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Abstract—Trajectory prediction plays a critical role on
many location-based services such as proximity-based marketing,
routing services, and traffic management. The vast majority
of existing trajectory prediction techniques utilize the object’s
motion history to predict the future path(s). In addition to, their
assumptions that the objects’ moving with recognized patterns
or know their routes. However, these techniques fail when the
history is unavailable. Also, these techniques fail to predict the
path when the query moving objects lost their ways or moving
with abnormal patterns. This paper introduces a system named
HarmonyMoves to predict the future paths of moving objects on
road networks without relying on their past trajectories. The
system checks the harmony between the query object and other
moving objects, after that if the harmony exists, this means that
there are other objects in space moving like the query object.
Then, a Markov Model is adopted to analyze this set of similar
motion patterns and generate the next potential road segments
of the object with their probabilities. If the harmony does not
exist, HarmonyMoves considers this query object as abnormal
object (object lost the way and needs support to return back known
routes), for this purpose HarmonyMoves employed a new module
to handle this case. A fundamental aspect of HarmonyMoves lies in
achieving a high accurate prediction while performing efficiently
to return query answers.

Keywords—Trajectory prediction; machine learning; moving
objects

I. INTRODUCTION

Location-based services that consider the future paths and
locations of moving objects proved to be essential in several
daily life activities. Uses of location-based services includes
proximity-based marketing; in which companies push ads
notifications only to customers within the same geographic
region, travel information; in which the user can be provided
by real-time information, such as traffic updates or weather
reports and plan trips accordingly, traffic management; in
which drivers can predict the congested traffic regions.

Several techniques have been proposed to predict the
possible future paths and destinations of moving objects and
explores their results in better understanding of the human
mobility into location-based services [3], [9], [10], [24], [26].
Overall, most of the existing prediction techniques depend
basically on the trajectories of the moving objects’ saved on
the system beforehand to be able to predict the future path
and destinations. Nevertheless, these techniques suffer from
one or more weaknesses. These techniques (1) fail to predict
future paths and destinations when the query object’s history
does not exist during the model training, (2) some of these
techniques consider assumptions like moving objects following

the shortest path or following preferred routes to reach the
needed destination or moving in linear movements, which
usually fails and turns to be non logical in many scenarios,
(3) some of these techniques don’t consider the objects that
lost their ways or moving with unrecognized motion patterns,
(4) suffer from efficiency and technical limitations.

This paper introduces a novel system named
HarmonyMoves proposed to provide an efficient future
path prediction in case that the query object’s historical
motions are absent, in addition to guiding the query objects
that lost their ways to follow the correct paths and reach to
their destinations in a safely manner.

The idea of HarmonyMoves is to identify if there are other
moving objects currently in space moving like the query object
or not. If the system finds similar objects moving like the query
object, the system considers the query object as normal object,
and trained for similar objects trajectories to anticipate the
possible future path of the query object. In case that the system
identifies that there are no other objects moving like the query
object, the system considers the query object as anomalous ,
and starts to guide the query object in terms of the nearest
moving object in vicinity.

Contributions. The main contributions of this research are
the following:

1) This work addresses the prediction of moving objects’
future path in case that their past trajectories are
absent.

2) This work introduces a novel similarity function to
help all types of moving objects to predict their
routes and find their final destinations, in addition
to, in case of normal objects this function leads
to a significant increase in prediction efficiency by
removing irregularities in the input data and make
the prediction model trains on data similar to each
other.

3) We devise a novel algorithm to handle moving objects
that lost their paths and need to predict future path
or reach final destinations.

The rest of this paper is organized as follows. Section 2
studies related work and investigates different directions in the
area of trajectory prediction. Section 3 formally defines the
problem. The architecture of the HarmonyMoves system along
with its basic components is illustrated in Section 4. Section
5 experimentally evaluates HarmonyMoves. Finally, Section 6
concludes the paper.
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II. RELATED WORK

This section surveys the previous studies which predict
the future paths of the moving objects. Overall, this section
covers two major related directions; namely path prediction
and predictive search queries.

