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Abstract—Software engineering activities, for instance, 

Modern Code Review (MCR) produce quality software by 

identifying the defects from the code. It involves social coding 

and provides ample opportunities to share knowledge among 

MCR team members.  However, the MCR team is confronted 

with the issue of waiting waste due to poor knowledge sharing 

among MCR team members. As a result, it delays the project 

delays and increases mental distress. To minimize the waiting 

waste, this study aims to identify knowledge sharing factors that 

impact knowledge sharing in MCR. The methodology employed 

for this study is a systematic literature review to identify 

knowledge sharing factors, data coding with continual 

comparison and memoing techniques of grounded theory to 

produce a unique and categorized list of factors influencing 

knowledge sharing. The identified factors were then assessed 

through expert panel for its naming, expressions, and 

categorization.  The study finding reported 22 factors grouped 

into 5 broad categories i.e. Individual, Team, Social, Facility 

conditions, and Artifact. The study is useful for researchers to 

extend the research and for the MCR team to consider these 

factors to enhance knowledge sharing and to minimize waiting 

waste. 

Keywords—Knowledge sharing; modern code review; software 
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I. INTRODUCTION 

Software engineering is a socio-technical activity for the 
development of software with specified resources [1]. It 
includes activities such as requirement identification,  
modeling, construction, testing, and Modern Code Review 
(MCR) [2]. These activities produce various wastes such as 
waiting, development of extra or erroneous feature, defect, 
needless composite solution, rework, and mental distress [2], 
[3], [4], [5]. In software engineering, waste can be defined as 
“anything that doesn’t make it to the release, is waste” [4]. 

Modern Code Review, a lightweight form of traditional 
Fagan’s code inspection [6], has been expanding in the 
research.  A Fagan examination is a heavyweight code 
inspection procedure requiring synchronous interactions 
among the members in multiple stages [7]. On the other hand, 
MCR is characterized as being trivial, increasingly casual, and 
strengthened by review tools [6], [8], [9]. Notwithstanding 
studies that confirm Fagan’s code inspections advances the 
quality of software [7], [10] their required cost and formality 
have prohibited widespread acceptance [6], [8], [9]. 
Contrariwise, MCR has addressed many inadequacies of 
Fagan’s code inspection and highly adopted in industry and 
open-source software development contexts [6], [8], [9], [11]. 

Although MCR has addressed many shortcomings of 
Fagan’s code inspections and is developed to improve 
software and code quality through extensive knowledge 
sharing among MCR team members [6], [8], [9], [11], [12], 
however, the MCR generates waiting waste due to poor 
knowledge sharing  [5], [8], [13], [14], [15], [16], [17], [18]. 

Current researchers [8], [9], [17] have shown that MCR 
team members are hesitant to share knowledge and give a 
timely response to other members and let them in a waiting 
condition. It is argued that waiting waste can be minimized by 
increasing knowledge sharing [2], [4], [5], [19] among the 
MCR team. It is also argued that knowledge sharing can be 
increased by identifying the factors influencing knowledge 
sharing [8], [9], [11], [20], [21] that can increase knowledge 
sharing among the MCR team that might lead to the reduction 
in the production of waiting waste in MCR. 

Although previous research has given attention to 
knowledge sharing concerning software engineering activities 
[22], [23], [24], [25], however, knowledge sharing in the 
context of MCR has not got much attention from the 
researchers [8], [9], [11], [20], [21]. No, systematize 
investigations are available concerning the knowledge sharing 
aspect in MCR that can help in minimizing waiting waste. 
Therefore, the purpose of this study is to perform a Systematic 
Literature Review (SLR) to produce a validated and unique 
list of factors influencing knowledge sharing in MCR to 
minimize waiting waste. 

The rest of this paper is distributed as Section II describes 
the background and related work. Section III covers the search 
method while Section IV introduces the results of SLR and 
expert review. Section V provides the discussion; Section VI 
presents the limitation of the study. Section VII presents the 
conclusion. Section VIII provides future directions. Section IX 
highlights the contribution of the study. 

