
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 1, 2020

High Performance Computing in Resource Poor
Settings: An Approach based on Volunteer

Computing

Adamou Hamza1, Azanzi Jiomekong2
University of Yaounde I, Faculty of Sciences, Yaounde, Cameroon;

IRD, Sorbonne Université, UMMISCO, F-93143, Bondy, France

Abstract—High Performance Computing (HPC) systems aim
to solve complex computing problems (in a short amount of time)
that are either too large for standard computers or would take
too long. They are used to solve computational problems in many
fields such as medical science (for drug discovery, breast cancer
detection in images, etc.), climate science, physics, mathematical
science, etc. Existing solutions such as HPC Supercomputer, HPC
Cluster, HPC Cloud or HPC Grid are not adapted for resource
poor settings (mainly for developing countries) because their fees
are generally beyond the funding (particularly for academics)
and the administrative complexity to access to HPC Grid creates
a higher barrier. This paper presents an approach allowing to
build a Volunteer Computing system for HPC in resource poor
settings. This solution does not require any additional investment
in hardware, but relies instead on voluntary machines already
owned by the private users. The experiment has been made on
the mathematical problem of solving the matrices multiplication
using Volunteer Computing system. Given the success of this
experiment, the enrollment of other volunteers has already
started. The goal being to create a powerful Volunteer Computing
system with the maximum number of computers.

Keywords—Volunteer computing; resource poor settings; high
performance computing; matrix multiplication

I. INTRODUCTION

High performance computing [1], [2], [3], [4], [5] is really
important in most scientific and industrial sectors. It helps sci-
entists gain valuable insights to boost innovation and discovery
in almost all areas of science ranging from life sciences [6],
[7], [8] to quantum mechanic [9] and large scale data mining
[10], [11]. In the industrial sector, high performance comput-
ing gives companies a significant competitive advantage in
reducing the costs of development cycles and in producing
higher quality products and services [12]. Societal challenges,
including preventing and managing natural disasters, early
detection and treatment of disease, and forecasting climate
evolution require very high computing power [13].

In the past, dedicated supercomputers [14], [15] powerful
machines made up of a large number of processors, were
only used to build a HPC system. Despite the processing
capacity and the speed of calculation of these computers, they
do not offer the commodity price advantage, especially for
small businesses and academics [13], [16]. Then, the following
solutions were proposed : HPC Clusters [17], [18], [19], HPC
Cloud [20], [21], and HPC Grid [19], [22]. HPC Cluster is
a system composed of computers connected to a local area
network, while HPC Cloud is a system involving computers

connected in a private or public network. Finally, HPC Grid is
composed of computers connected in wide-area networks such
as Internet.

The proposed solutions cannot be applied in low resource
areas because of its costs. The HPC Cluster and the HPC Cloud
require financial resources beyond the reach of most institu-
tions in developing countries. For the HPC Grid, administrative
complexity in obtaining the necessary permissions to use this
system can be a higher barrier [21].

In developed countries, HPC have provided computing
resources to projects at a huge scale [23], often resulting
in major scientific discoveries and invention whether at the
universities or businesses level. However, in resource poor or
limited settings, many academics and small business do not
always have enough resources to access to the HPC. Resource
poor or constrained settings are defined as a local where the
capability to provide HPC is limited to basic critical resources,
including desktops and laptops. Resource poor settings can be
stratified by no resources and limited resources. In resource
limited settings, people use their personal computers for com-
putation. This article focuses on the limited resources category.
These include scientists in research teams with significant
computational needs, individuals in developing countries with
no access to other alternatives.

It should be noted that in many developing countries, the
wide range of commercial centers of computers has made
available many devices. For instance, in the Department of
Computer Science at the University of Yaounde I in Cameroon,
there are about 1,000 computers owned by lecturers and
students; the Internet connection is widespread in Cameroon.
These computers are idle most of the time (e.g., when students
are in class or sleeping at night, etc.), this therefore constitutes
a source of computing power available and largely reusable.
If their owners are willing to actively lend CPU time and
memory, these devices can be used as distributed computing
infrastructure at no cost. This is called a Volunteer Com-
puting (VC) system [24], [25], [26], [27]. A HPC Volunteer
Computing system is obtained through community engagement
by setting up a system of volunteer machines. Their goal is
similar to HPC Grid, which is to gather distributed computing
resources and federate them to solve large computational
problems. The difference between these two systems is that the
resources come from non-dedicated computers, underutilized
and controlled by their owners (volunteers). This approach
requires no additional hardware investment, but relies on

www.ijacsa.thesai.org 1 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 1, 2020

devices already owned by users and their communities.

This article presents an approach to build a Volunteer
Computing system for HPC in resource poor settings. Initially,
the Section II describes the main solutions to HPC problems.
Then, the Sections III and IV follow with our solution and the
experience of this solution respectively. Finally, the Section V
concludes and opens future directions.

II. HIGH PERFORMANCE COMPUTING (HPC)

High Performance Computing uses the principle of parallel
computing to address the high computing requirements of
applications by dividing them into smaller ones that can
be processed simultaneously on different computing units.
These computing units can reside on the same computer
(Supercomputer) or on multiple computers connected by a
network forming HPC Cluster, HPC Cloud, HPC Grid and
HPC Volunteer Computing. These solutions are presented in
this order in the rest of this section.

A. HPC Supercomputers

One of the best known type of HPC solution is the
Supercomputer [14], [15], [28]. A Supercomputer contains
hundreds, thousands or even millions of computing units form-
ing a massively paralleled processor organized in a network of
processors [29], [30]. For instance, the Summit - IBM Power
System AC9221 contains 2, 414, 592 cores. These processors
work together to solve large computational problems as effi-
ciently and quickly as possible.