A. Path Prediction

Different studies have been introduced to predict future
paths of moving objects [2], [5], [6], [9], [17], [21], [27]–[30].
However, some of these studies predict the complete paths
[5], [6], [27], others predict partial paths [2], [17], [28], [29],
whereas some predict the final destination [9], [21], [30].

For predicting the complete path of the end-users, in [6], a
similarity trip algorithm is developed to predict the end-to-end
route of a vehicle based on vehicle’s past trips observations.
The proposed algorithm matches the first part of a driver’s
current trip with one of the set of previously observed trips.
In [27], authors develop a driving path prediction technique
that employed Hidden Markov Model (HMM). This technique
predicts accurately a vehicle’s entire path as early in a trip’s
lifetime as possible without knowing origins and destinations
in advance. Authors in [5] propose a novel algorithm for
predicting a driver’s route based on a probabilistic prediction
of the driver’s destination. The algorithm is based on only one
parameter that shows how efficiently a driver drives. When this
parameter is computed, the algorithm does not need to store
a history of drivers’ trips, and it works in places a driver has
never visited.

For predicting the partial path of the end-users, in [29],
authors propose a technique which adopted Hidden Markov
Model to predict future road segments from the complete
driving path. The authors in their solution neglects the traffic
conditions. In contrast, authors in [17], [28] take into their
account traffic conditions that change dynamically and prove
that the work introduced in [29] is not adequate to capture
variable order Markov dependencies. Some studies integrate
semantic information of routes to improve prediction. Authors
in [2] propose an approach to improve partial route prediction
by considering semantic information associated with routes
such as day and time of departure.

For predicting the finial destinations of the end-users,
in [9], [30], prediction models are proposed to detect the
trajectory patterns that occurred frequently and utilize these
patterns to predict the most potential destination of the moving
objects. Authors in [21] introduce a technique predict the
final destination of vehicle trips based on their initial partial
trajectories. The technique starts by clustering of trajectories
that describes user behaviour. Then, it models main traffic flow
patterns by a mixture of 2d Gaussian distributions.

B. Predictive Queries

According to the study in [19], a predictive search query is
conducted as follows: “a query that retrieves the set of moving
objects’ which will intersect a query window during a future
time interval”. Several studies have been in this direction [4],
[7], [16], [19], [20], [25].

In [7], Panda system is presented, Panda aims to support
long-term query prediction. In [16], a novel index structure,

TABLE I. MOVING OBJECTS TRAJECTORIES

Trajectory Road Segments
τ1 e6, e7, e16, e14
τ2 e8, e16, e14
τ3 e7, e16, e14
τ4 e7, e16, e19
τ5 e7, e16, e17
τ6 e8, e16, e17
τ7 e11, e9, e7, e16
τ8 e18, e13, e12

named Predictive tree (P-tree) is proposed for processing
predictive queries against moving objects on road networks.
Efficient techniques are introduced in [4], [20], [25] that try
to optimize the performance of predictive window queries. In
[1], the authors introduce the iRoad framework for evaluating
predictive queries on moving objects for road networks. In [8],
authors review the current research trends and present their
related applications in the field of predictive spatiotemporal
queries processing.

HarmonyMoves distinguishes itself from the above
researches in the following: (1) HarmonyMoves is considered
as a novel learning model which performs the prediction
without any prior knowledge of the query object’s motions
history, (2) HarmonyMoves proves efficient and accurate
results by providing novel similarity approach which
neglects irrelevant input features from prediction process, (3)
HarmonyMoves is considered as first approach that handles
moving objects which loses their ways, and (4) HarmonyMoves
produces accurate results compared with other state-of-art
methods.

III. PRELIMINARIES

This section explores the main terminologies that will be
used through the rest of the paper and then highlights the
problem definition.

A. Definitions

Definition 1: Road network graph G(N, E) consists of a
set of nodes N that represent road intersections, and a set of
edges E that represent road segments.