II. BACKGROUND 

Software engineering is a development of quality software 
within a stated time and budget [1]. The success factor of 
software engineering is subject to whether the software can 
fulfill user demands [1]. Software engineering is a socio-
technical activity that incorporates managing other activities 
[2], [5] such as requirement identification,  modeling, 
construction, testing, and Modern Code Review (MCR). These 
activities deliver ample prospects of producing wastes [2], [4], 
[5]. Waste is any act that does not produce any value to the 
user [2]. Concerning software engineering it can be “anything 
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that doesn’t make it to the release, is waste” [4]. It can also 
refer to any activity which uses resources but does not produce 
quality software [2], [4]. 

MCR is a software engineering activity for code 
improvement [6]. In MCR the code is reviewed by the 
reviewer, before committing the code to the project codebase. 
Unlike Fagan formal inspection process, MCR focuses on 
reviewing the small part of code changes usually named as 
‘patch’ before saving the code into the codebase [26]. MCR 
regularly occurs in practice [8], [9], [11] with the help of code 
review tools [6], [9] such as Gerrit, Code flow, Review board, 
Phabricator, etc. It is a means to identify defects and to 
improve code quality [2], [6], [8], [9], [11], [12],  [27], [28], 
[29] through knowledge sharing among developers.  Fig. 1 
shows the MCR process overview. 

It is argued that MCR produces wastes such as waiting, 
development of extra or erroneous feature, defect, needless 
composite solution, rework, and mental distress [2], [3], [4], 
[5]. It is contended that waiting is the critical wastes [4], [30], 
[31]. It is argued that “one of the biggest wastes in software 
development is usually waiting for the thing to happen”[30]. It 
is also conveyed that if the organization has to minimize one 
waste, it should focus on a waiting [4], [30], [31]. 

Waiting waste refers to a delay between two consecutive 
activities [2], [3], [4], [5], [30], [31]. For example, in MCR 
delay between submitting source code review request by the 
author to the reviewer and getting feedback from the reviewer 
[8], [9], [17]. It is argued that one of the reasons for waiting 
waste in MCR is a poor knowledge sharing [5], [8], [13], [14], 
[15], [16], [17], [18]. The waiting waste decreases the 
productivity and efficiency of the developers [2], [4], [8], [12], 
[16], [17], [21], [26], [32]. It also causes project delays due to 
the blocking of tasks [4], [33]. 

 

Fig. 1. MCR PROCESS OVERVIEW [9]. 

To minimize the waiting waste it is necessary to increase 
knowledge sharing [2], [4], [5], [19] among MCR team 
members. It is argued that knowledge sharing can be increased 
by identifying the factors influencing knowledge sharing [8], 
[9], [11], [20], [21] that can help in effective knowledge 
sharing among the MCR team. 

Though preceding studies [22], [23], [24], [25] focused on 
knowledge sharing in software engineering activities, 
however, slight indication is available in MCR  [8], [9], [11], 
[20], [21], resulting in absence of knowledge sharing 
guidelines in MCR. Therefore, the study aims to identify 
factors influencing knowledge sharing in MCR to minimize 
waiting waste. 

Systematic Literature Review (SLR), has been directed to 
identify the factors influencing knowledge sharing in MCR. 
The expert review has been performed to confirm the 
identified factors influencing knowledge sharing for their 
naming, expressions, and categories. 

III. RESEARCH METHODOLOGY 

Multiple research activities have been performed to 
generate a distinct and categorized rundown of factors 
influencing the knowledge sharing in MCR to minimize the 
generation of waiting waste. The methodologies employed for 
this study are discussed in subsections. 

A. Systemantic Literature Review 

The Systematic Literature Review (SLR) methodology 
given by [34] has been used for this study to identify the 
relevant data sources for the identification of factors 
influencing knowledge sharing in MCR to minimize the 
generation of waiting waste. The SLR methodology is a 
systematized and well-organized approach to attain less 
impartial results [34]. It is an authentic methodology to record 
significant central focuses in the research for assessing and 
looking at all momentum research related to research 
questions. The detailed procedure of SLR is explained in 
subsections. 

