medium Gaps 

Anibal Flores1, Hugo Tito2, Carlos Silva3 

E.P. Ingeniería de Sistemas e Informática 

Universidad Nacional de Moquegua, Moquegua, Perú 

 

 
Abstract—This paper presents a new algorithm called CBRm 

for univariate time series imputation of medium-gaps inspired by 

the algorithm called Case Based Reasoning Imputation (CBRi) 

for short-gaps. The performance of the proposed algorithm is 

analyzed in meteorological time series corresponding to 

maximum temperatures; also it was compared with several 

similar techniques. Although the algorithm failed to overcome in 

some cases to other proposals regarding precision, the results 

achieved are encouraging considering that some weaknesses of 

other proposals with which it was compared were outperformed. 

Keywords—Case Based Reasoning; CBR; CBRm; univariate 

time series imputation; medium-gaps 

I. INTRODUCTION 

 Time series data exist in nearly every scientific field, 
where data are measured, recorded and monitored, so it is 
understandable that missing values may occur [1]. The 
imputation or completeness of missing values in time series is 
a very important task, since if it is not performed it is very 
complicated or impossible to be able to successfully carry out a 
prediction or forecasting process. 

In the research field of imputation, univariate time series 
are a special challenge, most of the standard algorithms rely on 
inter-attribute correlations to estimate values for the missing 
data [2]. In the univariate case no additional attributes can be 
employed directly, so effective univariate algorithms instead 
need to make use of the time series characteristics. 

In time series, different gaps sizes of NA values can be 
found: 1 or 2 consecutive NAs (short-gaps), from 3 to 10 
consecutive NAs (medium-gaps) and more than 10 
consecutive NAs (big-gaps) [3]. In this paper, a new algorithm 
for univariate time series imputation of medium-gaps is 
proposed, which is based on Case Based Reasoning (CBR) in 
such a way that the historical data of the time series can be 
used to improve the estimation of NA values. This algorithm is 
called CBRm and is implemented very similarly to CBRi 
“unpublished” [4] algorithm. 

CBRm uses the same case base that was implemented for 
CBRi “unpublished” [4], this case base was built from 
maximum daily temperatures of 9 years (2007-01-01 to 2015-
12-31) recorded at the Punta de Coles weather station located 
in the Moquegua region - Peru. The fundamental difference 
respect to CBRi lies in the operation of both techniques. Fig. 1 
shows in summary the CBRi imputation process. As it’s 
appreciated, this operation for medium-gaps can introduce bias 
to the left of the gap, this because CBRi was designed to 

impute time series for short-gaps, between 1 and 2 consecutive 
NAs. Something similar happens with the LANN and LANN+ 
algorithms that were also designed for short-gaps. 

The CBRm imputation process is shown in Fig. 2. As can 
be seen when a value between prior and next is calculated, it is 
not assigned immediately after prior, but is assigned to the 
center of the NA series by doubling in the case that the total of 
NAs is an even number. 

Additionally, this work also presents the results achieved 
by the algorithms called Local Average Nearest Neighbors 
LANN [3] and LANN+ [3] in medium-gaps imputation 
processes. So, a small adaptation for these algorithms was 
done, specifically in the part corresponding to the 
determination of the prior and next values. 

The present work has been organized as follows: in the 
second section, a brief description of the work related to 
univariate time series imputation is shown. The third section 
shows the theoretical bases necessary for a better 
understanding of the content of the work. The fourth section 
describes the proposed algorithm and its implementation. The 
fifth section describes the results achieved, which are 
compared with different univariate time series imputation 
techniques. The sixth section shows the conclusions reached in 
the present work and finally in the seventh section, it is 
indicated, the works that can be carried out based on the results 
of the work presented. 

 

Fig. 1. CBRi Imputation Process. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 9, 2019 

377 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 2. CBRm Imputation Process. 

II. RELATED WORK 

This section shows the results of the review of different 
techniques or algorithms for univariate time series imputation, 
from the oldest to the newest. 

The first techniques for univariate time series imputation 
were quite simple and consisted of using arithmetic mean, 
median, mode, interpolation and Last Observation Carried 
Forward (LOCF) [5]. 

Last Observed Carried Forward (LOCF) is a technique for 
filling a NA value with the closest non-NA value prior to it [6]. 
Each individual NA value is replaced by the last observed 
value of that variable. 

Baseline Observation Carried Forward (BOCF) [7]  is 
similar to the LOCF; it replaces NA values with the non-
missing baseline observation of the time series. 