Fig. 1 presents an illustrative example of a road network
graph. Table I contains a sample of objects’ trajectories τ1 to
τ14 moving over the given road network graph(G).

Fig. 1. Road Network Graph
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Definition 2: Trajectory τ is an ordered sequence of edges
travelled by a moving object, i.e., τ={e1, e2, e3,....en}

Definition 3: Future road segments F is defined as how
many future road segments query object aims to predict.

Definition 4: Harmony it represents the total Similarity
value between the query object’s trajectory Qτ and another
moving object’s trajectory τi. The equation 1 presents the
harmony computing. The Harmony value is computed by
getting the maximum length between the query object’s
trajectory Qτ and another moving object’s trajectory τi, then
computes the edit distance between (Qτ ,τi). After that the
result of edit distance is subtracted from maximum length
between the query object’s trajectory Qτ and another moving
object’s trajectory τi. Finally, the value subtracted is divided
by maximum length between the query object’s trajectory Qτ
and another moving object’s trajectory τi. The edit distance
is computed based on Levenshtein distance metric [15], this
metric measures the difference between two sequences. It
computes the total number of edits (insertions, deletions or
substitutions) needed to change one sequence into the other.

Harmony =
MaxLength(Qτ , τi)− EDistance(Qτ , τi)

MaxLength(Qτ , τi)
(1)

Definition 5: Prediction confidence P is a probability value
that reveals a certainty degree which the query object will
travel through the predicted path. The higher the value, the
more accurate the prediction is.

Definition 6. Number of Previously Travelled Segments
(Prediction Order) λ reveals to the last number of segments
moved by query object’s trajectory over the road network. For
example: assume τi = {e1, e2, e3, e4} and λ =2, this means
that the extracted segments will be (e3, e4).

B. Problem Statement

Assume a query object’s trajectory Qτ moving in its current
trip and a set of another objects TrajectoriesCurrent moving
in their current trips. Let Qτ needs to predict the future path,
in case that its own historical movements data is unavailable
or inaccessible. In addition to, Qτ needs to predict the future
path when it moves with unknown motion patterns or lost their
ways.

The aim of this research is to accurately predict the future
paths of the query object and perform efficiently by returning
the query responses in a reasonable time.

The significant of this research lies in solving critical cases
such as; (1) when a query object does not own previous trips
to be used for prediction purposes or the query object is not
allowed to use the his past trips for security concerns, and
(2) when a query object lost his way or moving with unknown
motion patterns and needs to predict the future path while there
is no other objects moving like him.

IV. SYSTEM ARCHITECTURE

This section presents the proposed approach
(HarmonyMoves) for predicting the future path of the
query object.

Main Idea. The main idea of HarmonyMoves is to
anticipate the possible future paths or destinations and returns
them to the query object. The proposed solution starts by
measuring the similarity, which in this work named as
Harmony, between the query object and other objects moving
currently in the same road network.Next, the system checks
if there are other objects moving like the query object
(Harmony¿0), the system contains a module named “normal
objects handler module” to deal with this case, this module
starts by getting the similar trajectories, after that utilizes these
trajectories to generate predictions by using a learning model.
It is important to note that predictions generated is a map
(key/value) pairs, which composed of travelled road segments
as a key and possible future segments as a value. Finally, after
the predictions generated, the system query the created map
by the last segments moved by the query object and returns
the possible future segments. Next, if the system checks the
harmony and discovers that there are no other objects moving
like the query object (Harmony=0), the system considers the
query object as a vagrant moving object. Vagrant objects
represent the objects that lost their ways or objects moving
with unknown roads needs to reach their destinations or predict
next segments to reach to the known routes. More specifically,
the system contains a module named “vagrant objects handler
module” to deal with this type of objects, first the system the
system tracks the nearest moving objects and based on his
trajectory, the system suggests a possible route to reach the
destination or suggests multi next road segments.

