
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

307 | P a g e

www.ijacsa.thesai.org

A New Solution to Protect Encryption Keys when

Encrypting Database at the Application Level

Karim El bouchti1, Soumia Ziti2, Fouzia Omary3, Nassim Kharmoum4

Department of Computer Science, IPPS Team

Faculty of Sciences, Mohammed V University in Rabat

Morocco

Abstract—Encrypting databases at the application level

(client level) is one of the most effective ways to secure data. This

strategy of data security has the advantage of resisting attacks

performed by the database administrators. Although the data

and encryption keys will be necessarily stored in the clear on the

client level, which implies a problem of trust viz-a-viz the client

since it is not always a trusted site. The client can attack

encryption keys at any time. In this work, we will propose an

original solution that protects encryption keys against internal

attacks when implementing database encryption at the

application level. The principle of our solution is to transform the

encryption keys defined in the application files into other keys

considered as the real keys, for encryption and decryption of the

database, by using the protection functions stored within the

database server. Our proposed solution is considered as an

effective way to secure keys, especially if the server is a trusted

site. The solution implementation results displayed better

protection of encryption keys and an efficient process of data

encryption /decryption. In fact, any malicious attempt performed

by the client to hold encryption keys from the application level

cannot be succeeded since the real values of keys are not defined

on it.

Keywords—Database encryption; encryption key protection

model; database encryption keys protection; data security

I. INTRODUCTION

Today, Database (DB) security is considered as one of the
significant challenges in the computer world. Recently, it has
been the subject of several debates and studies by experts and
researchers in the data security field. The main purpose is to
protect sensitive data against unavailability, leakage, and
modification face to attackers' threats [9], [21], [22].

With the rapid development of technology, the attack
scenarios on the DBs have become easy to realize. Currently, a
penetration to a DB using SQL injection techniques becomes
fast and quite simple thanks to specialized tools [10]. Different
threats may come from various sources, some from trusted DB
users, others from external ones, and some attacks are
performed by the DB administrators [1], [2], [3]. Data theft is a
dangerous attack. However, attacks compromising data
integrity can generate heavier consequences; they are hardly
detectable as the theft of data. For this reason, the
implementation of three security levels is necessary: 1 / -
Physical security, 2 / - Operating system security, 3 / -
Database Management System (DBMS) security [15], [18].

The implementation of these security levels is useful,
especially the access control mechanism implemented at the
DBMS level. It is considered as the first defense line against
unauthorized access [14], [23]. However, this mechanism is not
sufficient, it protects only against attacks coming from outside
the information system, and some limits can be generated as it
has been explained in [11], [16]. Besides the access control
mechanism, a security approach based on DB encryption can
play an important role; it can be performed on three levels: DB
level, hard disk level, and application level [7].

Encrypting DB at the application level consists of
delegating encryption and decryption to applications that are
connected to it. The DB server processes and manipulates only
encrypted data, and the encryption keys are not implemented
on the server. This solution provides strong protection of the
encryption keys from threats performed by the administrator.
However, the keys must necessarily be stored either on the
applications or in a place where the applications are managed
(application server for example). This approach is limited as
the application user (or the application server administrator) are
not always trusted sites, they can attack encryption keys at any
time, and decrypt all sensitive data without leaving any traces
[16].

It is mentioned in [8] that DBs confront several internal
threats, especially those coming from legitimate users of the
system. These threats can be realized in collaboration with a
malicious administrator, another legitimate user, or with a
malicious attacker outside the information system [1], [12].
Excessive privilege abuse, legitimate privilege abuse, and
elevation of privilege are some models of internal attacks that
compromise encryption keys. A legitimate DB user can exploit
the privileges one’s to attack encryption keys directly. The user
can also exploit uncorrected DB vulnerabilities or DB
configuration errors to access illegally to the DB encryption
keys location. A mistrust application administrator may reveal
the encryption keys to an external attacker in order to attack the
DB outside the perimeter of the information system [8], [13].
Trusted users are considered a serious threat to the security of
encryption keys when encryption is performed at the
application level. Otherwise, the internal attacks are considered
dangerous not only on DBs but on Big Data platforms like
Hadoop. For instance, the authors of [24] argued that an
effective attack launched from the compromised node could
degrade the data processing performance of the cluster. Then,
they exposed an effective schema that might mitigate the risk
of this attack and keep the cluster running efficiently. Also, the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

308 | P a g e

www.ijacsa.thesai.org

authors of [25] have developed a solution called ROVER,
which is an efficient and verifiable Erasure Coding based
Storage (ECS) for Big Data platforms. They showed that this
solution implementation has good robustness and effectiveness
against attacks from compromised nodes.