Supercomputers allow us to obtain a great computing
power. However, with the entry fees [13], [15], acquiring a
Supercomputer is almost impossible for scientists and en-
gineers working in resource poor settings. Because of this
limitation, other HPC solutions that do not require a fully
dedicated computer have been developed. These solutions are
HPC Cluster, Cloud, Grid and Volunteer Computing.

B. HPC Cluster

A HPC cluster is a computing system in which independent
computers are connected by a high performance local area
network in order to solve complex problems [18], [19], [31],
[32]. Each machine in the HPC cluster is a complete computer
consisting of one or more CPUs or cores, memory, disk drives
and network interfaces. HPC cluster is generally owned by
a single administrative entity. The software used to manage
clusters give users the illusion that they are with a single large
computer when in reality the cluster may consists of hundreds
or thousands of individual machines [33]. A cluster is much
more cost-effective than a single supercomputer of comparable
speed [13], [16].

An example of a computer cluster is the dedicated phys-
ical cluster at HP Labs Singapore (HPLS)2. This cluster is
connected to a Gigabit Ethernet network on a single switch.
Each server, with 2 CPU sockets (populated with a 6 core
CPU), results in twelve physical cores per machine.

1https://www.top500.org/system/179397
2https://xrds.acm.org/article.cfm?aid=2000789

C. HPC Cloud

A High Performance Computing Cloud [20], [21], [34],
[35] is an on-demand availability of computing power, without
direct active management by the user. It provides dynamic
and scalable computing power through resources organized in
data centers distributed around the world. By purchasing on-
the-go and not as an asset, HPC Cloud delivers consistent,
scalable results, minimizing the initial costs of computing
infrastructure. A cloud can be private (operating for a single
organization) or public (open for public use). Since 2016,
many IT companies such as Amazon Web Services (AWS)3,
Microsoft Azure cloud4, Google Cloud Platform5 have offered
HPC Cloud.

The advantage of the HPC cloud over other types of HPC
is that it allows the user to immediately access computing
resources without the approval of an allocation committee and
the service can be provided without human interaction with
the service provider. Software can be used without the need
to purchase a license or install it, and users do not need to
have strong software/infrastructure management skills [21],
[36]. However, in the context of resource poor settings, the
main drawback of HPC Cloud is that it relies on dedicated
hardware managed centrally, which implies a minimum cost
which can be high for academics and small businesses [21].

D. HPC Grid

A Grid consists of many computing resources (from multi-
ple administrative domains) connected to a network (e.g., The
Internet) working together to solve large problems requiring
HPC. The whole system is called a HPC Grid [19], [22], [37].
The HPC Grid differs from the HPC Cluster or Cloud in that it
uses many computers, but with a much more distributed nature.
Some HPC Grids span the world while others are located
within a single organization.

The HPC Grid capabilities are generally managed by a
precise organization and computational resources are provided
by various supporting institutions, such as companies, research
groups, laboratories, and universities. Large Grid computer
facilities are often used by a large number of users to solve
intensive scientific, mathematical, and academic problems.
However, the administrative complexity (obtaining necessary
authorizations) allowing the public to access a HPC Grid is a
real barrier for academics and small businesses. [25].

An example of Grid is the French Grid’50006. This Grid
is distributed over 8 sites, 31 clusters and 12,328 cores. Each
site hosts a cluster and all sites are connected by high speed
network. It aims to provide a highly reconfigurable, control-
lable and monitorable experimental platform for research in
large-scale parallel and distributed systems.

E. HPC Volunteer Computing

In HPC Volunteer Computing (VC) [24], [25], [27], [38],
[39], computer users/owners, who are members of the general
public contribute their computing resources to solve HPC

3https://aws.amazon.com
4https://azure.microsoft.com
5https://cloud.google.com
6https://www.grid5000.fr/w/Grid5000:Home

www.ijacsa.thesai.org 2 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 1, 2020

problems. It is based on two pillars: the first is the allocation
and management of large computing tasks; the second is the
participation of a large number of individuals volunteer who
offer their computing resources to a project. Compared to
HPC Cluster, HPC Cloud and HPC Grid, HPC VC removes
financial and administrative barriers. The costs are supported
by volunteers, which cover the acquisition, operation, and
maintenance of the computing devices.

HPC Volunteer Computing has produced many remarkable
scientific results over the last decade. The most popular Volun-
teer Computing systems are: SETI@home78 [40] for searching
the extraterrestrial intelligent life and Folding@home9 [41] for
statistical calculations of molecular dynamics trajectories for
models of biological systems. The Folding@home project is
a good example of how important scientific results can be
produced with VC for affordable problems for other HPC
schemes. For instance, in 2008, it was used to study mutations
of influenza hemagglutinin [23].

The main challenges of the Volunteer Computing approach
is the capabilities of personal devices, the need to encour-
age and maintain volunteer engagement, and the automatic
management of volunteer unreliability [42], [43]. Despite the
previous challenges, Volunteer Computing is the solution for
HPC in resource poor settings. In fact, in many developing
countries, the wide range of commercial centers of computers
has made available a lot of devices. These devices spend
a lot of time without being used. They can then be used
free of charge as a distributed computing infrastructure. It
requires no investment in additional hardware, rather relies on
devices that generally belong to users and their community,
and favours simple tools that can be implemented part-time
by a single developer. Section III, will be concerned with
a methodology for deploying and using HPC to improve
computing in resource poor settings while in Section IV, it
will be shown in experiments that this solution can solve the
problem of HPC in resource poor settings.