Fig. 3 describes the architecture of the proposed solution
HarmonyMoves which composed of three main components
namely, the Harmony Checker Module, Normal Objects
Handler Module, and Vagrant Objects Handler Module.
HarmonyMoves receives as input the moving objects’
trajectories and the query object’s trajectory, and returns the
query object’s future path or destination.

Algorithm. Algorithm ?? illustrates the pseudo code of
HarmonyMoves. The algorithm receives, (a) the current query
object’s trajectory, (b) other moving objects’ trajectories
currently in the road network, (c) prediction order, and (d)
a number of future road segments required to be predicted. As
output, the algorithm returns the query object’s predicted path
or possible destination. The algorithm has three main steps that
are briefly described as follows:

Step1: Harmony checker. This step checks the similarity
between the query object and other moving objects, in line 4
the algorithm checks the harmony between the query object
and other objects currently moving with the query object in
the road network. The proposed module that accomplishes this
job is explained later in Section IV-A.

Step2: Handling Normal Query Objects. The objective
of this step is to handle the prediction process in case
that the query object has similar objects currently moving
like it currently in the system. The proposed module that
accomplishes this job is explained later in Section IV-B.
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Step3: Handling Vagrant Query Objects. The objective
of this step is to handle the prediction process in case that
the query object has no similar objects currently moving
like it currently in the system. The proposed module that
accomplishes this job is explained later in section IV-C.

A. Harmony Checker Module

Main Idea. The main idea of the Harmony Checker Module
is to extract trajectories set of objects that currently move same
as the query object. Then, the module checks if this set of
trajectories is empty, the HarmonyMoves considers the query
object as vagrant object, otherwise it considers it as normal
one. For this purpose, the harmony checker module calculates
the harmony score between the query object’s trajectory and
all other trajectories of objects that are currently moving in
the space by utilizing proposed equation 1. If the Harmony
value is equal to 0, the Harmony Checker Module considers
the query object is vagrant, otherwise it considers it as normal
one.

Example. Assume that the query object’s trajectory is τ7,
and assume that the other objects currently moving in road
network are τ2 e8, e16, e14, and τ3 e7, e16, e14. The module
starts by calculating the harmony between the query object τ7
and τ2,τ3. For τ2, the module first gets the max length between
τ7 and τ2 which is 3, then computes the edit distance between
τ7 and τ2 which is 1. As a result, the module subtracted the edit
distance score from max length between τ7 and τ2 divided by
the same length, so the final result is Harmony = 1

3 . Similarly,
the system computes the harmony between τ7 and τ3 which
is Harmony = 2

3 . Finally, the system considers τ7 as normal
query object. For second case, assume that the query object
τ8 and other moving objects are τ7 and τ2, the harmony in all
case will be equal to 0 and the system considers τ7 as vagrant
object.

B. Normal Objects Handler Module

This section presents a new module that handles the cases
when the query object have other objects moving similar like
it in the system. This module builds a predictions model from
the list of similar trajectories and, then returns the query
object’s predicted path. The module composed of two main
sub modules namely, Predictions Builder Module, and Path
Prediction Module.

1) Predictions Builder Module: Main Idea. The input to
this module is the set of similar trajectories that are moving
same as the query object. The output of this module is a
hash-map. This map composed of Key and value pairs, where
the key is an ordered set of previous segments (already-visited)
in a trajectory and the value is a sequence of future (want to
visit) segments and its probability P . The prediction function
employed in this module is developed based on notions of
Hidden Markov Model(HMM) [14]

Hidden Markov Model (HMM). The Markov Model
represents the sequence of moved segments as a sequence of
X(i), where i is the offset of the segemnt in the order they
are encountered inside the trajectory. As stated in [11], HMM
refers to the trajectory edges as ..., X(-2), X(-1), X(0), X(1),
X(2),..., where X(0) is the object’s current road edge. X(-1)
and X(-2) refer to one and two previous steps, respectively.