In order to protect encryption keys within applications,
several solutions have been proposed by researchers. Among
the most important works, we highlight the work proposed by
Ding et al. [19]. They have proposed a new data encryption
model implemented at the application level that ensures the
confidentiality of sensitive data. It is based on a new method
using keys chain to protect encryption keys. The authors of
[20] have proposed a special concept called "Encryption as a
service" to encrypt DB. Its main goal is to outsource the
encryption system outside applications as an encryption service
provider unit independently of applications users and the DB
server. The protection of encryption keys in this concept is
done using a Master key. Bouganim et al. have presented in
[17] a solution named "Client HSM". It consists of integrating
the module "HW Security Module" at the level of each DB
user. This module holds and protects encryption keys to
eliminate their exposure.

Despite the efforts made by researchers to improve the
protection of encryption keys at the application level, they still
need to be developed and improved. The solutions proposed in
the literature are not sufficient as well as each solution has its
limits, as we have mentioned in our previous works [3], [5],
[8]. In addition, the solutions mostly presented are specific in
the case when encryption is done at DBMS.

In this context, the present work aims to propose a new
solution to protect encryption keys within applications against
internal attacks when adopting encryption at the application
level. Our solution is original and provides better protection for
keys without any requirement of equipment or material. It is
based on the outsourcing of the protection of encryption keys
defined on the client side to a DB server. The principle is to
transform user's queries holding user’s encryption keys to new
queries that remotely call functions stored on the DB server in
order to convert these keys to real keys for encryption and
decryption.

Our paper will be presented as follows: Section II consists
of giving general overview of DB encryption at the application
level. Section III describes our proposed solution and explains
its implementation; we discuss in this section the test results
provided by the implementation. Finally, the article ends with a
conclusion in Section IV.

II. DATABASE ENCRYPTION PRELIMINARIES

A. Database Encryption at the Application Level

Encrypting DB at the application level (client side
encryption) means that the process of encrypting/decrypting
data is done locally on the application before transmitting data
to the DB server. This principle is similar to an externalization
of the DB in a cloud storage service [6], [16]. The keys in this
concept are managed by the application on the client. It holds
all the encryption keys, and there is no transmission of data or
keys in the clear to the DB server [4] (see Fig. 1).

Fig. 1. Database Encryption at Application Level [17].

DB encryption at the application level has many
advantages. It resists against attacks coming from
administrators. However, it has several disadvantages such as,
data and keys are necessarily stored in clear mode on the client,
which makes a problematic trust face to the DB users, or even
the applications administrator. Both of them cannot always be
trusted sites [4], [16].

B. Internal Attack on Encryption at the Application Level

As it has been highlighted by the authors of [4], [5], [8],
[16], the DB legitimate operators (including operators that
manage applications connected to DB) are considered the main
threat compromising the encryption keys when DB is
encrypted at the application level. The values of keys and their
locations are the vulnerability of this concept. In order to
clarify the concept of internal attack when encrypting DB at the
application level, we have chosen the attack on DB in both the
2-tier and 3-tier architectures.

In 2-tier client/server architectures, we have 2 essential
components [26] including: the client machine (first level) and
the DB server (second level). In this client-server model, the
DB is encrypted at the client level. The client program accesses
DB directly and the encryption keys are in clear on the clients,
either in the codes or in the application's configuration files.
Thus, they are totally submitted to each user that executes the
programs. The users can easily get the encryption keys and
attack the DB.