1) Research question: Constructing the research question 

is the central action of SLR [34]. Research questions are 

designed with the support of PICOC criteria specified by 

Petticrew and Roberts [35]. This investigation has excluded 

the 'Comparison' segment of the PICOC yet just PIOC has 

been considered to design the research question. The reason 

behind excluding the comparison part is that this study is not 

considering the comparison of techniques or models. Table I 

represents the PIOC criteria for this study. 

TABLE. I. POIC SUMMARY 

Population  MCR team 

Intervention MCR Process 

Outcome 
Factors influencing knowledge sharing in MCR to 
minimize waiting waste. 

Context 

The study includes all study types such as interviews, 

observations, surveys, experiments, questionnaires and 

case studies relating to MCR. 
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To gather the indications on the present state of research 
regarding factors influencing knowledge sharing in MCR to 
reduce waiting wastes. The designed question is specified 
below. 

RQ1: What factors influence the knowledge sharing in 
MCR to minimize software engineering waiting waste? 

2) Search Strategy: The search strategy comprises of 

identification of key terms and their alternate substitutes. 

a) Identification of key term: The study key terms 

includes knowledge sharing, modern code review and 

software engineering waiting waste 

b) Finding substitutes of identified key terms: The 

substitutes for the identified key terms are shown in Table II. 

c) Use of Boolean OR to design search strings with key 

terms and their substitutes:  The key terms along with their 

substitutes are joined using Boolean OR and are represented in 

Table III. 

d) Use Boolean AND to concatenate the search key 

terms and limit the research: The designed search string is 

given below. 

(‘Knowledge sharing’ OR ‘knowledge distribution’ OR 
‘knowledge transfer’, ‘knowledge dissemination’ OR 
‘knowledge exchange’) AND (review’ OR ‘modern code 
inspection ’OR ‘code review’ OR ‘code inspection ’OR 
‘lightweight code review’) AND (‘Software Engineering 
Waiting Waste’ OR ‘software engineering delay waste’ OR 
‘software engineering linger waste’ OR ‘software engineering 
blocking waste’ OR ‘software development delay waste’ OR 
‘software development linger waste’) 

TABLE. II. KEY TERMS AND THEIR SUBSTITUTES 

Key term Substitutes  

Knowledge sharing 
‘knowledge distribution’, ‘knowledge transfer’, 
‘knowledge dissemination’, ‘knowledge 

exchange’ 

Modern Code Review 

‘contemporary code review’, ‘modern code 

inspection’, ‘code review’, ‘code inspection’, 
‘lightweight code review’ 

Software Engineering 

Waiting Waste 

‘software engineering delay waste’, ‘software 

engineering linger waste’, ‘software 
engineering blocking waste’,  ‘software 

development delay waste’, ‘software 

development linger waste’ 

TABLE. III. KEY TERMS WITH THEIR SUBSTITUTES AND BOOLEAN OR 

OPERATOR 

Key terms, Substitutes and Boolean OR 

‘Knowledge sharing’ OR ‘knowledge distribution’ OR ‘knowledge transfer’, 

‘knowledge dissemination’ OR ‘knowledge exchange’  

‘Modern Code Review’ OR ‘contemporary code review’ OR ‘modern code 
inspection ’OR ‘code review’ OR ‘code inspection ’OR ‘lightweight code 

review’  

‘Software Engineering Waiting Waste’ OR ‘software engineering delay 
waste’ OR ‘software engineering linger waste’ OR ‘software engineering 

blocking waste’ OR ‘software development delay waste’ OR ‘software 

development linger waste’  

e) Search process and database sources: The search 

process involved databases such as IEEE, Science Direct, 

ACM, Wiley online, Springer link, Web of Science and 

Scopus. The reason for selecting the above databases is that 

the selected databases are known to have software engineering 

literature. To make the search process comprehensive and to 

avoid the chance of missing out evidence, the search included 

the literature published from 2013 – 2019. Database sources 

that were considered are presented in Table IV along with 

their URLs and distribution. 

f) Study Selection Criteria: The studies are included 

and excluded based on the inclusion and exclusion plan shown 

in Fig. 2. 

