
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

490 | P a g e

www.ijacsa.thesai.org

Knowledge Sharing Factors for Modern Code Review

to Minimize Software Engineering Waste

Nargis Fatima1, Sumaira Nazir2, Suriayati Chuprat3

Razak Faculty of Technology and Informatics, University Technology Malaysia (UTM), Kuala Lumpur, Malaysia 1, 2, 3

Department of Engineering and Computer Science, National University of Modern Languages, (NUML), Islamabad, Pakistan1, 2

Abstract—Software engineering activities, for instance,

Modern Code Review (MCR) produce quality software by

identifying the defects from the code. It involves social coding

and provides ample opportunities to share knowledge among

MCR team members. However, the MCR team is confronted

with the issue of waiting waste due to poor knowledge sharing

among MCR team members. As a result, it delays the project

delays and increases mental distress. To minimize the waiting

waste, this study aims to identify knowledge sharing factors that

impact knowledge sharing in MCR. The methodology employed

for this study is a systematic literature review to identify

knowledge sharing factors, data coding with continual

comparison and memoing techniques of grounded theory to

produce a unique and categorized list of factors influencing

knowledge sharing. The identified factors were then assessed

through expert panel for its naming, expressions, and

categorization. The study finding reported 22 factors grouped

into 5 broad categories i.e. Individual, Team, Social, Facility

conditions, and Artifact. The study is useful for researchers to

extend the research and for the MCR team to consider these

factors to enhance knowledge sharing and to minimize waiting

waste.

Keywords—Knowledge sharing; modern code review; software

engineering waiting waste

I. INTRODUCTION

Software engineering is a socio-technical activity for the
development of software with specified resources [1]. It
includes activities such as requirement identification,
modeling, construction, testing, and Modern Code Review
(MCR) [2]. These activities produce various wastes such as
waiting, development of extra or erroneous feature, defect,
needless composite solution, rework, and mental distress [2],
[3], [4], [5]. In software engineering, waste can be defined as
“anything that doesn’t make it to the release, is waste” [4].

Modern Code Review, a lightweight form of traditional
Fagan’s code inspection [6], has been expanding in the
research. A Fagan examination is a heavyweight code
inspection procedure requiring synchronous interactions
among the members in multiple stages [7]. On the other hand,
MCR is characterized as being trivial, increasingly casual, and
strengthened by review tools [6], [8], [9]. Notwithstanding
studies that confirm Fagan’s code inspections advances the
quality of software [7], [10] their required cost and formality
have prohibited widespread acceptance [6], [8], [9].
Contrariwise, MCR has addressed many inadequacies of
Fagan’s code inspection and highly adopted in industry and
open-source software development contexts [6], [8], [9], [11].

Although MCR has addressed many shortcomings of
Fagan’s code inspections and is developed to improve
software and code quality through extensive knowledge
sharing among MCR team members [6], [8], [9], [11], [12],
however, the MCR generates waiting waste due to poor
knowledge sharing [5], [8], [13], [14], [15], [16], [17], [18].

Current researchers [8], [9], [17] have shown that MCR
team members are hesitant to share knowledge and give a
timely response to other members and let them in a waiting
condition. It is argued that waiting waste can be minimized by
increasing knowledge sharing [2], [4], [5], [19] among the
MCR team. It is also argued that knowledge sharing can be
increased by identifying the factors influencing knowledge
sharing [8], [9], [11], [20], [21] that can increase knowledge
sharing among the MCR team that might lead to the reduction
in the production of waiting waste in MCR.

Although previous research has given attention to
knowledge sharing concerning software engineering activities
[22], [23], [24], [25], however, knowledge sharing in the
context of MCR has not got much attention from the
researchers [8], [9], [11], [20], [21]. No, systematize
investigations are available concerning the knowledge sharing
aspect in MCR that can help in minimizing waiting waste.
Therefore, the purpose of this study is to perform a Systematic
Literature Review (SLR) to produce a validated and unique
list of factors influencing knowledge sharing in MCR to
minimize waiting waste.

The rest of this paper is distributed as Section II describes
the background and related work. Section III covers the search
method while Section IV introduces the results of SLR and
expert review. Section V provides the discussion; Section VI
presents the limitation of the study. Section VII presents the
conclusion. Section VIII provides future directions. Section IX
highlights the contribution of the study.

II. BACKGROUND

Software engineering is a development of quality software
within a stated time and budget [1]. The success factor of
software engineering is subject to whether the software can
fulfill user demands [1]. Software engineering is a socio-
technical activity that incorporates managing other activities
[2], [5] such as requirement identification, modeling,
construction, testing, and Modern Code Review (MCR). These
activities deliver ample prospects of producing wastes [2], [4],
[5]. Waste is any act that does not produce any value to the
user [2]. Concerning software engineering it can be “anything

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

491 | P a g e

www.ijacsa.thesai.org

that doesn’t make it to the release, is waste” [4]. It can also
refer to any activity which uses resources but does not produce
quality software [2], [4].