In the 3-tier client-server architectures, we have 3 essential
components [26]: the client machine (first level), the
application server (second level), and the DB server (third
level). In this model, often the keys are stored in clear on the
application server and protected using a password in a well-
defined server location. Likewise, they are completely
submitted to the application server administrator. A simple
attack scenario in the 3-tier architecture is a conspiracy attack
conducted by a user and the application server administrator. A
malicious administrator can reveal all the encryption keys to
another user in order to attack DB and decrypt its sensitive data
completely without leaving any traces.

III. PROPOSED SOLUTION

The principle of the proposed solution is to outsource the
client's encryption key protection to the DB server. In fact,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

309 | P a g e

www.ijacsa.thesai.org

before sending the user's query, which contains an encryption
key (or multiple encryption keys) to the DB server, we
transform it into a new query that converts that key (those
keys) to the real encryption/decryption key of the DB. For this
purpose, we propose and implement two types of solutions.
The first one concerns the protection of encryption keys when
inserting data into a single sensitive column, while the second
concerns the protection of keys when inserting data into
multiple sensitive columns.

Let’s consider Table I which has the structure (A) and let us
suppose the attribute "Salary" as a sensitive column to be
encrypted during insertion and decrypted during the
consultation of Table I.

Table I (code, Last_name, First_name, Salary) (A)

A. Solution1: Inserting in a Single Sensitive Column

Let’s consider a user who executes an insert query having
the following form:

Insert into Tab1 values ('0001', 'elbouchti', 'karim', AES192
('Mycolor012345678has@ml@p', 2000)); (B)

The user inserts in Tab1 a data line, the column "Salary"
will be encrypted with the algorithm AES192 by using the key
K="Mycolor012345678has@ml@p". Before sending this
query to the DB server, it will be transformed to another query
having the syntax below:

Insert into Table I values ('0001','elbouchti','karim',
AES192(Func ('Mycolor012345678has@ml@p'), 2000)); (C)

Func() is a function called when the user executes an insert
query on a DB table, which has a single sensitive column. The
description of Func() is not defined in the files of the user's
application or the application server. Its main role is to
transform the encryption key value defined in the query that
comes out of the user's application into a new encryption key
whose value is the real encryption/decryption key of the
column (see Fig. 2).

We propose to implement the function Func() in the DB
server, it will be one of the objects created inside it. Its model
follows the algorithm below:

Func (X)

{K = E (X, H (Nom_table));

Retour (K);}

With:

 E: A symmetric encryption algorithm.

 H: A hash function.

 X: The key defined in the insert statement (user's
application files).

 K: the real key to encrypt/decrypt the data of the
column.

 Table_name: The table name defined in the insert
statement.

Fig. 2. The Call of Func() Function.

Fig. 3. Process of the Query Converting.

The conversion of query (B) into the query (C) is
performed by a transformation algorithm (Algorithm 1 and
Algorithm 2 defined below in the two implementations of our
solution). These algorithms must appear in executable mode
among the files of the application as shown in Fig. 3.

B. Implementation of the Solution 1

The implementation of solution 1 has been performed as
follows:

 We have developed an application and connect it to a
DB named "DB_karim" developed under
ORACLE10G.

Algo-client1.exe
& Algo.client2.exe

User query

Application files

User

Func() Func()

Encrypted

Database

Malicious user

IHM

Application Server

Func

Database Server

DBMS

Data Dictionary
Database

Malicious

administrator

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

310 | P a g e

www.ijacsa.thesai.org

 We have chosen the AES256 as an encryption
algorithm and the MD5 as a hash function to develop
the function Func().

When a user executes an insert query, it will be transformed
by the algorithm "Algo-client1" into a new query that calls the
function Func() of the DB. The code of the "Algo-client1" is
defined as follows:

Algorithm 1: Query transformation in solution1.

Algo-client1

Input: executed_query

Output: new_query

Begin

Decompose (executed_query)

 Func(key)

 Generate (new_query)

 Execute (new_query)

End

The Procedure Decompose() allows the decomposition of
the user’s query and search exactly the key to substitute by the
real encryption key.

The function Func() takes the encryption key defined in the
user’s query and delivers the real encryption key.

The Function Generate() reformulates the new query with
the real encryption key and subsequently send and execute this
query using Execute().