Hot-deck [8] [9], an NA value is replaced with an observed 
value that is closer in terms of distance. The Hot-deck 
algorithm randomly selects a value from a set of non-NA 
values and replaces the NA value. For comparative analysis, in 
this work, the hot-deck algorithm implemented in VIM R 
package is used. 

Missing Value Imputation by Weighted Moving Average 
[10], is a set of algorithms that use the average or mean of the 
non-NA elements around an NA value. For an NA value at 
position i of a time series and assuming a window size of k=2, 
the observations i-1, i+1 and i+1, i+2 are used to calculate the 
mean. 

There are three algorithms for univariate time series 
imputation in this category such as: Simple Moving Average 
(SMA) [10], Linear Weighted Moving Average (LWMA) [10] 
and Exponential Weighted Moving Average (EWMA) [10]. 

Simple Moving Average (SMA) [10] [11]: This algorithm 
for calculating the mean use all observations in the window 
which are equally weighted. 

Linear Weighted Moving Average (LWMA) [10] [11]: In 
this algorithm weights decrease in arithmetical progression. 
The observations directly next to an NA value in position i, 

have weight 1/2, the observations one further away (i-2,i+2) 
have weight 1/3, the next (i-3,i+3) have weight 1/4, and so on. 

Exponential Weighted Moving Average (EWMA) [1] [10] 
[11]: it is an approach that allows imputing NA values by 
calculating the exponentially weighted moving average. 
Initially, the value of the window for the moving average is 
established, and then the average is calculated from the same 
number of observations on each side of the central missing 
value or NA value. The observations directly next to a central 
value i, have weight (1/2)1, the observations one further away 
(i-2,i+2) have weight (1/2)2, the next (i-3,i+3) have weight 
(1/2)3, and so on. In this work, the algorithms SMA, LWMA 
and EWMA are implemented for comparative analysis using 
the imputeTS R package. 

The Kalman filter [12], also known as LQE (linear 
quadratic estimation), is an algorithm that uses a series of 
measurements observed over time, which contains statistical 
noise and other inaccuracies, and produces estimates of 
unknown variables that tend to be more accurate than those 
based on a single measurement. Kalman filter integrated with 
ARIMA produces very good results in regression processes. In 
this work imputeTS package in R is used for implementing 
Kalman ARIMA imputation, imputeTS implements auto.arima 
[11] for better results. 

LANN and LANN+ [3] are two fairly simple algorithms 
based on moving averages that show very good results in the 
short-gaps imputation process. As mentioned earlier, these 
techniques were adapted for the respective evaluation in 
medium-gaps. This adaptation only consisted of modifying the 
way in which these algorithms obtained the prior and next 
values. 

For a comparative analysis of the results achieved by the 
imputation algorithm (CBRm) proposed in the present work, 
two well-known multivariate imputation algorithms were also 
implemented, such as KNN (K-Nearest Neighbor) [13] and 
MICE (Multiple Imputation by Chained Equations) [14] [15], 
these algorithms were implemented using the R VIM package 
for KNN and the mice package for MICE. In section V of this 
work, the achieved results can be seen. 

III. THEORETICAL BACKGROUND 

A. Time Series 

A time series is a sequence of data, observations or values, 
measured at certain time periods and sorted chronologically. 
The data can be spaced at equal intervals or uneven. For the 
analysis of the time series, different methods are used that help 
to interpret them and that allow extracting representative 
information about the underlying relationships between the 
data of the series. 

One of the most common uses of time series is its analysis 
for prediction and forecasting. Time series are studied in 
different areas such as statistics, signal processing, 
econometrics, etc. Some features or characteristics of time 
series are: trends, cycles of seasonality and non-seasonality, 
pulses and steps, and outliers. 
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B. Missing Data 

Depending on what causes missing data, the gaps will have 
a certain distribution. Understanding this distribution may be 
helpful in two ways [16]. First, this knowledge can be used to 
select the most appropriate imputation algorithm to complete 
the NA values. Secondly, this knowledge can help design an 
imputation model, which allows the elimination of the NA 
values from a set of test data. This model will help generate the 
NA values where the true values are known. Therefore, the 
quality of the model can be tested through different regression 
metrics such as RMSE, MAPE, etc. 