III. AN APPROACH BASED ON VOLUNTEER COMPUTING
FOR HPC IN RESOURCE POOR SETTINGS

The lack of HPC resources is a challenge for scientists,
engineers and businesses in resource poor settings. However
many countries have an Internet or local network and many
computers are owned by individuals. For example, in the
computer science department of the University of Yaounde
I in Cameroon, there are around 1,000 computers belonging
to students and lecturers. Generally, these computers are not
used full time. For example, students spend a lot of time
a week attending classes, sleeping, or taking breaks. These
computers can be used during their idle time to build a
platform for Volunteer Computing. Considering the resource
poor settings constraints, this section presents an approach
(summarized in Fig. 1) for HPC in these environments. This
approach is divided into three main activities: management
activity (Section III-A), processing activity (Section III-B) and
support activity (Section III-C).

7https://setiathome.berkeley.edu/
8https://www.seti.org/
9https://foldingathome.org/

A. The Management Activity

The management activity uses information about the daily
work of volunteers (e.g., the performance of the system
and of each volunteer) to supervise the system and increase
efficiency. This is the essential key to the success of the
Volunteer Computing system. For instance, information about
the volunteers, the types of tasks performed (e.g. matrix mul-
tiplication, polynomial multiplication), the name of each task,
the duration of execution of the tasks, the success or failure of
the execution of the tasks and the dates of their execution, will
allow us to consider the resource poor settings context. The
management activity involves the following activities: design
of the Volunteer Computing system (Section III-A1), plan-
ning (Section III-A2), coordination (Section III-A3), staffing
(Section III-A4), motivation (Section III-A5), control (Section
III-A6) and quality assurance (Section III-A7).

1) Design of the Volunteer Computing System: The first
and main activity of this approach is to set up the Volunteer
Computing system. Resource poor settings generally suffer
from power outages and malfunctions in Internet connectivity.
In our approach, potential volunteers are firstly users who are
often connected to the Internet, secondly those who need the
system later and finally friends, family members or communi-
ties. Each volunteer has information about the others. A server
is designed and contains the most up-to-date information about
the volunteers, sent by the latter. All other local information
for volunteers is updated by the server. If the server crashes
(due to a power outage or a failure), the election algorithm
[44], [45] is used to choose the volunteer that will replace the
server by waiting that the problem is solved. In our case, it
will consist of choosing the volunteer who connects the most
to the Internet. Overall, the proposed VC is defined by the
equation 1, where:

• S is the server. In our approach, the server is used to
centralize all the volunteer information in the system
in order to restore it whenever a volunteer needs it.
Thus, the server will be used to store all the informa-
tion on the system, the performance of the system,
and of each volunteer in the system, the logs on
the computation performed, the type of tasks already
completed and its performances, tasks in progress or
waiting. These information are essential for efficient
management of the system. The server will use the
feedback to help volunteers estimate the execution
time each time a volunteer wants to perform a task
by the system.

• Vi a volunteer computer. It receives tasks, performs
them and returns the result. It can submit tasks to
other volunteers, retrieve the results and merge to
obtain the final result. It informs the server of all
the computation activities carried out, in progress or
pending. It receives updated information from other
volunteers from the server.

• Pi the profile of the volunteer Vi. The profile Pi

contains information on the elements that can be
used to determine its computing capacity. These are:
CPU speed (cpu speed), number of cores (num core),
memory size (mem size), disk size (disk size), op-
erating system name (os name), its location and its

www.ijacsa.thesai.org 3 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 1, 2020

Fig. 1. The Volunteer Computing approach

availability (avail). These information will be used
by each volunteer to identify to which volunteers
they can send their computations to, what types of
computations to send and when.

V C = [S, (V1, P1), ..., (Vi, Pi)],

Pi = [cpu speed, num core,mem size,

disk size, os name, location, avail].

(1)

A software named VCSoftware is used in the system.
It is composed of the volunteersManager module and the
serverManager module:

• volunteersManager module: The volunteerManager
module is used at the volunteer level. A new volunteer
signs up to the system by filing out their profile in
a form, installing the VCSoftware and activating the

volunteerManager on their machine. The volunteers-
Manager is used to collect information about each
volunteer and send it to the server, receives tasks
from other volunteers, performs and returns the result,
allocate tasks to other volunteers, collect and merge
the results and send feedback of computation to the
server. The volunteer contribution level is determined
by the setting of their profile. The participant can
choose to contribute permanently or only when the
computer is idle, or can decide whether to contribute
or not when the computer is running on battery/in-
verter. If the server is down, this software informs
the computer owner and all other volunteers, the goal
being to design the new server.

• serverManager module: The serverManager module is
used at the server level. It allows to periodically collect
information on the profile of each volunteer and to
record a log of all the tasks performed by the system.

www.ijacsa.thesai.org 4 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 1, 2020

This information will allow to recommend a profile to
a volunteer (e.g. computation time taking into account
the idle period of the computer), to know the perfor-
mance of each volunteer and the performance of the
whole system. When the server is down, the volunteer
elected as server while waiting for the problem to be
solved activates this module.

2) Planning: Planning activity is the foundation of man-
agement. It refers of determining the future course of action
towards the desired objective of the system. The planning
activity must anticipate and precede all the other functions
of the management activity and permit to meet the challenges
of environmental changes (e.g., arrival and departure of vol-
unteers, server failure, power/Internet outage etc.). In our VC
approach the planning activity is at two levels:

• At the server level, planning involves continuous as-
sessment of the strengths and weaknesses of the VC
system using information about volunteers and the
results of computation; identification of the actions
assigned to a task already performed by the system. It
requires all the information collected on the volunteers
during the support activity (see Section III-C). This
information will allow the server to know the idle
time of each volunteer computer, when each one
connects to the Internet, to evaluate the performance
of each volunteer and the performance of the whole
system. For example, information about a task already
executed by the system can be used to efficiently
execute it the next time the same type of task is
submitted.