The test of "Algo-client1" was performed on the "agent"
table which has the following structure:

agent (code, first_name, last_name, dose) (D)

In this table, we have defined the column "dose" as a
sensitive column. It will be protected by an encryption using
the AES256 algorithm and the key k = '@mysonmyson@123'.
Table I and Table II show the results obtained before and after
the encryption

C. Solution 2: Insert in Multiple Sensitive Columns

The principle of protecting encryption keys in a query when
inserting data in multiple sensitive columns is similar to
solution 1. The main goal is to protect the encryption key of
each column distinctly from the other column keys.

Let’s consider a user that executes an insert query having
the following form:

Insert into Table I values ('0001',
AES192('Mycolor442266775hrt@HH@T','elbouchti'),
AES192('Mycolormybeautyy@nn@x','karim'),AES192('Mycol
or012345678has@ml@p', 2000); (E)

Before sending that query, it will be transformed into the
query (F) having the syntax:

Insert into Table I values ('0001',
AES192(Func_Mc('Mycolor442266775hrt@ HH @
T','elbouchti')), AES192(Func_Mc('Mycolormybeautyy@ nn
@ x','karim')), AES192(Func_Mc('Mycolor012345678has @
ml @ p')), 2000); (F)

TABLE. I. THE TABLE “AGENT” BEFORE ENCRYPTION

code first-name last_name dose

1000 Karim El bouchti 10

1001 hamid Afane 10

1002 adil Faris 15

1003 amina Lemnawar 04

1004 tayebi El bouchti 06

1005 amina Aghbal 09

TABLE. II. THE TABLE “AGENT” AFTER ENCRYPTION

code first-name last_name dose

1000 Karim El bouchti
3C0354B2295D6898C
5BB2731CB6ADCB9

1001 hamid afane
3C0354B2295D6898C
5BB2731CB6ADCB9

1002 adil faris
ADE96B60B117A764
F5870665DF4F3D7D

1003 amina lemnawar
88659CA5130C28136
F6AD7B37F74E531

1004 tayebi Elbouchti
29152E11B0AEA7CD
69F4327E6AD4730D

1005 amina aghbal
C1EDB798F41A5C19
F18B2A3E35D6ED92

In this case, the Func_Mc() function is defined and stored
in the DB server. It substitutes the keys defined in the query
(E) that comes out from the user's application into the real keys
of encryption/decryption.We suggest implementing Func_Mc()
in the DB server among its objects. It should follow the
algorithm below:

Func_Mc (X)

{K = E (X, H ((Nom_table) || (Nom_col)) || (Nom_DB) || Sum
(id_col, Id_tab)));

Retour (K) ;}

With:

 E: A symmetric encryption algorithm.

 H: A hash function.

 X: The key defined in the insert statement (user's
application files)

 K: the real key to encrypt/decrypt the data of the
column.

 Nom_col: The column name defined in the insert
statement.

 Nom_DB: The name of DB.

 Sum (id_col, Id_tab): the sum of the column and table
identifiers.

D. Implementation of the Solution 2

The implementation of the solution 2 was performed using
the same tools deployed in the solution1. We have chosen the
AES256 as an encryption algorithm and the MD5 as a hash
function to develop the function Func_Mc().

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

311 | P a g e

www.ijacsa.thesai.org

The algorithm "Algo-client2" presented below, transforms
the user's query into a new one which calls Func_Mc() before
its execution on the DB server.

Algorithm 2: Query transformation in solution 2.

Algo-client2

Input: executed_query

Output: new_query

Begin

Decompose (executed_query)

 Func_Mc(key)

 Generate (new_query)

 Execute (new_query)

End

We have tested the algorithm “Algo-client2” on the table
“travailleur” which has the structure (G) below:

travailleur (Matricule, dose_prof, dose_sup, dose_neut,
dose_int) (G)

We have considered all the “travailleur” columns as
sensitive columns. Thus, these columns will be protected by an
encryption according to the elements of the Table III and
Table IV:

Table V and Table VI show the results obtained when
inserting data in “travailleur” table before and after the
encryption.

E. Results and Discussions

The results obtained when implementing our two solutions
allow us to deduce that both solutions provide better protection
of encryption keys, no malicious act performed by the client to
hold encryption keys can succeed. The real values of keys are
not defined on the client.