X(1) and X(2) refer to the unknown future road segments
to be predicted. HMM produces a probabilistic prediction
over future road segments based on the past moved segments.
For example, P[X(1)] represents the probability of a one
segment ahead of the object’s current location. P[X(2)] is the
probability of two segments ahead, and so on. The first order
Markov model says that the probability P[X(1)] for the next
road segment is independent of all the object’s previous history
except for X(0), the current segment:

P[X(1)|X(0), X(−1), X(−2), ...] = P[X(1)|X(0)] (2)

Similarly, a second order Markov model will depend on the
two most recent edges,P[X(1)|X(-1),X(0)]. Overall, a nth

order Markov model, (n ≥ 1), can be created to anticipate
the mth future edge (m ≥ 1). The general nth order model
can be expressed as following:

Pn[X(m)] = P[X(m)|X(−n+ 1), X(−n+ 2), ..., X(0)] (3)

Fig. 2 descries the results produced by this module.

Fig. 2. Predictions Builder Module Results

2) Path Prediction Module: Main Idea. The main idea of
this module is to return the possible future segments to the
query object. First, the module detects the prediction order
configured, then based on the value of prediction order, the
module gets the last segments moved by the query object and
considers it as key. After that, the module query the created
map by the key and return the future path.

Example. Let’s the query object is τ7, assume the value
configured for prediction order λ=2, and the number of future
steps needs to be predicted F is 1. According to this setup,
the module constructed the key as (e7,e16) and then query
the map created as per Figure 2. The path prediction Module
returns next segments to the query object, first, {e14,P =
0.5},{e19,P = 0.25}, and {e17,P = 0.5}

C. Vagrant Objects Handler Module

This section presents a new module that handles the cases
when the query object has no similar objects moving like it in
the system.

Main Idea. The main idea behind this module is to
handle the prediction process in case that there is no similar
trajectories currently moved in the system anymore and the
query object issue a query asking for the future path. The
paper named these objects as Vagrant Moving objects. Vagrant
objects represent the objects that lost their ways or objects
moving with unknown roads need to reach their destinations.
Handling these objects is significant as most of road accidents
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Algorithm 1 HarmonyMoves: Algorithm
1: INPUT: Query object’s trajectory Qτ , Moving objects’ current

trajectories TrajectoriesCurrent,Future steps F
2: SET SimilarTrajectoriesList S ← φ
3: /* Step 1: compute harmony */
4: S = Compute Harmony(Qτ ,TrajectoriesCurrent)
5: /* Step 2: checks Qτ is vagrant object or normal one */
6: if S 6= φ then
7: Call Normal Objects Handler Module
8: else
9: Call Vagrant Objects Handler Module

10: end if
11: OUTPUT: Return QueryResult

Fig. 3. HarmonyMoves Architecture

and people deaths coming from similar cases. This module
handles 2 possible scenarios; (1) vagrant objects don’t know
their destinations and need to update their paths per time, and
(2) vagrant objects know their destinations and don’t know
how to reach. For unknown destinations, the module starts
by using R-Tree [22] to get the nearest object’s trajectory
within a specific distance. After that, the module considers
this trajectory as a compared trajectory. Next, the module
identifies the current edge of the query object, fetches the
next connected edges to this current edge and creates paths.
The module iterates over these created paths and computes
the similarity between each iterated path and the compared
trajectory by using the Hausdorff [23] algorithm. As a result,
the module considers the most similar path to the compared
trajectory as new query object trajectory and make recursive
calls until predicting all the required future steps. For known
destinations, the module starts by using R-Tree to get the
nearest object’s trajectory within a specific distance. After that,
the module considers this trajectory as a compared trajectory.
Next, the module identifies the current edge of the query
object, fetches the next connected edges to this current edge
and create paths. The module iterates over these created paths
and computes the similarity between each iterated path and
the compared trajectory by using the Hausdorff algorithm. As
a result, the module considers the most similar path to the
compared trajectory as new query object trajectory and make
recursive calls until the query object reach to its destination.