MCR is a software engineering activity for code
improvement [6]. In MCR the code is reviewed by the
reviewer, before committing the code to the project codebase.
Unlike Fagan formal inspection process, MCR focuses on
reviewing the small part of code changes usually named as
‘patch’ before saving the code into the codebase [26]. MCR
regularly occurs in practice [8], [9], [11] with the help of code
review tools [6], [9] such as Gerrit, Code flow, Review board,
Phabricator, etc. It is a means to identify defects and to
improve code quality [2], [6], [8], [9], [11], [12], [27], [28],
[29] through knowledge sharing among developers. Fig. 1
shows the MCR process overview.

It is argued that MCR produces wastes such as waiting,
development of extra or erroneous feature, defect, needless
composite solution, rework, and mental distress [2], [3], [4],
[5]. It is contended that waiting is the critical wastes [4], [30],
[31]. It is argued that “one of the biggest wastes in software
development is usually waiting for the thing to happen”[30]. It
is also conveyed that if the organization has to minimize one
waste, it should focus on a waiting [4], [30], [31].

Waiting waste refers to a delay between two consecutive
activities [2], [3], [4], [5], [30], [31]. For example, in MCR
delay between submitting source code review request by the
author to the reviewer and getting feedback from the reviewer
[8], [9], [17]. It is argued that one of the reasons for waiting
waste in MCR is a poor knowledge sharing [5], [8], [13], [14],
[15], [16], [17], [18]. The waiting waste decreases the
productivity and efficiency of the developers [2], [4], [8], [12],
[16], [17], [21], [26], [32]. It also causes project delays due to
the blocking of tasks [4], [33].

Fig. 1. MCR PROCESS OVERVIEW [9].

To minimize the waiting waste it is necessary to increase
knowledge sharing [2], [4], [5], [19] among MCR team
members. It is argued that knowledge sharing can be increased
by identifying the factors influencing knowledge sharing [8],
[9], [11], [20], [21] that can help in effective knowledge
sharing among the MCR team.

Though preceding studies [22], [23], [24], [25] focused on
knowledge sharing in software engineering activities,
however, slight indication is available in MCR [8], [9], [11],
[20], [21], resulting in absence of knowledge sharing
guidelines in MCR. Therefore, the study aims to identify
factors influencing knowledge sharing in MCR to minimize
waiting waste.

Systematic Literature Review (SLR), has been directed to
identify the factors influencing knowledge sharing in MCR.
The expert review has been performed to confirm the
identified factors influencing knowledge sharing for their
naming, expressions, and categories.

III. RESEARCH METHODOLOGY

Multiple research activities have been performed to
generate a distinct and categorized rundown of factors
influencing the knowledge sharing in MCR to minimize the
generation of waiting waste. The methodologies employed for
this study are discussed in subsections.

A. Systemantic Literature Review

The Systematic Literature Review (SLR) methodology
given by [34] has been used for this study to identify the
relevant data sources for the identification of factors
influencing knowledge sharing in MCR to minimize the
generation of waiting waste. The SLR methodology is a
systematized and well-organized approach to attain less
impartial results [34]. It is an authentic methodology to record
significant central focuses in the research for assessing and
looking at all momentum research related to research
questions. The detailed procedure of SLR is explained in
subsections.

1) Research question: Constructing the research question

is the central action of SLR [34]. Research questions are

designed with the support of PICOC criteria specified by

Petticrew and Roberts [35]. This investigation has excluded

the 'Comparison' segment of the PICOC yet just PIOC has

been considered to design the research question. The reason

behind excluding the comparison part is that this study is not

considering the comparison of techniques or models. Table I

represents the PIOC criteria for this study.

TABLE. I. POIC SUMMARY

Population MCR team

Intervention MCR Process

Outcome
Factors influencing knowledge sharing in MCR to
minimize waiting waste.

Context

The study includes all study types such as interviews,

observations, surveys, experiments, questionnaires and

case studies relating to MCR.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

492 | P a g e

www.ijacsa.thesai.org

To gather the indications on the present state of research
regarding factors influencing knowledge sharing in MCR to
reduce waiting wastes. The designed question is specified
below.

RQ1: What factors influence the knowledge sharing in
MCR to minimize software engineering waiting waste?

2) Search Strategy: The search strategy comprises of

identification of key terms and their alternate substitutes.

a) Identification of key term: The study key terms

includes knowledge sharing, modern code review and

software engineering waiting waste

b) Finding substitutes of identified key terms: The

substitutes for the identified key terms are shown in Table II.

c) Use of Boolean OR to design search strings with key

terms and their substitutes: The key terms along with their

substitutes are joined using Boolean OR and are represented in

Table III.

d) Use Boolean AND to concatenate the search key

terms and limit the research: The designed search string is

given below.