Study Quality Assessment: Notwithstanding broad 
inclusion and exclusion criteria, it is viewed as basic to 
evaluate the "quality" of essential investigations. For the 
evaluation of concentrate quality, the checklist specified by 
[34] has been used. The investigations chosen after the 
introductory inclusion and exclusion plan are additionally 
assessed utilizing the checklist articulated in Table V. 

The questions specified in the checklists represented in 
Table V are answered according to the rule specified by [34]. 
The evaluation scale is presented in Table VI. 

TABLE. IV. DATABASE SOURCES 

Data Source URL 

IEEE  http://ieeexplore.ieee.org/ 

ACM  http://dl.acm.org 

Science Direct http://www.sciencedirect.com 

Wiley http://onlinelibrary.wiley.com 

Web of Science https://www.webofknowledge.com 

Springer link https://www.springer.com 

Scopus http://www.scopus.com 

 

Fig. 2. INCLUSION AND EXCLUSION PLAN. 

-Research papers available in journals, 

conference, workshops, book chapters, 

thesis, or technical report that maps to the 
study key term 

-Research papers between 2013-2019 

-Research  
-Content available 

-Must be written in English 

Study 

Inclusion 

Plan 

Study 

Exclusion 

Plan 

-Research papers giving information such 
as conference proceedings, workshops, 

table of content, irrelevant title. 

-Research papers which are not having 
defined key terms or their alternates. 

-The research papers that identical. 

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://www.sciencedirect.com/
http://onlinelibrary.wiley.com/
http://www.webofknowledge.com/
https://www.springer.com/
http://www.scopus.com/
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TABLE. V. QUALITY ASSESSMENT CHECKLIST 

Question Answer 

Are the goals visibly detailed? Yes/ No/Partially 

Are the outcomes complete and substantial? -do- 

Are the prediction methods used visibly defined and 

their choice are acceptable? 
-do- 

Is the information been extended by the study? -do- 

Is the diversity of viewpoint and context been 

sightseen? 
-do- 

Are the links between data, understanding, and 
assumptions are vibrant? 

-do- 

Does the difficulty of the data is transferred? -do- 

TABLE. VI. SCALE FOR ANSWERING QUESTIONS GIVEN IN CHECKLIST [34] 

Answer Score 

Yes 1 

No 0 

Partially 0.5 

g) Data Extraction: After the essential studies have 

been chosen and their quality assessed, the data is extracted 

from the selected papers. The data extraction method is 

discussed in this section. The data extraction method is 

intended to contain all the data that is important for 

responding to the research question and tending to the 

investigation quality criteria [34]. The data extraction form is 

represented in Table VII. 

h) Data Synthesis: After vigilant data extraction the 

extracted data is synthesized following the data coding, 

continual data comparisons and memoing from grounded 

theory [36] are adopted for data unit categorization, and to get 

the unique list of factors influencing knowledge sharing in 

MCR. 

B. Expert Review 

After getting the unique list of factors influencing 
knowledge sharing in MCR the list is evaluated through 
experts for naming, expression, categorization, and 
suggestions of new factors or categories. The considered 
experience for experts’ selection is more than 10 years in 
software development knowing MCR, software engineering 
wastes and knowledge sharing. For expert review, the 
guidelines of Ayyub [30] are followed. 

TABLE. VII. DATA EXTRACTION FORM [34] 

Data 

characteristics 

A unique identifier in the format: KSFP(1)…KSFP(n) 

Title 

Author (s) 

Year 

Study Set (Conference/Journal) 

Study Commissioner (IEEE, ACM, etc.) 

Selection (Inclusion/exclusion)/Quality assessment 

Research Question  What factors influencing knowledge sharing in MCR? 