• At the volunteer level, planning requires the infor-
mation from other volunteers. Stored on the server,
this information is sent to each volunteers when they
connect to the system. This information will be used to
decide which volunteer to send a task taking into ac-
count the computing power offered by each volunteer
and the period of connection to the system: which task
to send, when to send the task, to whom the task can
be sent, the duration of each task sent to a volunteer
and the duration of the whole task. At the volunteer
level, good planning will help to effectively address
the challenges of environmental change (e.g., when a
volunteer’s computer cannot complete a sub-task).

3) Coordination: Like the planning activity, the coordina-
tion activity is done at two levels:

• At the server level, the server identifies the volunteers
available for the computation, the computation power
they offer and the duration for which they remain
connected to the Internet. It also stores information
about the different types of tasks already performed.
This information will be used to predict the time and
resources required to complete a task. Any change
in volunteer information (computing power) should
result in organizational changes. Information about
leaving/joining the system by a volunteer must be
considered.

• At the volunteer level, the coordination activity in-
volves organizing the sub-tasks to be performed, as

well as the time and resources necessary to carry them
out. It will use the information obtained from the other
volunteers to identify the resources needed to achieve
a given task.

4) Staffing: The staffing activity includes recruiting good
volunteers, selecting a group of volunteers to perform a task,
and evaluating the volunteers registered in the system. Since
volunteers registered in the system are not paid, the manager
must be careful during their recruitment. In a resource poor
settings, we recommend starting with people who need High
Performance Computing and who do not have enough financial
resources; and encourage them to invite members of their
community to register. Information on volunteer profiles will
be used to identify the good volunteers profiles.

5) Motivation: The motivation activity consists of attract-
ing volunteers to contribute to the system and those in the
system to increase their contributions. Since volunteers are not
paid, a motivational environment must be created. In our case,
the possibility of having access to a High Performance Com-
puting is a great motivation for students and researchers. Data
collected on the use of the system by other volunteers must
be made available to the public, mainly students, engineers
and researcher in order to encourage them to join the system.
Performance data desired by the system will be made available
to volunteers enrolled in the system to encourage them to
participate and to encourage members of their communities
to participate.

6) Control: The control activity aims to guarantee that
scheduled tasks are completed as planned. During the control
activity, the performance evaluation of each volunteer and the
whole system is made in order to identify weaknesses and
strengths. Planning is the basis of control. It focuses on the
tasks that are performed and the results of those tasks. It plays
an important role in ensuring the efficiency and effectiveness
of the VC system. The information collected during the use
of the VC system will help to measure the performance
of each volunteer but also to identify gaps. At the server
level, the comparison between planned performance and actual
performance is analyzed to know if there are deviations, and
the reasons of the deviations are analyzed. At the volunteer
level, each result of a sub-task collected from volunteers is
used to evaluate it. Real time information will allow quick
control, which will reduce the costs of planning errors.

7) Quality assurance: The quality assurance activity guar-
antees that the quality of each computation is satisfactory (took
the expected time, returned the expected results).

B. Computation Activity

To perform a task with the VC, that task must be divided
into sub-tasks and each sub-task sent to volunteers. After the
execution by the volunteers, the results and the results logs
are collected by the volunteer who initiated the computation.
Globally, computation activity involves: dividing the task into
sub-tasks, distributing of sub-tasks to volunteers, performing of
sub-tasks by volunteers, collecting and combining the results.

1) Division of the task into sub-tasks: This step consists
of dividing the task into smaller and independent sub-tasks
(preferably atomic sub-tasks). Consider T as a given task to

www.ijacsa.thesai.org 5 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 1, 2020

be performed by a volunteer. Then, T = t1, t2, ..., tn where n
is the number of independent tasks that compose the task T .
Since ti are independent, they can be executed in parallel.

2) Distribution of the sub-tasks amongst volunteers: Given
the data obtained from the server on the system (computing
power offered by each volunteer, time to connect to the Internet
of each volunteer, etc.), the volunteersManager will identify the
volunteers that can participate in the computation. These are
the computers most likely to be available until the end of a
given sub-task. Subsequently, the computation will be sent to
these volunteers when they connect to the system. Depending
on the number of volunteers available and the computation
time they provide, many sub-tasks can be sent to a volunteer.

The volunteer computer that sent the tasks to others will
send a log file to the server to inform it that a job has
started. The server will broadcast this information to all other
volunteers. If a machine starts a new task, it must consider the
existing tasks running in the system.

3) Execution of the sub-tasks: The volunteersManager on
the volunteer machine that receives a task will start within
the period specified in the volunteer profile. If many tasks
have been assigned to a volunteer, the volunteersManager will
perform the oldest first. At the end, a log records information
on the execution time and the execution status (finished or
failed).

4) Collection of the sub-results: After completion, the
volunteersManager collects the results and the result logs.
If some computations failed, more efficient volunteers are
identified and these computations are sent to them. At the end
of the computation, the results logs are sent to the server.

5) Combination of the sub-results: The last activity of
the computation activity is the combination of the sub-results
obtained from the volunteers.

C. Support Activity

The support activity involves the series of activities per-
formed at the same time as the management and the com-
putation activities. It aims to facilitate management and com-
putation by providing all the needed tools and information.
The VCSoftware software is developed during this activity.
Overall, this activity includes the software development (sec-
tion III-C1), data collection on the system and each volunteer
computer (section III-C2), system evaluation (section III-C3)
and system documentation (section III-C4).

1) Software development: The software development ac-
tivity involves the development/updating of the VCSoftware
that will be used by the server and the volunteers. This tool
is composed of two main modules: the serverManager module
and the volunteersManager module.

The serverManager will help acquire data sent by vol-
unteers to the server. These data are those provided by the
volunteer during registration, but also other information on the
idle time of the volunteer computer and the time of connection
to the Internet. The Information collected from the volunteers
will allow the server to: make suggestions of profiles to the
volunteers. The volunteer can use the suggestion or not. For
example, during the holidays, the idle period is not necessarily

the same as during the working period. Then, during the
holidays, the server can suggest to volunteers to update their
profile.