(‘Knowledge sharing’ OR ‘knowledge distribution’ OR
‘knowledge transfer’, ‘knowledge dissemination’ OR
‘knowledge exchange’) AND (review’ OR ‘modern code
inspection ’OR ‘code review’ OR ‘code inspection ’OR
‘lightweight code review’) AND (‘Software Engineering
Waiting Waste’ OR ‘software engineering delay waste’ OR
‘software engineering linger waste’ OR ‘software engineering
blocking waste’ OR ‘software development delay waste’ OR
‘software development linger waste’)

TABLE. II. KEY TERMS AND THEIR SUBSTITUTES

Key term Substitutes

Knowledge sharing
‘knowledge distribution’, ‘knowledge transfer’,
‘knowledge dissemination’, ‘knowledge

exchange’

Modern Code Review

‘contemporary code review’, ‘modern code

inspection’, ‘code review’, ‘code inspection’,
‘lightweight code review’

Software Engineering

Waiting Waste

‘software engineering delay waste’, ‘software

engineering linger waste’, ‘software
engineering blocking waste’, ‘software

development delay waste’, ‘software

development linger waste’

TABLE. III. KEY TERMS WITH THEIR SUBSTITUTES AND BOOLEAN OR

OPERATOR

Key terms, Substitutes and Boolean OR

‘Knowledge sharing’ OR ‘knowledge distribution’ OR ‘knowledge transfer’,

‘knowledge dissemination’ OR ‘knowledge exchange’

‘Modern Code Review’ OR ‘contemporary code review’ OR ‘modern code
inspection ’OR ‘code review’ OR ‘code inspection ’OR ‘lightweight code

review’

‘Software Engineering Waiting Waste’ OR ‘software engineering delay
waste’ OR ‘software engineering linger waste’ OR ‘software engineering

blocking waste’ OR ‘software development delay waste’ OR ‘software

development linger waste’

e) Search process and database sources: The search

process involved databases such as IEEE, Science Direct,

ACM, Wiley online, Springer link, Web of Science and

Scopus. The reason for selecting the above databases is that

the selected databases are known to have software engineering

literature. To make the search process comprehensive and to

avoid the chance of missing out evidence, the search included

the literature published from 2013 – 2019. Database sources

that were considered are presented in Table IV along with

their URLs and distribution.

f) Study Selection Criteria: The studies are included

and excluded based on the inclusion and exclusion plan shown

in Fig. 2.

Study Quality Assessment: Notwithstanding broad
inclusion and exclusion criteria, it is viewed as basic to
evaluate the "quality" of essential investigations. For the
evaluation of concentrate quality, the checklist specified by
[34] has been used. The investigations chosen after the
introductory inclusion and exclusion plan are additionally
assessed utilizing the checklist articulated in Table V.

The questions specified in the checklists represented in
Table V are answered according to the rule specified by [34].
The evaluation scale is presented in Table VI.

TABLE. IV. DATABASE SOURCES

Data Source URL

IEEE http://ieeexplore.ieee.org/

ACM http://dl.acm.org

Science Direct http://www.sciencedirect.com

Wiley http://onlinelibrary.wiley.com

Web of Science https://www.webofknowledge.com

Springer link https://www.springer.com

Scopus http://www.scopus.com

Fig. 2. INCLUSION AND EXCLUSION PLAN.

-Research papers available in journals,

conference, workshops, book chapters,

thesis, or technical report that maps to the
study key term

-Research papers between 2013-2019

-Research
-Content available

-Must be written in English

Study

Inclusion

Plan

Study

Exclusion

Plan

-Research papers giving information such
as conference proceedings, workshops,

table of content, irrelevant title.

-Research papers which are not having
defined key terms or their alternates.

-The research papers that identical.

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://www.sciencedirect.com/
http://onlinelibrary.wiley.com/
http://www.webofknowledge.com/
https://www.springer.com/
http://www.scopus.com/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

493 | P a g e

www.ijacsa.thesai.org

TABLE. V. QUALITY ASSESSMENT CHECKLIST

Question Answer

Are the goals visibly detailed? Yes/ No/Partially

Are the outcomes complete and substantial? -do-

Are the prediction methods used visibly defined and

their choice are acceptable?
-do-

Is the information been extended by the study? -do-

Is the diversity of viewpoint and context been

sightseen?
-do-

Are the links between data, understanding, and
assumptions are vibrant?

-do-

Does the difficulty of the data is transferred? -do-

TABLE. VI. SCALE FOR ANSWERING QUESTIONS GIVEN IN CHECKLIST [34]

Answer Score

Yes 1

No 0

Partially 0.5

g) Data Extraction: After the essential studies have

been chosen and their quality assessed, the data is extracted

from the selected papers. The data extraction method is

discussed in this section. The data extraction method is

intended to contain all the data that is important for

responding to the research question and tending to the

investigation quality criteria [34]. The data extraction form is

represented in Table VII.

h) Data Synthesis: After vigilant data extraction the

extracted data is synthesized following the data coding,

continual data comparisons and memoing from grounded

theory [36] are adopted for data unit categorization, and to get

the unique list of factors influencing knowledge sharing in

MCR.

B. Expert Review

After getting the unique list of factors influencing
knowledge sharing in MCR the list is evaluated through
experts for naming, expression, categorization, and
suggestions of new factors or categories. The considered
experience for experts’ selection is more than 10 years in
software development knowing MCR, software engineering
wastes and knowledge sharing. For expert review, the
guidelines of Ayyub [30] are followed.

TABLE. VII. DATA EXTRACTION FORM [34]

Data

characteristics

A unique identifier in the format: KSFP(1)…KSFP(n)

Title

Author (s)

Year

Study Set (Conference/Journal)

Study Commissioner (IEEE, ACM, etc.)