Mechanisms of missing data can be classified into three 
categories: Missing Completely at Random (MCAR), Missing 
at Random (MAR) and Not Missing at Random (NMAR). The 
process of completing NA-gaps in time series is sometimes 
complicated, since the underlying mechanisms are unknown 
[16]. The diagnosis of MAR and NMAR requires a manual 
analysis of data patterns and the application of domain 
knowledge, while MCAR can be tested with the t-test or 
Little’s test [17]. 

C. Univariate Time Series 

This term refers to a time series that consists of single 
observations recorded sequentially over successive time 
periods. Although a univariate time series is usually considered 
as one column of observations, time is in fact an implicit 
variable [16]. 

D. Univariate Imputation Methods 

Techniques capable of doing imputation for univariate time 
series can be roughly divided into three categories [16]: 

 Univariate algorithms. These algorithms work with 
univariate inputs and commonly do not employ the 
time series features. Some of them are: mean, mode, 
median, random simple, last observed carried forward, 
etc. 

 Univariate time series algorithms. Most of these 
algorithms are developed in section II, and some of 
them are: Missing Value Imputation by Weighted 
Moving Average [3] (SMA, LWMA and EWMA), 
Kalman, ARIMA, ARIMA-Kalman, Local Average of 
Nearest Neighbors [3] (LANN y LANN+), and Case 
Based Reasoning Imputation (CBRi) among others no 
cited in this work. 

  Multivariate algorithms on lagged data. Commonly, 
multivariate algorithms cannot be used for univariate 
time series. However, using lags and leads it is possible 
to apply multivariate time series algorithms to a 
univariate time series and thus take advantage of 
features offered by multivariate algorithms. 

E. Case Based Reasoning (CBR) 

CBR is a nature inspired problem solving methodology 
[18]. It uses a solution that worked for a problem to solve a 
similar new problem, it’s called reasoning by remembering. 

The first principle of the CBR approach is: similar 
problems have alike solutions i.e. to solve a new problem [18], 

the existing problems and their solutions from the case base are 
retrieved and re-used. 

The second principle is that the type of problems which an 
agent faces tends to repeat [18]. Thus, there is similarity 
between past and current problems or current and future 
problems. Therefore, it is worth to remember and reuse. This 
leads to construction of the case base which contains 
completely resolved problems and their respective solutions. 

The complete Case Based Reasoning process is shown in 
Fig. 3. 

 

Fig. 3. CBR Process. 

IV. CBRM 

CBRm is inspired by the CBRi “unpublished” [4] algorithm 
that was designed for short-gaps imputation processes and that 
when applied to medium-gaps imputation processes can 
present problems of bias towards the prior value. Taking this 
assessment into consideration, CBRm begins the imputation 
from the middle of the series of consecutive NAs as shown in 
Fig. 2. 

Fig. 4 shows the proposed CBR system within which 
implements the CBRm algorithm. Implementation process for 
CBRm is quite similar to CBRi “unpublished” [4], below are 
the required steps to implement it. 

A. Time Series Selection 

A time series of maximum daily temperatures 
corresponding to 9 years was chosen, from 2017-01-01 to 
2015-12-31. These data correspond to the Punta de Coles 
weather station in Moquegua region (Peru) and were retrieved 
from the SENAMHI institutional repository at the following 
web link: https://www.senamhi.gob.pe/?&p = download-
hydrometeorological-data. 
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B. Case Base Implementation 

An algorithm was implemented to build the case base. The 
case base matrix consists of something similar to what is 
shown in Table I. 

The algorithm in Javascript language to build the case base 
is shown in Table II “unpublished” [4]. This algorithm aims to 
create the matrix or case base (Q). It receives as arguments the 
empty Q matrix and a temperature vector, and returns as a 
result the matrix of cases Q. 

TABLE. I. CASE BASE  FROM 9-YEAR TIME SERIES 

 … 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 18.0 18.1 18.2 18.3 18.4 … 

…  
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.6 
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.8 
17.8 17.8   17.6*18.2*17.8   18.2*18.2   

17.8*19.2*18

.4*18.4*18.4

*18.2*18.4*1

8.1 

  
18.2*18.2*1

8.8*18.7 
 

18.0  
            

18.2  

18.1  18*17.4   17*17.8   
17.4*18.2*

18.4*17.2 
  

16.4*18*18.6*1

8*18*18.2*18.4 
  

17.8*17.6*18.8

*17.8*17.8*18.