 

Fig. 3. DATA SYNTHESIS PROCEDURE. 

Fig. 3 summarizes the data synthesis procedure employed 
for this study. 

IV. RESULTS 

This section discusses the results achieved in the study. It 
presents the results concerning the study search process to 
achieve pertinent data sources and the factors influencing 
knowledge sharing in MCR to minimize waiting waste. 

A. Data Source Selection  Results 

Through initial search based on defined key terms, 9289 
papers are obtained. The studies that represent only the table 
of content, conference or workshop preceding details or 
having unrelated titles are omitted. After the first exclusion, 
1103 studies are obtained. The obtained 1103 studies are 
evaluated for the relevant key terms (modern code review, 
knowledge sharing, and software engineering waiting waste). 
The studies that do not have any of the correlated key term are 
eliminated and 190 studies are included. After assessment for 
having duplication among 190 studies, 162 studies are 
obtained and evaluated for their quality assessment. During 
the quality assessment, 6 studies are excluded and finally, 156 
studies are recognized as most appropriate to this study and 
are included for detailed review. 

B. Knowledge Sharing Factors in MCR 

This section stretches the insights about factors influencing 
knowledge sharing in MCR to minimize waiting waste. The 
study results reported 22 factors that impact knowledge 

Identification of factors influencing knowledge sharing in 

MCR to minimize waiting waste 

Expert Review 

Relevant data sources 

Data Analysis 
(Data coding, continual comparison and memoing following 

grounded theory) 

Validated, Unique and Categorized list of 
factors influencing knowledge sharing in 

MCR 

Unique and organized list of factors 

influencing knowledge sharing in MCR 
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sharing in MCR, the identified factors are grouped under 5 
broad categories namely Individual, Team, Social, Artifact 
and Facility Conditions. The details are represented in 
subsections. Table VIII provides a summarized view of the 
factors influencing knowledge sharing in MCR along with 
their references. 

1) Individual: Individual perspective is the most 

noticeable lens in MCR [32]. The factors involved in this 

category are individual impartiality, individual historical 

factors, individual emotions, individual pressure, individual 

awareness, individual turnover, and individual intentions [9], 

[11], [17], [19], [37], [38], [39], [40], [41], [42], [43], [44], 

[45], [46], [47]. 

2) Social: MCR is a multifaceted process that involves 

social interactions among team members [32]. This category 

includes factors i.e. relational and structural factors [8], [9], 

[11], [17], [19], [48], [49], [50], [51]. 

3) Team: The team signifies a group of individuals who 

worked together to achieve a common goal. Their work 

involved multiple projects, from new to legacy systems [8]. 

This category involves factors i.e. team organization, team 

strategies, team culture, team, and team drive [8], [9], [11], [16], 

[32], [52], [48], [40], [53]. 

4) Artifact: An artifact, is an object made or given form 

by humans [12], [32]. This category includes factors such as 

source code, testing, feedback [8], [9], [11], [16], [19],[32], 

[52], [54], [55], [56], [57], [58], [59], [60]. 

5) Facility Conditions: Facility conditions support the 

successful conduction of the MCR [32]. This category 

involves factors i.e. project, process, tool, communication 

channel, and organization [9], [11], [19], [12], [15],  [32]. 

Table VIII summarizes the validated list of factors 
influencing knowledge sharing in MCR prompting knowledge 
sharing in MCR along with the references. 

TABLE. VIII. LIST OF KNOWLEDGE SHARING FACTORS IN MCR  TO MINIMIZE SOFTWARE ENGINEERING WASTES 

Categories Knowledge Sharing Factors References 

INDIVIDUAL 

Individual Impartiality [9], [11], [17]  

Individual historical factors 
[6], [8], [9], [16], [11], [17], [19],  [32],   [37], [52], [45], [48], [61], 
[62],  [49], [38], [39], [40] , [41], [42] , [43], [44], [46]  

Individual Emotions [8], [9], [15], [17], [32], [52] [63], [64]   