Selection (Inclusion/exclusion)/Quality assessment

Research Question What factors influencing knowledge sharing in MCR?

Fig. 3. DATA SYNTHESIS PROCEDURE.

Fig. 3 summarizes the data synthesis procedure employed
for this study.

IV. RESULTS

This section discusses the results achieved in the study. It
presents the results concerning the study search process to
achieve pertinent data sources and the factors influencing
knowledge sharing in MCR to minimize waiting waste.

A. Data Source Selection Results

Through initial search based on defined key terms, 9289
papers are obtained. The studies that represent only the table
of content, conference or workshop preceding details or
having unrelated titles are omitted. After the first exclusion,
1103 studies are obtained. The obtained 1103 studies are
evaluated for the relevant key terms (modern code review,
knowledge sharing, and software engineering waiting waste).
The studies that do not have any of the correlated key term are
eliminated and 190 studies are included. After assessment for
having duplication among 190 studies, 162 studies are
obtained and evaluated for their quality assessment. During
the quality assessment, 6 studies are excluded and finally, 156
studies are recognized as most appropriate to this study and
are included for detailed review.

B. Knowledge Sharing Factors in MCR

This section stretches the insights about factors influencing
knowledge sharing in MCR to minimize waiting waste. The
study results reported 22 factors that impact knowledge

Identification of factors influencing knowledge sharing in

MCR to minimize waiting waste

Expert Review

Relevant data sources

Data Analysis
(Data coding, continual comparison and memoing following

grounded theory)

Validated, Unique and Categorized list of
factors influencing knowledge sharing in

MCR

Unique and organized list of factors

influencing knowledge sharing in MCR

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

494 | P a g e

www.ijacsa.thesai.org

sharing in MCR, the identified factors are grouped under 5
broad categories namely Individual, Team, Social, Artifact
and Facility Conditions. The details are represented in
subsections. Table VIII provides a summarized view of the
factors influencing knowledge sharing in MCR along with
their references.

1) Individual: Individual perspective is the most

noticeable lens in MCR [32]. The factors involved in this

category are individual impartiality, individual historical

factors, individual emotions, individual pressure, individual

awareness, individual turnover, and individual intentions [9],

[11], [17], [19], [37], [38], [39], [40], [41], [42], [43], [44],

[45], [46], [47].

2) Social: MCR is a multifaceted process that involves

social interactions among team members [32]. This category

includes factors i.e. relational and structural factors [8], [9],

[11], [17], [19], [48], [49], [50], [51].

3) Team: The team signifies a group of individuals who

worked together to achieve a common goal. Their work

involved multiple projects, from new to legacy systems [8].

This category involves factors i.e. team organization, team

strategies, team culture, team, and team drive [8], [9], [11], [16],

[32], [52], [48], [40], [53].

4) Artifact: An artifact, is an object made or given form

by humans [12], [32]. This category includes factors such as

source code, testing, feedback [8], [9], [11], [16], [19],[32],

[52], [54], [55], [56], [57], [58], [59], [60].

5) Facility Conditions: Facility conditions support the

successful conduction of the MCR [32]. This category

involves factors i.e. project, process, tool, communication

channel, and organization [9], [11], [19], [12], [15], [32].

Table VIII summarizes the validated list of factors
influencing knowledge sharing in MCR prompting knowledge
sharing in MCR along with the references.

TABLE. VIII. LIST OF KNOWLEDGE SHARING FACTORS IN MCR TO MINIMIZE SOFTWARE ENGINEERING WASTES

Categories Knowledge Sharing Factors References

INDIVIDUAL

Individual Impartiality [9], [11], [17]

Individual historical factors
[6], [8], [9], [16], [11], [17], [19], [32], [37], [52], [45], [48], [61],
[62], [49], [38], [39], [40] , [41], [42] , [43], [44], [46]

Individual Emotions [8], [9], [15], [17], [32], [52] [63], [64]

Individual Pressure [6], [8], [9], [11], [15],[19], [32], [52], [48], [49], [40], [65], [54],

Individual Awareness
[8], [9], [11], [14], [19], [32], [37], [52], [48], [49], [44], [65], [54],

[66], [55], [56], [67],

Individual Turnover [64]

Individual Intentions
[9], [11], [12], [17], [19], [37], [52], [61], [49] [64], [54], [56],
[68], [69], [70],

SOCIAL
Relational

[8], [9], [11], [16], [17], [19], [32] , [48], [61], [49], [39], [40], [41],

[42], [43], [44], [54], [70], [37], [57], [71], [72], [73], [74], [75]

Structural [15], [44], [50], [51]

ARTIFACT

Source Code
[8], [9], [11], [16], [19],[32], [6], [12] [15], [52], [45], [48], [38], [40],

[41], [46], [63], [65], [54], [55], [56], [76], [77], [58], [78], [79]

Feedback
[8], [9], [11], [15], [19], [32] [48], [40], [63], [54], [55], [56], [57],
[72], [76], [58], [59]

Testing [8], [9], [11], [15], [19], [32], [52],[48], [75], [58], [59], [60],

FACILITY CONDITIONS

Process [8], [9], [11], [19], [52], [48], [39], [78]