2*18.2 

  18*18   

17.8*18.6*1

9.4*19.4*18.
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18.3  18.8   18.8*18.6   17.4   18*17.8   
18.6*19.2*18.2

*18.2 
  

17.6*18*19.8

*18.6*18.2 
  17.6*18.2  

…                

TABLE. II. ALGORITHM TO BUILD THE CASE BASE (Q) 

function fillMatrix(Q,temv) 

{ nQ=Q.length; 

 for(i=0; i<nQ; i++) 

 { prior=temv[i]; 

  for(j=0; j<nQ; j++) 

  { next=temv[j];    

   res=look4cases(prior,next); 

   if(res!="") 

    Q[i][j]=res;  

  } 

 } 

 return Q; 

} 

C. CBRm Implementation 

According to Fig. 4, four blocks of code can be seen in the 
CBRm algorithm, and their detail can be seen in the code 
shown in Table III. The CBRm algorithm receives as inputs the 
time series with NA values and an array with the positions of 
each NA value. 

As it shows in Fig. 4, for the first block of code that 
corresponds to the determination of the prior and next values 
that are required by the getMoreSimilar() function to extract 
the most similar case from the case base; these values are 
determined through the code between line 4 and line 18 using 
for this task the array of positions of the NA values. 

 

Fig. 4. CBR System. 
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TABLE. III. CBRM ALGORITHM 

1. function CBRm(tsna,pos) 

2. { npos=pos.length;  

3.  while(npos>0) 

4.  { nna=0; 

5.   ini1=pos[0]; 

6.   fin1=pos[0]; 

7.   pini=0; 

8.   pfin=pini; 

9.   prior=parseFloat(tsna[pos[0]-1]); 

10.   nav=tsna[ini1]; 

11.   while(nav=="NA") 

12.   { nna++; 

13.    fin1++; 

14.    pfin++; 

15.    nav=tsna[fin1]; 

16.   } 

17.   next=parseFloat(nav); 

18.   fin1--;  

19.   data=getMoreSimilar(prior,next); 

20.   dat=data.split("*"); 

21.   ndat=dat.length; 

22.   s=0; 

23.   for(k=0;k<ndat;k++) 

24.    s+=parseFloat(dat[k]); 

25.   NA=(prior+(s/ndat)+next)/3; 

26.   sNA=NA.toFixed(1); 

27.   rna=nna%2; 

28.   pna=Math.floor((ini1+fin1)/2); 

29.   del=Math.floor((pini+pfin)/2); 

30.   if(rna==0) 

31.   { m1=pna; 

32.    m2=pna+1; 

33.    tsna[m1]=smed; 

34.    tsna[m2]=smed; 

35.    pos.splice(del-1,2); 

36.   } 

37.   else 

38.   { tsna[pna]=sNA; 

39.    pos.splice(del,1); 

40.   } 

41.   npos=pos.length;  

42.  } 

43.  return tsna; 

44. } 

In the second block of code (line 19) the getMoreSimilar () 
function is called, this function implements a similarity search 
in the base of cases (Q) using the prior and next values 
determined in the previous code block, returning a string 
containing the values that will be used in the next code block. 
The getMoreSimilar() function implements Euclidean Distance 
according to equation (1) to determine the similarity between 
two points. 

   √(     )
  (     )

          (1) 

In the third block of code between lines 20 and 26, the 
string returned by the getMoreSimilar () function is used and 
the NA value is calculated according to equation (2). 

   
(      

∑ (  )   
   
 

     )

 
             (2) 

In the last block of code from line 27 to line 40, the NA 
value is filled with the value calculated according to the 
imputation process shown in Fig. 2. The process is repeated 
until the time series does not contain NAs values. 

V. RESULTS AND DISCUSSION 

In this section, the performance of the proposed algorithm 
CBRm is compared with different techniques described in 
Section II, the comparative results are shown below. 

According to Table IV, for a 15-days maximum 
temperature time series with 73.33% of NA values, the best 
techniques were LWMA and EWMA in the first place (RMSE 
0.6941); second is LANN+ (RMSE 0.7077); and thirdly very 
close to the previous one is CBRm (RMSE 0.7083). For a 
percentage of 60% of NAs, the best technique was LANN+ 
(RMSE 0.6616); secondly LANN (RMSE 0.7187); and thirdly 
CBRi (RMSE 0.7461). For a percentage of 46.67% of NAs, the 
best technique was CBRi (RMSE 0.4140); second is LANN 
(RMSE 0.4423); and finally, thirdly EWMA (RMSE 0.4780).  