Outsourcing the protection of the encryption keys defined
on the client side to a DB server is an effective way to secure
keys, especially if the server is a trusted site. Our solutions are
well adapted to this concept; they are conditioned by a high
level of trust at DB server and its operators. Shmueli et al. have
mentioned in [11] that the level of trust in the DB server is a

fundamental criterion of a DB encryption solution. The partial
trust scenario is one of the three levels of trust mentioned in
their manuscript. It means that the DB server, together with its
memory and the DBMS software are trusted, but the secondary
storage that it uses is not. Thus, we choose to integrate our
solution into this concept.

TABLE. III. THE ENCRYPTION KEYS ASSOCIATED TO THE “TRAVAILLEUR”

COLUMNS

Sensitive column Algorithm Encryption key defined in the user query

Matricule AES256 &@I@encrypt@my@

dose_prof AES256 &@I@encrypt@he@

dose_sup AES256 &@I@encrypt@sh@

dose_neut AES256 &@I@encrypt@it@

dose_int AES256 &@I@encrypt@we@

TABLE. IV. THE ENCRYPTION KEY GENERATED BY FUNC_MC()

Sensitive

column

Encryption key defined

in the user query

The encryption key generated

by Func_Mc()

Matricule &@I@encrypt@my@
B50C849772BA517C

27C52327D2CF06B9

dose_prof &@I@encrypt@he@
E03D47BBED9EA464
AB0BD0DD6B9DF1DA

dose_sup &@I@encrypt@sh@
F2AB5228D454FF263

044C4D43D92AD50

dose_neut &@I@encrypt@it@
16307E27C51A178C

B731B6F8BDC29CC8

dose_int &@I@encrypt@we@
E817629DA45424B34

CFCDE4B4B79ADC2

TABLE. V. THE TABLE “TRAVAILLEUR” BEFORE ENCRYPTION

Matricule dose_prof dose_sup dose_neut dose_int

A00001 1,2 10,2 1,2 0

A00002 2,4 5,47 0,2 0

A00003 6,5 7,21 0,8 0

A00004 2,8 3,55 0 0

A00005 1,1 4,7 0,22 0

A00006 6,5 8,6 0,14 0

TABLE. VI. THE TABLE “TRAVAILLEUR” AFTER ENCRYPTION

Matricule dose_prof dose_sup dose_neut dose_int

372E7E32A13F7DB9F7FCB

9FBECAEBD3D

FAA8DB86C358211C261058

A7AEB13CC4

48F105C92DBA3DDC5913

C82A9B810BF0

0547D9BDA3BA07B0C1C9

9EC1805247C1

8B954F14B94DFEBB85FE

222B16AE527F

767D2CF95410ECFB0F34C

EC0A1B6F466

29C9A2C18ABD74B321FB59

523B85CFFE

0C480ADBEF9CCB14C439

77C5174F035C

F41E9DED97E2112BE602E

B10E6888A09

8B954F14B94DFEBB85FE

222B16AE527F

62709892E338E435543A204
719A83198

BB5FB6DFCDD9E1EAC436
ABCA446A2DDA

F55467102D30CDD54E24F
D5D18A4453B

BBD0714D33B5DD58E39D
952E338E8BBB

8B954F14B94DFEBB85FE
222B16AE527F

04EA3E21C176BFCD71EE3

BA7DDB8CBA3

786033AD9863E08F31D8936

E5A06E716

5B2FCAC0F7418386B5AF

B265002D09E9

94AA0C35085D49DFD6CC

2F4CB5606CDF

8B954F14B94DFEBB85FE

222B16AE527F

4197B8E915413B5F6BD3B1

D93950731C

3FA4CA64C8873E2E01A0C4

3D242403D6

6DF8E9AB7A60CA0B85B1

FDFEBF1B2343

7CF257E8293174EF6980A6

7E9E80645E

8B954F14B94DFEBB85FE

222B16AE527F

586F84DB7D48EB80B2BFB

156528030C4

BB5FB6DFCDD9E1EAC436

ABCA446A2DDA

DAA03A0B62D6A9B9C902

788A9515A2D6

F575A63E49A188328CAB3

2A1AF9A342D

8B954F14B94DFEBB85FE

222B16AE527F

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

312 | P a g e

www.ijacsa.thesai.org

The proposed solutions are well adapted for 2 and 3 tier
architectures. For each architecture, the key protection
functions (Func () and Func_Mc ()) are implemented inside the
DB server. When we choose to manage the DB inside a Cloud
(DBAAS), the functions (Func () and Func_Mc ()) will be
included among the outsourced DB objects.