Tool [6], [8], [11], [12], [15], [32], [38] , [55], [71] [77], [78]

Organization [8], [12], [17], [32], [52], [38]

Communication [8], [9], [15], [52], [48], [38], [55]

Project [9], [11], [15], [32], [48]

TEAM

Team Organization [8], [9], [11], [16], [32]

Team Strategies [8], [12], [15], [52]

Team Culture [8], [11], [52]

Team Intensions [6], [8], [9], [12], [32], [48], [40], [56]

Team Drive [8], [9], [11], [19], [32], [52], [48], [40], [53]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

495 | P a g e

www.ijacsa.thesai.org

V. DISCUSSION

This work stretches the direction to a comprehensive list of
factors influencing knowledge sharing in MCR to minimize
waiting waste. The identified factors are significant for
software engineers involved in the MCR process. The
preliminary list can act as a guide for the researchers and
practitioners working in MCR to consider and these factors in
order to increase knowledge sharing and to minimize waiting
waste. This study contributed to the software engineering
body of knowledge (SWEBOK) particularly to knowledge
sharing in the context of MCR. The study helps the MCR team
to achieve its objective while minimizing waiting waste.

VI. LIMITATIONS

This study lacks the identification of factors from the
industry as the study comprises of factors that are recognized
from the literature. A large effort has been made to cover all
the correlated papers, but still, there is a possibility that some
research may be missed.

VII. CONCLUSION

The research study provides a categorized list of factors
influencing knowledge sharing in MCR to minimize waiting
waste. The reported factors that influence knowledge sharing
in MCR are distributed into five main categories that are
Individual, Social, Team, Artifact and Facility Conditions.
These factors ought to be considered while performing MCR
to minimize waiting waste by increasing knowledge sharing.

VIII. FUTURE DIRECTIONS

A comprehensive list will be produced in the future by
quantitative analysis, the ongoing research objectives. In
addition to this, a comprehensive model can be produced for
MCR that can be used as a guideline for software engineers to
minimize software engineering waiting waste. This work
recognizes factors influencing knowledge sharing in MCR that
provides the foundation for the investigators to outspread this
research by discovering other factors for other software
development activities to reduce wastes.

IX. CONTRIBUTION

The examination contributed towards software engineering
body of knowledge (SWEBOK), knowledge base software
engineering (KBSE) and green software engineering (GREEN
SE) by perceiving the significance of knowledge sharing and
by giving the arranged rundown of factors influencing
knowledge sharing in MCR. The work can help software
developers to successfully transfer knowledge by overcoming
the negative aspects of identified factors.

REFERENCES

[1] Alvertis et al., “User Involvement in Software Development Processes,”
Procedia Comput. Sci., vol. 97, pp. 73–83, 2016.

[2] T. Sedano and P. Ralph, “Software Development Waste,” in Proc.
IEEE/ACM 39th International Conference on Software Engineering,
2017.

[3] M. Poppendieck and T. Poppendieck, “Implementing Lean Software
Development: From Concept to Cash,” Addison-Wesley Signat. Ser., p.
304, 2006.

[4] H. Alahyari, T. Gorschek, and R. Berntsson Svensson, “An exploratory
study of waste in software development organizations using agile or lean

approaches: A multiple case study at 14 organizations,” Inf. Softw.
Technol., vol. 105, no. August 2018, pp. 78–94, 2019.

[5] “Software Engineering Wastes – A Perspective of Modern Code
Review,” 2020.

[6] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proc. International Conference on Software
Engineering, 2013, pp. 712–721.

[7] M. E. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Syst. J., vol. 38, no. 2.3, pp. 258–287, 1999.

[8] L. MacLeod, M. Greiler, M. A. Storey, C. Bird, and J. Czerwonka,
“Code Reviewing in the Trenches: Challenges and Best Practices,” IEEE
Softw., vol. 35, no. 4, pp. 34–42, 2018.

[9] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley, “Process
Aspects and Social Dynamics of Contemporary Code Review: Insights
from Open Source Development and Industrial Practice at Microsoft,”
IEEE Trans. Softw. Eng., vol. 43, no. 1, pp. 56–75, 2017.

[10] A. Aurum, H. Petersson, and C. Wohlin, “State-of-the-art: Software
inspections after 25 years,” Softw. Test. Verif. Reliab., vol. 12, no. 3,
pp. 133–154, 2002.

[11] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: : A Case Study at Google,” in Proc. ACM/IEEE
40th International Conference on Software Engineering: Software
Engineering in Practice, 2018, pp. 181–190.

[12] P. C. Rigby and C. Bird, “Convergent Contemporary Software Peer
Review Practices Categories and Subject Descriptors,” in Proc.
ESEC/FSE, 2013, pp. 202–212.

[13] J. C. Carver, B. Caglayan, M. Habayeb, B. Penzenstadler, and A.
Yamashita, “Collaborations and code reviews,” IEEE Softw., vol. 32,
no. 5, pp. 27–29, 2015.