The volunteersManager is the module which, on the volun-
teer side, will: periodically collect information on the volunteer
and send it to the server; allow identification of volunteer com-
puters that can perform a given task, send tasks to volunteers
and collect the results; reception of tasks and their scheduling
according to other tasks already received; and sending logs
on the execution of the tasks and the performance of each
volunteers.

2) Data collection: The data collection activity is done
both at the server and at the volunteer level. At the server
level, the data collected is used to evaluate the performance
of the system and each volunteer. The performance of the
whole system is calculated based on the number of volunteers
registered in the system, the tasks performed by the volunteers,
and when the volunteers will connect to the Internet.

At the volunteer computer level, data is collected in two
cases: firstly, the volunteer fills out a registration form in
which information about the device and its availability for
computation is provided. Then, an automatic data collection
takes place (using volunteersManager module). This can be
done periodically (hourly or daily) and will concern the idle
time of the computer and the time when the computer is
connected to the Internet. This data is used to: suggest profile
updates to the volunteer and evaluate each volunteer. Each
time the server receives updated information from a volunteer,
this information is aggregated with existing information and
forwarded to other volunteers.

3) System evaluation: The system evaluation involves the
evaluation of the server and each volunteers. Indeed data
collected during the computations will allow the server to
know if the system is efficient and if it provides relevant
computations. For this purpose, during the execution of each
task, the name, the type, the execution time of the task, the
date of execution and the status (execution failed or not) are
recorded in a log file and sent to the server.

4) System documentation: The system documentation ac-
tivity is the vital and continuous activity of our approach. In
fact, during this activity, the documents are produced to help
the manager and the volunteers to use the system. It provides
all information on the capabilities and characteristics of the
system. It helps users understand the system and its essential
reference materials. VC documentation is updated every time
there are changes in the system. The documentation activity is
at two levels: the manager level and the volunteer level.

At the manager level, the documents will allow the man-
ager to install and configure the server. It will also give tips
to the manager on how to motivate the volunteers to register,
contribute and maximize system performance as well as how
to customize the software so that it works best for each
volunteers (e.g., profile suggestion given data collected from
volunteers). The manager can also write Frequently Asked
Questions (FAQ) to help volunteers.

At the volunteer level, documents are used to inform the
volunteer about the system, and describe what it is intended to
do and how it works. Overall, it explains to volunteers how to

www.ijacsa.thesai.org 6 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 1, 2020

install the VCSoftware in order to contribute/use the system
and how to submit computations and collect the results. To
facilitate access to non IT volunteers, a short video is a good
way to show how to install the VCSoftware and another on
how to submit tasks and collect results. The documentation
about the contribution of other users is provided to newcomers
in order to motivate the latter.

IV. EXPERIMENTATION

For Volunteer Computing to be adopted, volunteer devices
must provide enough computing power to solve associated
computing problems. The first step in the development of our
VC system consists of a pilot phase, which is the development
and experimentation of a VC system. This section shows how
this system has been built and used to solve the problem of
matrix multiplication. In the following, the problem of matrix
multiplication is first described in section IV-A. Section IV-B
follows with the VC UY Volunteer Computing system built
at the University of Yaounde I in Cameroon. Finally, Section
IV-C presents the experimentation of VC UY on the matrix-
matrix multiplication.

A. Matrix Multiplication

Matrix multiplication [46], [47], [48], [49] is an operation
that produces a matrix product from two input matrices. Each
matrix product entry is the dot product of a row in the first
matrix and a column in the second (see equation 2). Matrix
multiplication has many applications. It is the basic computa-
tional kernel for many algorithms of machine learning systems
and recommendation systems. Matrix-vector multiplication is
the core kernel of the PageRank algorithm [21], [48]. Matrix
multiplication is often a computational bottleneck because
generally, matrices are very large with dimensions which can
easily reach hundreds, thousands and even millions [46], [47],
[48], [49].

Three popular algorithms for matrix multiplication have
been proposed in the literature: the iterative algorithm, the
recursive algorithm and the Strassen algorithm. Let us consider
two square matrices A and B given below.

A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n

...
...

...
. . .

...
an1 an2 an3 . . . ann

,

B =


b11 b12 b13 . . . b1n
b21 b22 b23 . . . b2n

...
...

...
. . .

...
bn1 bn2 bn3 . . . bnn


The matrix multiplication of A and B gives the matrix C

obtained by using the equation 2.

cij =

n∑
k=1

aikbkj (2)

From the previous equation, a simple iterative algorithm
can be constructed using loops on the indices i, j from 1 to n.
This algorithm takes time on the order of n3. Using the Divide

and Conquer approach, the matrices A, B are partitioned into
blocks. Then, the multiplication gives:[

A11 A12

A21 A22

]
×
[
B11 B12

B21 B22

]
=

[
C11 C12

C21 C22

]
The Divide and Conquer approach works for all square

matrices whose dimensions are powers of two. For matrices
which do not respect this condition (e.g., matrix-vector multi-
plication), fill the missing rows and columns with zeros. The
complexity of the Divide and Conquer approach is the same as
the iterative algorithm, i.e. n3. In fact, this approach requires
8 blocks multiplications to calculate the product matrix which
still requires n3 running time [46], [47], [49].

Another matrix multiplication approach is called Strassen
algorithm. The Strassen algorithm [46], [50] is a recursive
Divide and Conquer approach. For each recursive call, the
input matrices are divided into 4 blocks but only 7 blocks
multiplications are needed. Compared to the iterative and the
Divide and Conquer approach, the Strassen approach needs
only 7 block matrix multiplications, which involves a time
complexity of n2.807 [46], [47], [49]. When the matrices are
large, the execution time of the matrix multiplication can be
very long. Since matrix multiplication can be divided into sub-
matrix multiplication, this task can be parallelized. The next
sections will present how our Volunteer Computing System
was built and used for matrix multiplication. All experiments
will be performed using the Strassen algorithm.