1) Unknown Destinations: This section presents the
algorithm and illustrative example for case 1; vagrant objects
don’t know their destinations and need to update their paths
per time.

Algorithm 2 Unknown Destinations Handler

1: procedure GET FUTURE PATH
2: INPUT: Query object’s trajectory Qτ , Future Steps
F , Moving object’s trajectories TrajectoriesCurrent,
Distance d

3: OUTPUT: Return Predicted Path
4: /* Set compared Trajectory */
5: SET Comparedτ ← φ
6: /* Last edge in query object trajectory */
7: SET Q(CurrentEdge)τ ← φ
8: /* edges connected direct to query object current node */
9: SET edgesList← φ

10: /* All expected paths */
11: SET PathList← φ
12: if F = 0 then
13: Exit and return Predicted Path
14: end if
15: for i=0 to F do
16: Comparedτ = call R-Tree to get nearest Trajectory to

Qτ from TrajectoriesCurrent within d
17: Q(CurrentEdge)τ = Current edge of Qτ
18: Put in edgesList edges connected by Q(CurrentEdge)τ
19: for each edge ei in edgesList do
20: FetchedPath= Qτ + ei
21: Add FetchedPath to PathList
22: end for
23: for each FetchedPath in PathList do
24: ComputeSimilarity(FetchedPath,Comparedτ )
25: Set Most Similar FetchedPath as Qτ
26: Set Most Similar FetchedPath as Predicted Path
27: end for
28: end for
29: Get Future Path(Qτ ,F − 1, T rajectoriesCurrent)
30: end procedure

Algorithm. Algorithm 2 illustrates the pseudo code of the
proposed Handler Module that handle case 1 defined before for
vagrant objects. The algorithm takes four input parameters, (a)
Query object’s trajectory Qτ , (b) Future Steps F , (c) Moving
object’s trajectories TrajectoriesCurrent, and (d)Distance d.
In line 15, the algorithm starts by iterating over the number
of future steps F . In each iteration, the algorithm gets the
compared trajectory from the objects currently moved with
the query object by using the R-tree within specific distance,
line 16. In line 17, the algorithm identifies the current edge of
the query object, obtains the edges directly connected to the
current node and saved them in edgesList. Then, the algorithm
iterates over the edgesList, and for each iterated edge, the
algorithm append this edge to the query object trajectory, then
consider this as new path. Each path is saved to PathList
and algorithm considers it as fetched path. After that, in line
23, the algorithm iterates over the PathList, and computes
the similarity between each path and the compared trajectory.
Hence, the algorithm makes the most similar path as the
predicted path. Besides this, the algorithm considers it as a
new query object’s trajectory, (lines 23-27). Then, algorithm
decrease the number of future steps by 1 and make a recursive
calls each time by the new calculated future steps, new created
query object’s trajectory. Finally, The algorithm check if the
F = 0, it skips and returns back the predicted path (Lines
12-14).
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Example. Assume that the query object’s trajectory is
τ7(e11, e9, e7, e16), assume the number of future steps to be
predicted (F) is 2, assume that SimilarTrajectoriesList
S is φ, and assume d is 1 Kilo Meter. First, the
algorithm gets the compared trajectory Compared1τ ,
say for example (e3, e1, e2). Second, gets the connected
edges to the current node of the query object which are
e14, e19, e17. Accordingly, the algorithm creates 3 paths:
path1{e11, e9, e7, e16, e14},path2{e11, e9, e7, e16, e19},
and path3{e11, e9, e7, e16, e17}. After that, the algorithm
computes the similarity between each path and Compared1τ ,
as result algorithm returns path2 as predicted path.
Algorithm checks if F=0, it returns no, so it makes a
recursive call by the new created query object which
equal to path2{e11, e9, e7, e16, e19}, and the F=1. Then,
algorithm identifies the new compared trajectory, assume
is Compared2τ (e3, e1, e2). Next, the algorithm gets the
connected edges to the current node of the query object which
are {e20, e18}. Accordingly, the algorithm creates 2 paths:
path1{e11, e9, e7, e16, e19, e20},path2{e11, e9, e7, e16, e19, e18}.
Then, the algorithm computes the similarity between each
path and Compared2τ , as a result, the algorithm returns
path1{e11, e9, e7, e16, e19, e20} as predicted path. The
algorithm checks if F=0, it returns yes, so it exit and returns
path1{e11, e9, e7, e16, e19, e20} as expected path

2) Known Destinations: This section presents the
algorithm and illustrative example for case 2; vagrant objects
know their destinations and need to reach them.