[14] J. Czerwonka, M. Greiler, and J. Tilford, “Code Reviews Do Not Find
Bugs. How the Current Code Review Best Practice Slows Us Down,” in
Proc. IEEE/ACM 37th IEEE International Conference on Software
Engineering, 2015, vol. 2, pp. 27–28.

[15] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and
challenges in pull-based development,” in Proc. 38th International
Conference on Software Engineering, 2016, pp. 285–296.

[16] E. W. dos Santos and I. Nunes, “Investigating the Effectiveness of Peer
Code Review in Distributed Software Development,” in Proc. 31st
Brazilian Symposium on Software Engineering, 2017, pp. 84–93.

[17] D. M. German, U. Rey, and J. Carlos, “‘ Was my contribution fairly
reviewed ?’ A Framework to Study the Perception of Fairness in Modern
Code Reviews,” in Proc. ACM/IEEE 40th International Conference on
Software Engineering Synthesizing, 2018, no. 2, pp. 523–534.

[18] L. Novikova, “Poor knowledge sharing is the second biggest challenge
for software development teams,” 2019. [Online]. Available:
https://blog.onebar.io/poor-knowledge-sharing-is-the-second-biggest-
challenge-for-software-development-teams-a4843f9b9aa. [Accessed:
10-Aug-2019].

[19] A. Ram, Achyudh ; Sawant, Anand; Castelluccio, Marco; Bacchelli,
“What Makes a Code Change Easier to Review? An Empirical
Investigation on Code Change Reviewability,” in Proc. ESEC/FSE,
2018.

[20] N. Fatima, S. Nazir, and S. Chuprat, “Knowledge sharing, a key
sustainable practice is on risk: An insight from Modern Code Review,”
in 2019 6th IEEE International Conference on Engineering Technologies
and Applied Sciences (ICETAS), 2019.

[21] N. Fatima, S. Nazir, and S. Chuprat, “Understanding the Impact of
Feedback on Knowledge Sharing in Modern Code Review,” in 6th IEEE
International Conference on Engineering Technologies and Applied
Sciences (ICETAS) , In Press, 2019.

[22] R. Anwar et al., “Conceptual Framework for Implementation of
Knowledge Sharing in Global Software Development Organizations,”
pp. 174–178, 2017.

[23] X. Chen, Y. Zhou, D. Probert, and J. Su, “Technology Analysis &
Strategic Management Managing knowledge sharing in distributed
innovation from the perspective of developers : empirical study of open
source software projects in China,” Technol. Anal. Strateg. Manag., vol.
7325, no. July, 2016.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

496 | P a g e

www.ijacsa.thesai.org

[24] N. S. Safa and R. Von Solms, “An information security knowledge
sharing model in organizations,” Comput. Human Behav., vol. 57, pp.
442–451, 2016.

[25] Q. Zhang and R. Du, “Impacts of cultural difference on knowledge
sharing, relationship quality and performance in IT-based service
outsourcing,” 2011 2nd Int. Conf. Artif. Intell. Manag. Sci. Electron.
Commer. AIMSEC 2011 - Proc., pp. 6271–6274, 2011.

[26] C. Thompson and D. Wagner, “A Large-Scale Study of Modern Code
Review and Security in Open Source Projects,” Proc. 13th Int. Conf.
Predict. Model. Data Anal. Softw. Eng., pp. 83–92, 2017.

[27] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “An empirical
study of the impact of modern code review practices on software
quality,” Empir. Softw. Eng., vol. 21, no. 5, pp. 2146–2189, 2016.

[28] N. Fatima, S. Chuprat, and S. Nazir, “Challenges and Benefits of
Modern Code Review-Systematic Literature Review Protocol,” in Proc.
International Conference on Smart Computing and Electronic
Enterprise, 2018, pp. 1–5.

[29] S. Nazir, N. Fatima, and S. Chuprat, “Modern Code Review Benefits–
Primary findings of a systematic literature review,” in The 3rd
International Conference on Software Engineering and Information
Management.

[30] M. Poppendieck and T. Poppendieck, Lean Software Development: An
Agile Toolkit. 2003.

[31] J. Urrego, R. Munoz, M. Mercado, and D. Correal, “Archinotes: A
global agile architecture design approach,” Lect. Notes Bus. Inf.
Process., vol. 179 LNBIP, pp. 302–311, 2014.

[32] O. Kononenko, O. Baysal, and M. W. Godfrey, “Code Review Quality:
How Developers See It,” in Proc. International Conference on Software
Engineering, 2016, pp. 1028–1038.

[33] M. Ikonen, P. Kettunen, N. Oza, and P. Abrahamsson, “Exploring the
sources of waste in Kanban software development projects,” in Proc. -
36th EUROMICRO Conference on Software Engineering and Advanced
Applications, 2010, pp. 376–381.

[34] B. Kitchenham and S. Charters, “Source: " Guidelines for performing
Systematic Literature Reviews in SE " , Kitchenham et al Guidelines for
performing Systematic Literature Reviews in Software Engineering
Source: " Guidelines for performing Systematic Literature Reviews i,”
pp. 1–44, 2007.

[35] F. Terms, “ M. Petticrew and H. Roberts. Systematic Reviews in the
Social Sciences: A Practical Guide . Oxford: Blackwell 2006. 352 pp.
ISBN 1 4051 2110 6. £29.99 ,” Couns. Psychother. Res., vol. 6, no. 4,
pp. 304–305, 2006.