B. VC UY: The Volunteer Computing System of the University
of Yaounde I

In order to overcome the HPC problems faced by re-
searchers and students from the university of Yaounde I in
Cameroon, it was decided to build a VC system named
VC UY. This section presents the summary of the pilot phase
in two main points: the recruitment of volunteers and the
designing of the VC system.

1) Recruitment of Volunteers: During the volunteer re-
cruitment phase, the master students at the Department of
Computer Science of the University of Yaounde I were met.
Then, the HPC concepts and the problems encountered in
the building of HPC platforms in resource poor settings were
explained. Our approach based on volunteering was presented
and their participation as volunteers was asked. Ten students
were selected from those who generally connect to the Internet
at least twice a day and whose computers can be available for
computations for at least one hour per day. Table I presents
the profile of each volunteer.

TABLE I. CHARACTERISTICS OF VOLUNTEER COMPUTERS

RAM CPU SWAP Operating system Disk space
4GB Core i3, 2.4GH 1GB LINUX 50GB
4GB Core i3, 2.4GH 2GB WINDOWS 100GB
4GB Core i4, 2.4GH 2GB LINUX 100GB
4GB Core i5, 2.7GH 1.5GB LINUX 100GB
4GB Core i5, 2.4GH 1.5GB LINUX 50GB
4GB Core i5, 2.4GH 1GB LINUX 50GB
4GB Core i3, 2.4GH 2GB WINDOWS 50GB
4GB Core i4, 2.4GH 750MB LINUX 100GB
4GB Core i4, 2.6GH 1GB LINUX 100GB
4GB Core i4, 2.4GH 2GB LINUX 100GB

www.ijacsa.thesai.org 7 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 1, 2020

2) VC UY system design: Once the volunteers were re-
cruited, our system was designed as follows: the machine
(CPU core i5 and 4 GB of RAM) was used as a server.
The VCSoftware10 was deployed on the server and on each
volunteers.

As presented in Section III, the server and volunteers
run different modules to exchange information and perform
tasks. For the purpose of experimentation, all our source
code was written using the Python programming language11,
IPython Application Programming Interface12 and the Django
framework13. IPython is an API for parallel and distributed
computing. It enables to develop, execute, debug and monitor
interactively all types of parallel applications. The architec-
ture of serverManager and volunteersManager modules is
completely based on the architecture of IPython API. The
Django framework has enabled the implementation of a user-
friendly web interface for volunteers (registration, consultation
of information about other volunteers, etc.) and the manager
(for monitoring using a dashboard).

The serverManager module consists of the front-end devel-
oped using the Django framework and the back-end developed
using the python programming language and the IPython
API. The main feature of the front-end is to support all
managements activities (Section III-A) by presenting relevant
information on a dashboard. On the back-end side, the IPython
API allows the server to listen to the network and collect
information on volunteers. For the purpose of experimentation,
a script has been written14 allowing to collect information on
volunteers; and a software developed for the visualization of
the contribution of each volunteers and the performance of the
whole system.

The volunteersManager module consists of the front-end
and the back-end. At the front-end, the Django framework
presents a dashboard describing all the other volunteers to
the volunteer. At the back-end side, the volunteer machine
performs the following operations: sends computation to other
volunteers; listens to the requests on the network, executes the
code, and returns results back to related volunteers; accepts
tasks, performs them; collects the results and sends them
back to the volunteers; sends profile information to the server.
For the purpose of experimentation, scripts have been written
(available on github15) and permitting to send matrices to vol-
unteers, perform the Strassen matrix multiplication algorithm
and collect results.

C. Experimentation of Matrix-Matrix Multiplication on
VC UY

To test the VC UY Volunteer Computing system, the
Strassen matrix-matrix multiplication algorithm was imple-
mented using Python and IPython API. Matrix multiplication
was used with different input sizes on one computer (CPU
Core i5 and 4GB of RAM) and the whole VC system. If A and

10https://github.com/admhamza/VC UY
11https://www.python.org/
12https://ipyparallel.readthedocs.io/
13https://www.djangoproject.com/
14https://github.com/admhamza/VC UY/blob/master/automatisation

collecte informations.py
15https://github.com/admhamza/VC UY/blob/master/calcul distribue dans

un reseaux.py

Fig. 2. Experimenting the Strassen algorithm for matrix-matrix
multiplication on one machine Core i5 of CPU and 4GB of RAM

Fig. 3. Experimenting the Strassen algorithm for matrix-matrix
multiplication on our Volunteer Computing system

B are block-partitioned matrices, the block dimension of the
resulting matrix C is determined by considering the number
of volunteers and the input block dimensions. A volunteer
responsible for each resulting block retrieves all the necessary
blocks from A and B to execute a multiplication operation
locally. Fig. 2 shows the performance of the execution on one
machine. Fig. 3 presents the matrix multiplication on VC UY
system, and Fig. 4 presents the contribution of each volunteers
in the computing. Fig. 4 shows that although the volunteers
used have close computing power, their contribution to the
calculation varies according to their availability.

As demonstrated by [25], [26], [51], the experiments con-
ducted in this section shows that Volunteer Computing systems
can provide a significant amount of computing power. Then,
it is an important option for HPC problems in resource poor
settings.

V. CONCLUSION

This article presented an approach allowing to build a Vol-
unteer Computing system for HPC in resource poor settings.
The experiments were made on the mathematical problem
of solving matrix multiplication. Volunteers were recruited
amongst students at the University of Yaounde I in Cameroon.

www.ijacsa.thesai.org 8 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 1, 2020

Fig. 4. Contribution of each machine. Vi represents the ith volunteer

Experiments showed that a VC system can be used to enhance
HPC in resource poor settings.