It is important to highlight that for the first two cases, 
ARIMA Kalman produced no results. 

A graphical comparison of CBRm RMSE with other 
techniques can be seen in Fig. 5. 

TABLE. IV. COMPARISON WITH OTHER UNIVARIATE IMPUTATION 

TECHNIQUES (15 DAYS) 

Technique 
RMSE (NAs 

73.33%) 

RMSE (NAs 

60%) 

RMSE (NAs 

46.67%) 

CBRm 0.7083 0.8164 0.6152 

CBRi 0.8575 0.7461 0.4140 

LANN 0.8050 0.7187 0.4423 

LANN+ 0.7077 0.6616 0.6175 

Hotdeck 0.9534 0.9189 1.0823 

SMA 0.7323 0.8432 0.4928 

LWMA 0.6941 0.8096 0.5209 

EWMA 0.6941 0.7958 0.4780 

ARIMA Kalman NA NA 0.5976 

 

Fig. 5. Comparison with other Techniques (15 Days). 
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According to Table V, for 90-day time series with a 
percentage of 80% of NA values, the best technique was 
CBRm (RMSE 0.6844); second is LWMA (RMSE 0.7673); 
and thirdly EWMA (RMSE 0.7682). For a percentage of 
65.55% of NAs, the best technique was SMA (RMSE 0.7035), 
followed by LWMA (RMSE 0.7083), and thirdly LANN+ 
(RMSE 0.7339). For a percentage of NAs of 54.44%, the best 
technique was LWMA (RMSE 0.8106), followed by SMA 
(RMSE 0.8403), and thirdly EWMA (RMSE 0.8535) 

A graphical comparison of CBRm RMSE with other 
techniques can be seen in Fig. 6. 

Also, CBRm was compared with two multivariate 
imputation techniques such as MICE and KNN. For this task, 
the data from the closest weather station to Punta de Coles, the 
Ilo station was used. In Table VI, the results are shown. 

TABLE. V. COMPARISON WITH OTHER UNIVARIATE IMPUTATION 

TECHNIQUES (90 DAYS) 

Technique 
RMSE 

(NAs 80%) 

RMSE 

(NAs 65.55%) 

RMSE 

(NAs 54.44%) 

CBRm 0.6844 0.8050 0.8968 

CBRi 0.8086 0.8112 0.8905 

LANN  0.8422 0.8198 0.9053 

LANN+ 0.8276 0.7339 0.8608 

Hotdeck  1.4337 1.6323 1.4996 

SMA (k=1)  0.8324 0.7035 0.8403 

LWMA (k=4)  0.7673 0.7083 0.8106 

EWMA (k=4)  0.7682 0.7456 0.8535 

ARIMA Kalman  5.4275 6.7383 2.6836 

 

Fig. 6. Comparison with other Techniques (90 Days). 

TABLE. VI. COMPARING WITH MICE AND KNN (90 DAYS) 

Technique  
RMSE 

(NAs 80%) 

RMSE 

(NAs 65.55%) 

RMSE 

(NAs 54.44%) 

CBRm 0.6844 0.8050 0.8968 

MICE  1.4063 1.3900 1.4714 

KNN  1.0807 1.0751 1.2388 

According to Table VI, the proposed CBRm outperformed 
the multivariate imputation algorithms KNN and MICE. 

CBRi “unpublished” [4] despite the weaknesses mentioned, 
of the six problems proposed, as CBRm in two of them was 
among the best: in one of them it reached first place and in 
another it achieved third place. 

LANN [3] for medium-gaps from 6 problems, in 2 of them 
he was among the best, it got second place twice. LANN+ [3] 
was a little better tan LANN, in 3 cases it was among the best 
getting the first, second and third place. 

VI. CONCLUSION 

In imputation processes of meteorological time series with 
medium-gaps (from 3 to 10 consecutive NAs), corresponding 
to time series of maximum temperatures, of the six proposed 
problems, in two of them CBRm was among the best: in one of 
them it reached the best performance and in another it achieved 
the third place. 

Comparing CBRm with CBRi “unpublished” [4], of the 6 
problems proposed in 3 cases CBRm outperformed CBRi 
“unpublished” [4] and in three other cases CBRi outperformed 
CBRm, so it is concluded that both techniques are good 
alternatives for the medium-gaps imputation process. 