[36] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software
engineering research,” no. October 2017, pp. 120–131, 2016.

[37] A. Bosu, J. Carver, R. Guadagno, B. Bassett, D. McCallum, and L.
Hochstein, “Peer impressions in open source organizations: A survey,”
J. Syst. Softw., vol. 94, pp. 4–15, 2014.

[38] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion detection
in code reviews,” in Proc. IEEE International Conference on Software
Maintenance and Evolution, 2017, pp. 549–553.

[39] A. Lee, J. C. Carver, and A. Bosu, “Understanding the Impressions,
Motivations, and Barriers of One Time Code Contributors to FLOSS
Projects: A Survey,” in in Proce. IEEE/ACM 39th International
Conference on Software Engineering, 2017, pp. 187–197.

[40] A. Ouni, R. G. Kula, and K. Inoue, “Search-based peer reviewers
recommendation in modern code review,” in Proc. - IEEE International
Conference on Software Maintenance and Evolution, 2017, pp. 367–
377.

[41] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida, “Review
participation in modern code review,” Empir. Softw. Eng., vol. 22, no. 2,
pp. 768–817, 2017.

[42] T. Baum, O. Liskin, K. Niklas, and K. Schneider, “A Faceted
Classification Scheme for Change-Based Industrial Code Review
Processes,” Proc. - 2016 IEEE Int. Conf. Softw. Qual. Reliab. Secur.
QRS 2016, pp. 74–85, 2016.

[43] N. Kitagawa, H. Hata, A. Ihara, K. Kogiso, and K. Matsumoto, “Code
Review Participation: Game Theoretical Modeling of Reviewers in

Gerrit Datasets,” in Proc. 9th International Workshop on Cooperative
and Human Aspects of Software Engineering, 2016, pp. 64–67.

[44] Y. Yu, H. Wang, G. Yin, and T. Wang, “Reviewer recommendation for
pull-requests in GitHub: What can we learn from code review and bug
assignment?,” Inf. Softw. Technol., vol. 000, pp. 1–15, 2015.

[45] S. McIntosh and Y. Kamei, “Are Fix-Inducing Changes a Moving
Target? A Longitudinal Case Study of Just-In-Time Defect Prediction,”
IEEE Trans. Softw. Eng., vol. 44, no. 5, pp. 412–428, 2018.

[46] R. Morales, S. McIntosh, and F. Khomh, “Do code review practices
impact design quality? A case study of the Qt, VTK, and ITK projects,”
in Proc. IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), 2015, pp. 171–180.

[47] N. Fatima and K. Lumpur, “Individual , Social and Personnel Factors
Influencing Modern Code Review Process.”

[48] O. Kononenko, T. Rose, O. Baysal, M. Godfrey, D. Theisen, and B. De
Water, “Studying Pull Request Merges : A Case Study of Shopify ’ s
Active Merchant,” in Proc. 40th International Conference on Software
Engineering: Software Engineering in Practice, 2018, pp. 124–133.

[49] H. Lal and G. Pahwa, “Code review analysis of software system using
machine learning techniques,” in in Proc. 11th International Conference
on Intelligent Systems and Control, 2017, pp. 8–13.

[50] X. Yang, N. Yoshida, R. Gaikovina Kula, and H. Iida, “Peer Review
Social Network (PeRSoN) in open source projects,” IEICE Trans. Inf.
Syst., vol. E99D, no. 3, pp. 661–670, 2016.

[51] A. J. A. M. Van Deursen, C. Verlage, and E. Van Laar, “Social Network
Site Skills for Communication Professionals: Conceptualization,
Operationalization, and an Empirical Investigation,” IEEE Trans. Prof.
Commun., vol. 62, no. 1, pp. 43–54, 2019.

[52] T. Baum, O. Liskin, K. Niklas, and K. Schneider, “Factors influencing
code review processes in industry,” Proc. 2016 24th ACM SIGSOFT
Int. Symp. Found. Softw. Eng. - FSE 2016, pp. 85–96, 2016.

[53] T. Zhang, M. Song, J. Pinedo, and M. Kim, “Interactive code review for
systematic changes,” Proc. - Int. Conf. Softw. Eng., vol. 1, pp. 111–122,
2015.

[54] Z. Xia, H. Sun, J. Jiang, X. Wang, and X. Liu, “A Hybrid Approach to
Code Reviewer Recommendation with Collaborative Filtering,” in
SoftwareMining 2017, Urbana-Champaign, IL, USA, 2017, pp. 24–31.

[55] F. Armstrong, F. Khomh, and B. Adams, “Broadcast vs. Unicast Review
Technology: Does It Matter?,” in in Proc. 10th IEEE International
Conference on Software Testing, Verification and Validation, 2017, pp.
219–229.

[56] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: which problems do they fix?,” in Proc.
11th Working Conference on Mining Software Repositories, 2014, pp.
202–211.

[57] J. Jiang, Y. Yang, J. He, X. Blanc, and L. Zhang, “Who should comment
on this pull request? Analyzing attributes for more accurate commenter
recommendation in pull-based development,” Inf. Softw. Technol., vol.
84, pp. 48–62, 2017.