Algorithm. Algorithm 3 illustrates the pseudo code of the
proposed Handler Module that handle case 2 defined before
for vagrant objects. The algorithm takes four input parameters,
(a) Query object’s trajectory Qτ , (b) Query object’s destination
Dest, (c) Moving object’s trajectories TrajectoriesCurrent,
and (d)Distance d. In line 12, in each iteration, the algorithm
gets the compared trajectory from the objects currently moved
with the query object by using the R-tree within specific
distance. In line 13, the algorithm identifies the current edge
of the query object, obtains the edges directly connected to
the current node and saved them in edgesList. Then, the
algorithm iterates over the edgesList, and for each iterated
edge, the algorithm append this edge to the query object
trajectory, then consider this as new path. Each path is saved
to PathList and algorithm considers it as fetched path. After
that, in line 19, the algorithm iterates over the PathList, and
computes the similarity between each path and the compared
trajectory. Hence, the algorithm makes the most similar path
as the predicted path. Besides this, the algorithm considers it
as a new query object’s trajectory, (lines 19-23). Finally, the
algorithm checks if the current edge of the query object is
same as the destination required, if yes the algorithm returns
the predicted path; otherwise, the algorithm makes a recursive
calls until reach to its destination (Lines 24-28).

Example. Assume that the query object’s trajectory
is τ7(e11, e9, e7, e16), assume the destination needs to be
predicted e20, assume that SimilarTrajectoriesList
S is φ, and assume d is 1 Kilo Meter. First, the
algorithm gets the compared trajectory Compared1τ ,
say for example (e3, e1, e2). Second, gets the connected
edges to the current node of the query object which are
e14, e19, e17. Accordingly, the algorithm creates 3 paths:

Algorithm 3 known Destinations Handler

1: procedure GET FUTURE PATH
2: INPUT: Query object’s trajectory Qτ , Query object’s

destination Dest, Moving object’s trajectories
TrajectoriesCurrent, Distance d

3: OUTPUT: Return Predicted Path
4: /* Set compared Trajectory */
5: SET Comparedτ ← φ
6: /* Last edge in query object trajectory */
7: SET Q(CurrentEdge)τ ← φ
8: /* edges connected direct to query object current node */
9: SET edgesList← φ

10: /* All expected paths */
11: SET PathList← φ
12: Comparedτ = call R-Tree to get nearest Trajectory to Qτ

from TrajectoriesCurrent within d
13: Q(CurrentEdge)τ = Current edge of Qτ
14: Put in edgesList edges connected by Q(CurrentEdge)τ
15: for each edge ei in edgesList do
16: FetchedPath= Qτ + ei
17: Add FetchedPath to PathList
18: end for
19: for each FetchedPath in PathList do
20: ComputeSimilarity(FetchedPath,Comparedτ )
21: Set Most Similar FetchedPath as Qτ
22: Set Most Similar FetchedPath as Predicted Path
23: end for
24: if Q(CurrentEdge)τ = Dest then
25: Exit and return Predicted Path
26: else
27: Get Future Path(Qτ , Dest, T rajectoriesCurrent)
28: end if
29: end procedure