VII. FUTURE WORK 

In this section, it is important to highlight the main 
limitation of CBRm, since it is based on historical data from 
the time series; it requires large amounts of historical data, 
something not always present in the known time series. A 
solution to this problem could be the complementation of the 
technique with other techniques until the case base has enough 
cases. 

In the present study a medium-gaps imputation algorithm 
was proposed and analyzed, it would be interesting and 
important for future work to use gaps of 11 or more NA values 
(big-gaps). Also, it would be important to analyze the CBRm 
performance in other time series, for example in time series 
with no trend and no seasonality. 

REFERENCES 

[1] Rantou, “Missing Data in Time Series and Imputation Methods,” 
University of the Aegean, Samos, 2017. 

[2] S. Moritz, A.Sardá, T. Bartz-Beielstein, M. Zaeffer, J, Stork, 
“Comparison of different methods for univariate time series imputation in 
R,” arxiv.org, 2015. 

[3] A. Flores, H. Tito, C. Silva, “Local average of nearest neighbors: 
Univariate time series imputation,” International Journal of Advanced 
Computer Science and Applications, vol. 10, nº 8, 2019. 

[4] A. Flores, H. Tito, C. Silva, “CBRi: A Case Based Reasoning-Inspired 
Approach for Univariate Time Series Imputation. Unpublished,” de IEEE 
Latin American Conference on Computational Intelligence, Guayaquil, 
Ecuador, 2019. 

[5] N. Bokde, M. Beck, F. Martinez, K. Kulat, “A novel imputation 
methodology for time series based on pattern sequence forecasting,” 
Pattern Recognition Letters, 2018. 

[6] A. Zeileis, G. Grothendieck, “zoo: S3 infrastructure for regular and 
irregular time series,” Journal of Statistical Software, vol. 14, nº 6, 2005. 

[7] K. Kaiser, O. Affuso, T, Beasley, D. Allison, “Getting carried away: A 
note showing baseline observation carried forward (BOCF) results can be 
calculated from published complete-cases results,” PMC US National 
Library of Medicine, 2012. 

0.6844 0.805 

0.8968 
0.8086 0.8112 

0.8905 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

80.00% 65.55% 54.44%

R
M

SE
 

NA Percentage 
CBRm CBRi LANN LANN+

Hotdeck SMA LWMA EWMA



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 9, 2019 

382 | P a g e  

www.ijacsa.thesai.org 

[8] A. Kowarick, M. Templ, “Imputation with the R package VIM,” Journa 
of Statistical Software, vol. 74, nº 7, 2016. 

[9] T. Aljuaid, S. Sasi, “Proper imputation techniques for missing values in 
data sets,” de International Conference on Data Science and Engineering 
(ICDSE), Cochin, India, 2016. 

[10] S. Moritz, “Package ImputeTS,” cran.r-project.org, 2019. 

[11] S. Moritz, T. Bartz-Beielstein, “imputeTS: Time Series Missing Value 
Imputation in R,” The R Journal, vol. 9, nº 1, pp. 207-2018, 2017. 

[12] A. Chaudhry, W. Li, A. Basri, F. Patenaude, “On improving imputation 
accuracy of LTE spectrum measurements data,” de Wireless 
Telecommunications Symposium, Phoenix, AZ, USA, 2018. 

[13] S. Van Buuren, K. Groothuis-Oudshoorn, “mice: multivariate imputation 
by chained equations in R,” Journal of Statistical Software, vol. 45, nº 3, 
2011. 

[14] G. Chang, T. Ge, “Comparison of missing data imputation methods for 
traffic flow,” de International Conference of Transportation, Mechanical, 
and Electrical Engineering (TMEE), Chanchung, China, 2011. 

[15] B. Sun, L. Ma, W. Cheng, “An improved k-nearest neighbours method 
for traffic time series imputation,” de Chinese Automation Congress 
(CAC), 2017. 

[16] S. Moritz, A. Sardá, T. Bartz-Beielstein, M. Zaefferer, J. Stork, 
“Comparison of different Methods for Univariate Time Series Imputation 
in R,” arxiv.org, 2015. 

[17] R. Little, “A test of missing completely at random for multivariate data 
with missing values,” Journal of the American Statistical Association, 
vol. 83, nº 404, pp. 1198-1202, 1988. 

[18] M. Khan, H. Hayat, I, Awan, “Hybrid case-base maintenance approach 
for modeling large scale case-based reasoning systems,” Human-centric 
Computing and Information Sciences, vol. 9, nº 9, 2019. 