[58] D. Spadini, A. Bacchelli, M. Bruntink, F. Palomba, and L. Pascarella,
“Information Needs in Contemporary Code Review,” in Proc. ACM on
Human-Computer Interaction, 2018, vol. 2, no. CSCW, pp. 1–27.

[59] R. Wen, D. Gilbert, M. G. Roche, and S. McIntosh, “BLIMP tracer:
Integrating build impact analysis with code review,” in Proc. IEEE
International Conference on Software Maintenance and Evolution, 2018,
pp. 685–694.

[60] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, “Wait for It:
Determinants of pull request evaluation latency on GitHub,” in Proc.
IEEE International Working Conference on Mining Software
Repositories, 2015, vol. 2015-Augus, pp. 367–371.

[61] A. Bosu, “Modeling Modern Code Review Practices in Open Source
Software Development Organizations,” in Proc. IDoESE ’13 Baltimore,
Maryland USA, 2013.

[62] L. Claytor and F. Servant, “Understanding and Leveraging Developer
Inexpertise,” Proc. 40th Int. Conf. Softw. Eng. Companion
Proceeedings, pp. 404–405, 2018.

[63] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion in Code
Reviews: Reasons, Impacts, and Coping Strategies,” SANER 2019 -

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

497 | P a g e

www.ijacsa.thesai.org

Proc. 2019 IEEE 26th Int. Conf. Softw. Anal. Evol. Reengineering, pp.
49–60, 2019.

[64] A. M. Peter C. Rigby, Yue Cai Zhu, Samuel M. Donadelli, “Quantifying
and Mitigating Turnover-Induced Knowledge Loss: Case Studies of
Chrome and a Project at Avaya,” in Proc. IEEE/ACM 38th International
Conference on Software Engineering, 2016, pp. 1006–1016.

[65] S. Fakhoury, “The Effect of Poor Source Code Lexicon and Readability
on Developers´s Cognitive Load,” in Proc. ICPC, 2018, pp. 286–296.

[66] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida, “Revisiting
code ownership and its relationship with software quality in the scope of
modern code review,” Proc. 38th Int. Conf. Softw. Eng. - ICSE ’16, no.
1, pp. 1039–1050, 2016.

[67] C. Parnin et al., “The Top 10 Adages in Continuous Deployment,” IEEE
Softw., vol. 34, no. 3, pp. 86–95, 2017.

[68] B. Floyd, T. Santander, and W. Weimer, “Decoding the Representation
of Code in the Brain: An fMRI Study of Code Review and Expertise,” in
Proc.-IEEE/ACM 39th International Conference on Software
Engineering, 2017, pp. 175–186.

[69] A. Murgia et al., “The emotional side of software developers in JIRA,”
pp. 480–483, 2016.

[70] J. Shimagaki, Y. Kamei, S. McIntosh, A. E. Hassan, and N. Ubayashi,
“A study of the quality-impacting practices of modern code review at
Sony mobile,” in Proc. 38th International Conference on Software
Engineering Companion, 2016, pp. 212–221.

[71] Z. X. Li, Y. Yu, G. Yin, T. Wang, and H. M. Wang, “What Are They
Talking About? Analyzing Code Reviews in Pull-Based Development
Model,” J. Comput. Sci. Technol., vol. 32, no. 6, pp. 1060–1075, 2017.

[72] A. Bosu and J. C. Carver, “Impact of developer reputation on code
review outcomes in OSS projects,” Proc. 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement. pp.
1–10, 2014.

[73] A. Meneely et al., “An empirical investigation of socio-technical code
review metrics and security vulnerabilities,” 6th Int. Work. Soc. Softw.
Eng. SSE 2014 - Proc., pp. 37–44, 2014.

[74] Y. Jiang, B. Adams, and D. M. German, “Will my patch make it? And
how fast?: Case study on the linux kernel,” in Proc. IEEE International
Working Conference on Mining Software Repositories, 2013, no.
Section II, pp. 101–110.

[75] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of Social and Technical
Factors for Evaluating Contribution in GitHub,” in Proc. International
Conference on Software Engineering, 2014, pp. 356–366.

[76] A. Luxton-reilly, A. Lewis, and B. Plimmer, “Comparing Sequential and
Parallel Code Review Techniques for Formative Feedback,” in Proc.
20th Australasian Computing Education Conference, 2018, pp. 45–52.

[77] J. Kim and E. Lee, “Understanding review expertise of developers: A
reviewer recommendation approach based on latent Dirichlet
allocation,” Symmetry (Basel)., vol. 10, no. 4, pp. 5–7, 2018.

[78] M. M. Rahman and C. K. Roy, “Impact of continuous integration on
code reviews,” IEEE Int. Work. Conf. Min. Softw. Repos., pp. 499–502,
2017.

[79] T. Baum, F. Kortum, K. Schneider, A. Brack, and J. Schauder,
“Comparing pre-commit reviews and post-commit reviews using
process simulation,” J. Softw. Evol. Process, vol. 29, no. 11, pp. 1–15,
2017.