This work opens doors for significant possibilities in devel-
oping countries where the computing resources are generally
limited. Given the success of the experiments, the recruitment
of other volunteers from the University of Yaounde I is
in progress. The goal being to create a powerful Volunteer
Computing system with a maximum number of computers.
During the experiment, potential volunteer machines were
selected manually according to the data collected. This can be
a difficult task if there are hundreds of volunteers registered
in the system. Thus, also planned is the exploration and
implementation of automatic methods for predicting volunteer
machines for a given task.

ACKNOWLEDGMENTS

Our gratitude goes to all students who accepted to par-
ticipate in this project, in particular Mr. Romeo Koati who
recruited volunteers and participated to the development of the
software.

REFERENCES

[1] G. S. Almasi and A. Gottlieb. Highly Parallel Computing. Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA, 1989.

[2] Zahid Ansari, Asif Afzal, Moomin Muhiuddeen, and Sudarshan Nayak.
Literature survey for the comparative study of various high performance
computing techniques. Int J Comput Trends Technol (IJCTT), 27(2):80–
86, 2015.

[3] Fatima El Jamiy, Abderrahmane Daif, Mohamed Azouazi, and Abde-
laziz Marzak. An effective storage mechanism for high performance
computing (hpc). International Journal of Advanced Computer Science
and Applications, 6(10), 2015.

[4] Zhiwei Xu, Xuebin Chi, and Nong Xiao. High-performance comput-
ing environment: a review of twenty years of experiments in China.
National Science Review, 3(1):36–48, 01 2016.

[5] Ranjit Rajak. A comparative study: Taxonomy of high performance
computing (hpc). International Journal of Electrical & Computer
Engineering (2088-8708), 8, 2018.

[6] Olaf Schenk, Helmar Burkhart, and Hema Reddy. Towards personalized
medicine: High-performance computing in the life sciences. ERCIM
News, 2008(74), 2008.

[7] Shaoliang Peng. High performance computational biology and drug
design on tianhe supercomputers. In IEEE International Conference
on Bioinformatics and Biomedicine, BIBM 2016, Shenzhen, China,
December 15-18, 2016, page 7, 2016.

[8] Bertil Schmidt and Andreas Hildebrandt. Next-generation sequencing:
big data meets high performance computing. Drug discovery today,
22(4):712–717, 2017.

[9] Georg Hager and Gerhard Wellein. Introduction to High Performance
Computing for Scientists and Engineers. Chapman and Hall / CRC
computational science series. CRC Press, 2011.

[10] Daniel A Reed and Jack Dongarra. Exascale computing and big data.
Communications of the ACM, 58(7):56–68, 2015.

[11] Bo Tang, Zhen Chen, Gerald Hefferman, Shuyi Pei, Tao Wei, Haibo He,
and Qing Yang. Incorporating intelligence in fog computing for big data
analysis in smart cities. IEEE Transactions on Industrial informatics,
13(5):2140–2150, 2017.

[12] Anwar Osseyran and Merle Giles. Industrial applications of high-
performance computing: best global practices, volume 25. CRC Press,
2015.

[13] Ezell Stephen and Atkinson Robert. The Vital Importance of High-
Performance Computing to U.S. Competitiveness. INFORMATION
TECHNOLOGY INNOVATION FOUNDATION, 2016.

[14] N. R. Adiga, G. Almasi, G. S. Almasi, Y. Aridor, R. Barik, D. Beece,
R. Bellofatto, G. Bhanot, R. Bickford, and M. Blumrich et al. An
overview of the bluegene/l supercomputer. In SC ’02: Proceedings of
the 2002 ACM/IEEE Conference on Supercomputing, pages 60–60, Nov
2002.

[15] Erich Strohmaier, Hans Werner Meuer, Jack J. Dongarra, and Horst D.
Simon. The TOP500 list and progress in high-performance computing.
IEEE Computer, 48(11):42–49, 2015.

[16] Douglas Eadline. High Performance Computing For Dummies. Wiley
Publishing, Inc., USA, 5th edition, 2009.

[17] Chee Shin Yeo, Rajkumar Buyya, Hossein Pourreza, Rasit Eskicioglu,
Peter Graham, and Frank Sommers. Cluster Computing: High-
Performance, High-Availability, and High-Throughput Processing on a
Network of Computers, pages 521–551. Springer US, Boston, MA,
2006.

www.ijacsa.thesai.org 9 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 1, 2020

[18] Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-Stover.
Gpu cluster for high performance computing. In Proceedings of the
2004 ACM/IEEE Conference on Supercomputing, SC ’04, pages 47–,
Washington, DC, USA, 2004. IEEE Computer Society.

[19] Violeta Holmes and Ibad Kureshi. Developing high performance
computing resources for teaching cluster and grid computing courses.
Procedia Computer Science, 51:1714 – 1723, 2015. International
Conference On Computational Science, ICCS 2015.

[20] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud computing.
Commun. ACM, 53(4):50–58, 2010.

[21] Abhishek Gupta, Laxmikant V Kale, Filippo Gioachin, Verdi March,
Chun Hui Suen, Bu Sung Lee, Paolo Faraboschi, Richard Kaufmann,
and Dejan Milojicic. The who, what, why and how of high performance
computing applications in the cloud. HP Laboratories Technical Report,
(49), 8 2013.

[22] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1999.

[23] Peter M. Kasson, Daniel L. Ensign, and Vijay S. Pande. Combining
molecular dynamics with bayesian analysis to predict and evaluate
ligand-binding mutations in influenza hemagglutinin. Journal of the
American Chemical Society, 131(32):11338–11340, 2009. PMID:
19637916.