Otherwise, these solutions can be compromised by a
specific attack, which remains the retro-engineering attack. An
attacker can reveal the source code from the executables of the
solution files (Algo-client1 and Algo-client2) by using special
tools. The attacker can get the return of the functions and can
determine how these functions provide the new keys. In this
case, we suggest putting all the code of the user's queries in
stored procedures, which will also be placed on the DB server.

IV. CONCLUSION

Databases are the favorite targets of attackers due to the
values of the information they contain and their volume. They
are vulnerable to several typologies of attacks, especially the
internal attacks. When implementing an encryption strategy at
the application level to secure DB, the internal attack threats
become more dangerous for the sensitive DB, and the
probability of attacking the encryption keys is considerable.
The attacker can use them to decrypt all sensitive data without
leaving any traces

In this work, we have proposed and implemented two
solutions that protect encryption keys inside applications. The
principle of these solutions is to transform the encryption keys
defined at the user's query to other keys considered the real
keys for encryption and decryption. This transformation is
performed using functions stored within DB server. Our
solution is considered efficient and simple when
implementation, and it is more adapted to a trusted DB server.
In forthcoming works, we aim to adapt our solutions to cover
more complicated attacks made by the internal attackers on
sensitive DB.

REFERENCES

[1] I. Homoliak, J.Guarnizo, Y.Elovici, M.Ochoa, “Insight into insiders and
it: A survey of insider threat taxonomies, analysis, modeling, and
countermeasures” ACM Computing Surveys, New York, NY, USA,
vol.52, no.2, pp.30, April 2019.

[2] M. Zabihimayvan, D. Doran, “Fuzzy Rough Set Feature Selection to
Enhance Phishing Attack Detection“, IEEE International C onference on
Fuzzy Systems,2019, in press.

[3] K. El Bouchti, S. Ziti, F. Omary, N. Kharmoum, “A New Database
Encryption Model Based on Encryption Classes” Journal of Computer
Science, vol.15,no.6, pp.844-854, June 2019.

[4] K. El bouchti, N. Kharmoum, S. Ziti, F. Omary, “A new approach to
prevent internal attacks on Database encryption keys” Proceedings of
the International Conference Scientific Days Applied Sciences, Larache,
Morocco,pp.15-16, February 2019.

[5] K. El bouchti, S.ZITI, F.OMARY, “A new approach to protect
encryption keys in Database Management System”, Proceedings of the
International Conference Modern Intelligent Systems Concepts, Rabat,
Morocco, pp.12-13, December 2018.

[6] C.Priebe, K.Vaswani, M.Costa,M, “Enclavedb: A secure database using
sgx“, IEEE Symposium on Security and Privacy (SP), USA, pp.264-278,
May 2018.

[7] Y.Elovici, R.Vaisenberg, E.Shmueli. (2018). U.S. Patent No. 9,934,388.
Washington, DC: U.S. Patent and Trademark Office.

[8] K.El bouchti, S.Ziti, Y.Ghazali, N.Kharmoum, “Sécurité des Bases de
Données : Menaces principales et solutions de chiffrement existantes“,
Proceedings of the JDSIRT Conference Information Systems, Networks
Telecommunications, Meckness, Morocco, pp.13 ,November 2018.

[9] Hashim, Hassan B, “Challenges and Security Vulnerabilities to Impact
on Database Systems“, Al-Mustansiriyah Journal of Science,vol. 29,
no.2, pp.117-125, 2018.

[10] Zainab.S.Alwan, Manal.F.Younis, “Detection and Prevention of SQL
Injection Attack: A Survey“, International Journal of Computer Science
and Mobile Computing, vol. 6, no 8, pp. 5-17, 2017.