Individual Pressure [6], [8], [9], [11], [15],[19], [32], [52], [48], [49], [40], [65], [54],  

Individual Awareness 
[8], [9], [11], [14], [19],   [32], [37], [52], [48], [49], [44], [65],   [54], 

[66], [55], [56], [67],  

Individual Turnover [64] 

Individual Intentions 
[9], [11],  [12],  [17], [19], [37],  [52], [61], [49] [64],   [54], [56], 
[68], [69], [70],  

SOCIAL 
Relational  

[8], [9], [11], [16], [17], [19], [32] , [48], [61],  [49], [39], [40], [41], 

[42], [43],   [44],  [54], [70], [37], [57], [71],  [72], [73], [74], [75] 

Structural [15], [44], [50], [51] 

ARTIFACT 

Source Code 
[8], [9], [11], [16], [19],[32], [6], [12] [15], [52], [45], [48], [38], [40], 

[41], [46], [63], [65], [54],  [55], [56], [76],  [77], [58], [78],  [79] 

Feedback 
[8], [9], [11], [15], [19], [32] [48], [40], [63], [54], [55], [56], [57], 
[72], [76], [58], [59] 

Testing [8], [9], [11], [15], [19], [32], [52],[48], [75],   [58], [59], [60],  

FACILITY CONDITIONS 

Process  [8], [9], [11], [19], [52], [48], [39], [78] 

Tool [6], [8], [11], [12], [15],  [32], [38] , [55], [71] [77], [78] 

Organization [8], [12], [17], [32], [52], [38] 

Communication [8], [9], [15], [52], [48], [38], [55] 

Project [9], [11], [15], [32], [48] 

TEAM 

Team Organization [8], [9], [11], [16], [32] 

Team Strategies [8], [12], [15], [52]  

Team Culture [8], [11], [52] 

Team Intensions [6], [8], [9], [12], [32], [48], [40], [56] 

Team Drive [8], [9], [11], [19], [32], [52], [48], [40], [53] 
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V. DISCUSSION 

This work stretches the direction to a comprehensive list of 
factors influencing knowledge sharing in MCR to minimize 
waiting waste. The identified factors are significant for 
software engineers involved in the MCR process. The 
preliminary list can act as a guide for the researchers and 
practitioners working in MCR to consider and these factors in 
order to increase knowledge sharing and to minimize waiting 
waste. This study contributed to the software engineering 
body of knowledge (SWEBOK) particularly to knowledge 
sharing in the context of MCR. The study helps the MCR team 
to achieve its objective while minimizing waiting waste. 

VI. LIMITATIONS 

This study lacks the identification of factors from the 
industry as the study comprises of factors that are recognized 
from the literature. A large effort has been made to cover all 
the correlated papers, but still, there is a possibility that some 
research may be missed. 

VII. CONCLUSION 

The research study provides a categorized list of factors 
influencing knowledge sharing in MCR to minimize waiting 
waste. The reported factors that influence knowledge sharing 
in MCR are distributed into five main categories that are 
Individual, Social, Team, Artifact and Facility Conditions. 
These factors ought to be considered while performing MCR 
to minimize waiting waste by increasing knowledge sharing. 

VIII. FUTURE DIRECTIONS 

A comprehensive list will be produced in the future by 
quantitative analysis, the ongoing research objectives. In 
addition to this, a comprehensive model can be produced for 
MCR that can be used as a guideline for software engineers to 
minimize software engineering waiting waste. This work 
recognizes factors influencing knowledge sharing in MCR that 
provides the foundation for the investigators to outspread this 
research by discovering other factors for other software 
development activities to reduce wastes. 

IX. CONTRIBUTION 

The examination contributed towards software engineering 
body of knowledge (SWEBOK), knowledge base software 
engineering (KBSE) and green software engineering (GREEN 
SE) by perceiving the significance of knowledge sharing and 
by giving the arranged rundown of factors influencing 
knowledge sharing in MCR. The work can help software 
developers to successfully transfer knowledge by overcoming 
the negative aspects of identified factors. 
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