[24] Zied TRIFA, Mohamed LABIDI, and Maher KHEMAKHEM. Arabic
cursive characters distributed recognition using the dtw algorithm
on boinc: Performance analysis. International Journal of Advanced
Computer Science and Applications, 2(3), 2011.

[25] Erick Lavoie and Laurie Hendren. Personal volunteer computing. In
Proceedings of the 16th ACM International Conference on Computing
Frontiers, CF ’19, pages 240–246, New York, NY, USA, 2019. ACM.

[26] Erick Lavoie, Laurie Hendren, Frederic Desprez, and Miguel Correia.
Pando: Personal volunteer computing in browsers, 2018.

[27] Oded Nov, David Anderson, and Ofer Arazy. Volunteer computing:
A model of the factors determining contribution to community-based
scientific research. In Proceedings of the 19th International Conference
on World Wide Web, WWW ’10, pages 741–750, New York, NY, USA,
2010. ACM.

[28] Haohuan Fu, Junfeng Liao, Jinzhe Yang, Lanning Wang, Zhenya Song,
Xiaomeng Huang, Chao Yang, Wei Xue, Fangfang Liu, Fangli Qiao,
et al. The sunway taihulight supercomputer: system and applications.
Science China Information Sciences, 59(7):072001, 2016.

[29] Shurong Tian, Todd Takken, Vic Mahaney, Christopher Marroquin,
Mark Schultz, Mark Hoffmeyer, Yuan Yao, Kevin O’Connell, Anil
Yuksel, and Paul Coteus. Summit and sierra supercomputer cooling
solutions. IBM Journal of Research and Development, 2019.

[30] James R Kozloski, Timothy M Lynar, Mark D Nelson, and John M
Wagner. Energy efficient supercomputer job allocation, 2018. US Patent
10,025,639.

[31] Rajkumar Buyya. High Performance Cluster Computing: Architectures
and Systems. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.

[32] Zvi Tannenbaum and Dean E Dauger. Cluster computing, 2019. US
Patent 10,333,768.

[33] Minakshi Tripathy and C.R. Tripathy. On a virtual shared memory
cluster system with virtual machines. International Journal of Computer
and Electrical Engineering, 3:754–761, 01 2011.

[34] Mohammad Moghadasi, Seyed Majid Mousavi, and Gábor Fazekas.
Cloud computing auditing. International Journal of Advanced Com-
puter Science and Applications, 9(12), 2018.

[35] Aferdita Ibrahimi. Cloud computing: Pricing model. International
Journal of Advanced Computer Science and Applications, 8(6), 2017.

[36] Babur Hayat Malik, Jazba Asad, Sabila Kousar, Faiza Nawaz, Zainab,
Farania Hayder, Sehresh Bibi, Amina Yousaf, and Ali Raza. Cloud
computing adoption in small and medium- sized enterprises (smes) of
asia and africa. International Journal of Advanced Computer Science
and Applications, 10(5), 2019.

[37] Hans-Joachim Bungartz. Sparse grids and their impact on hpc and big
data. In Kolloquiumsvortrag, 2019.

[38] Tessema M Mengistu and Dunren Che. Survey and taxonomy of
volunteer computing. ACM Computing Surveys (CSUR), 52(3):1–35,
2019.

[39] Bruno Donassolo, Henri Casanova, Arnaud Legrand, and Pedro Velho.
Fast and scalable simulation of volunteer computing systems using
simgrid. In Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, HPDC ’10, pages 605–612,
New York, NY, USA, 2010. ACM.

[40] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan
Werthimer. Seti@home: An experiment in public-resource computing.
Commun. ACM, 45(11):56–61, 2002.

[41] A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq, and V. S.
Pande. Folding@home: Lessons from eight years of volunteer dis-
tributed computing. In 2009 IEEE International Symposium on Parallel
Distributed Processing, pages 1–8, May 2009.

[42] Wei Li and William W Guo. The optimization potential of volunteer
computing for compute or data intensive applications. Journal of
Communications, 14(10), 2019.

[43] Harold E Castro. Capacity of desktop clouds for running hpc
applications: A revisited analysis. In Applied Informatics: Second
International Conference, ICAI 2019, Madrid, Spain, November 7–9,
2019, Proceedings, volume 1051, page 257. Springer Nature, 2019.

[44] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair.
Distributed Systems: Concepts and Design. Addison-Wesley Publishing
Company, USA, 5th edition, 2011.

[45] Maarten Van Steen and Andrew S Tanenbaum. Distributed systems.
Maarten van Steen Leiden, The Netherlands, 2017.

[46] Qingshan Luo and John B. Drake. A scalable parallel strassen’s
matrix multiplication algorithm for distributed-memory computers. In
Proceedings of the 1995 ACM Symposium on Applied Computing, SAC
’95, pages 221–226, New York, NY, USA, 1995. ACM.

[47] Chandan Misra, Sourangshu Bhattacharya, and Soumya K. Ghosh.
Stark: Fast and scalable strassen’s matrix multiplication using apache
spark, 2018.

[48] M. Son and K. Lee. Distributed matrix multiplication performance
estimator for machine learning jobs in cloud computing. In 2018 IEEE
11th International Conference on Cloud Computing (CLOUD), pages
638–645, July 2018.

[49] Zhen Xie, Guangming Tan, Weifeng Liu, and Ninghui Sun. Ia-spgemm:
An input-aware auto-tuning framework for parallel sparse matrix-matrix
multiplication. In Proceedings of the ACM International Conference on
Supercomputing, ICS ’19, pages 94–105, New York, NY, USA, 2019.
ACM.

[50] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms, Third Edition. The MIT
Press, 3rd edition, 2009.

[51] Travis Desell. Developing a volunteer computing project to evolve
convolutional neural networks and their hyperparameters. pages 19–28,
10 2017.

www.ijacsa.thesai.org 10 | P a g e