[11] E.Shmueli, R.Vaisenberg, E.Gudes, Y. Elovici, “Implementing a
database encryption solution, design and implementation issues“,
Computers & security, vol.44, pp.33-50, 2014.

[12] B.H.Chen, P.Y.Cheung, P.Y.Cheung, Y.K.Kwok, “Cypherdb: A novel
architecture for outsourcing secure database processing“, IEEE
Transactions on Cloud Computing, vol.6, no.2, pp.372-386, 2018.

[13] Deepicata. N. Soni, “Database Security: Threats and Security
Techniques”, International Journal of Advanced Research in Computer
Science and Software Engineering, vol.5, no.5, pp.621-624, 2015.

[14] J.D. Bokefode, S.A. Ubale, S.S. Apte, D.G. Modani, “Analysis of dac
mac rbac access control based models for security.
Analysis“,International Journal of Computer Applications,vol. 104, no 5,
pp.6-13, 2014.

[15] I.Basharat, F.Azam, A. Muzaffar,”Database Security and Encryption: A
Survey Study”, International Journal of Computer Applications, vol.
47,no.12,pp.28-34, June 2012.

[16] S. Jacob, “Protection cryptographique des bases de données: conception
et cryptanalyse,“ Ph.DThesis, Université Pierre et Marie Curie-Paris VI,
2012.

[17] L.Bouganim, Y.Guo, “Database encryption”, In Encyclopedia of
Cryptography and Security, Springer US, pp. 307-312, 2012.

[18] E.Shmueli, R.Vaisenberg,Y.Elovici, C.Glezer, “ Database encryption: an
overview of contemporary challenges and design considerations,” ACM
SIGMOD Record, vol.38, no.3,pp. 29-34, 2010.

[19] Y.Ding, K.Klein, “Model-driven application-level encryption for the
privacy of e-health data”, International Conference in Availability,
Reliability, and Security, IEEE, Krakov, Poland, pp. 341-346, February
2010.

[20] L.Liu, J.Gai, “A new lightweight database encryption scheme
transparent to applications”, 6th IEEE International Conference on
Industrial Informatics, Daejeon, South Korea, pp.135-140, July 2008.

[21] S.Sesay, Z. Yang, J.Chen, D. Xu, “A secure database encryption
scheme”, Procceding of the Consumer Communications and Networking
Conference, Second IEEE, Las Vegas, USA, pp.49-53, January 2005.

[22] Mattsson, U. T, “ A practical implementation of transparent encryption
and separation of duties in enterprise databases: protection against
external and internal attacks on databases”, Proceeding of the
International Conference on E-Commerce Technology, Munich,
Germany, pp. 559-565, July 2005.

[23] Y.Elovici,R.Waisenberg, E.Shmueli, E.Gudes, “A structure preserving
database encryption scheme”, In Workshop on Secure Data
Management, Berlin, Germany, pp.28-40, 2004.

[24] J.Wang, T.Wang, Z.Yang, Y.Mao, N.Mi, & B.Sheng, “Seina: A stealthy
and effective internal attack in hadoop systems”, In International
Conference on Computing, Networking and Communications, IEEE,
Santa Clara, USA, pp.525-530, January 2017.

[25] T.Wang, N.S.Nguyen, N, J.Wang, T.Li, X.Zhang, N.Mi, & B.Sheng,
“Rover: Robust and verifiable erasure code for hadoop distributed file
systems”, The 27th International Conference on Computer
Communication and Networks, Hangzhou, China, pp.1-9, July 2018.

[26] M.Kambalyal, 3-tier architecture. Retrieved On, vol.2, p.34.

https://ui.adsabs.harvard.edu/#search/q=author:%22Jayant.+D%2C+Bokefode%22&sort=date%20desc,%20bibcode%20desc
https://ui.adsabs.harvard.edu/#search/q=author:%22Swapnaja+A%2C+Ubale%22&sort=date%20desc,%20bibcode%20desc
https://ui.adsabs.harvard.edu/#search/q=author:%22Sulabha+S%2C+Apte%22&sort=date%20desc,%20bibcode%20desc
https://ui.adsabs.harvard.edu/#search/q=author:%22Dattatray+G%2C+Modani%22&sort=date%20desc,%20bibcode%20desc