path1{e11, e9, e7, e16, e14},path2{e11, e9, e7, e16, e19}, and
path3{e11, e9, e7, e16, e17}. After that, the algorithm computes
the similarity between each path and Compared1τ , as result
algorithm returns path2 as predicted path. Algorithm checks
if the query object’s current edge equal to e20, it returns
no, so it make a recursive call by the new created query
object which equal to path2{e11, e9, e7, e16, e19}. Then,
algorithm identifies the new compared trajectory, assume
is Compared2τ (e3, e1, e2). Next, the algorithm gets the
connected edges to the current node of the query object which
are {e20, e18}. Accordingly, the algorithm creates 2 paths:
path1{e11, e9, e7, e16, e19, e20},path2{e11, e9, e7, e16, e19, e18}.
Then, the algorithm computes the similarity between
each path and Compared2τ , as a result, the algorithm
returns path1{e11, e9, e7, e16, e19, e20} as predicted path.
The algorithm checks if if the query object’s current
edge equal to e20, it returns yes, so it exit and returns
path1{e11, e9, e7, e16, e19, e20} as expected path.

V. EXPERIMENTS

This section evaluates experimentally the proposed
HarmonyMoves system.

A. Experimental Setup

Data-sets. All the experiments introduced in this work
use real trajectories data-set collected by Microsoft Research
team in the Geo-life project [13] covering the period between
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April 2007 to August 2012. Furthermore, these trajectories are
splitted into small trajectories with an average length of each
one 10 road segments. Thus, the total number of trajectories
is 5000. All trajectories GPS data points (longitude, latitude)
are map-matched to road segments along the road network.
The road network data is captured from OpenStreetMap [18].
Road network data in this work represents Hamilton city in
the USA. The map-matching algorithm is out the scope of
this paper [12].
Experimental Settings. The prediction function employed
inside HarmonyMoves,R-Tree module, and hausdorff
distance functions are implemented using Java with JDK
1.9 inside eclipse PHOTONID IDE. All experiments are
accomplished on a PC with Intel(R) core(tm) i7-4770 cpu
@3.40ghzM, and running on the linux ubuntu operating
system.

B. HarmonyMoves Evaluation and Results

We next report our findings

Exp 1:- Comparison between HarmonyMoves and other
baseline models. In this set of experiments, Fig. 4 compares 2
baseline prediction techniques of by HarmonyMoves. This
is set of experiments choose RandomGuess and RMF for
comparison. RMF is an HMM model-based path prediction
method , which computes motion function to capture
movements. This experiment proves that the proposed system
HarmonyMoves outperform other methods in prediction
accuracy. The justification behind this is the HarmonyMoves
depends on its work on novel similarity function the prune
irregularities in input data before the training process.

Fig. 4. Comparison between baseline methods

Exp 2:- Accuracy evaluation of vagrant objects VS. normal
objects.This set of experiments investigates the impact of
increasing number of moving objects on both vagrant objects
and normal objects. Fig. 5 shows that the normal objects
always achieve higher prediction accuracy more than vagrant
objects. The justification behind this is that the normal objects
have more objects moving similar like them, and the prediction
done through high similarity value, as result prediction in
efficient and easily manner.

Exp 3:- Impact of increasing similar objects on normal
query objects. This set of experiments studies the impact of
increasing number of similar moving objects on the normal

Fig. 5. Vagrant Objects VS. Normal Objects

query objects. It is observed from Fig. 6 that the increase
in similar moving objects number, the total increase on the
average prediction accuracy. The justification behind this is
that the increased number of similar objects will make the
prediction HMM model trains on more input data similar to
each other and make the model perform efficiently.

Fig. 6. Impact of increasing similar objects on Normal query objects

Exp 4:- Impact of increasing number of future steps
on normal and vagrant objects. In this set of experiments,
Fig. 5 compares the normal objects with the vagrant objects
according to the CPU processing time when they are need
to predict the future steps. It is observed that normal objects
consumes less CPU time than vagrant objects during the
prediction process. The justification behind this is that the
normal objects move similar like other objects and the
hash-map created during the prediction can contain cashed
values before which can be accessed by O(1). Additionally,
vagrant objects make many recursive calls and need each
time to identify compared trip to predict next road or final
destination.

VI. CONCLUSION

In this paper, we presented the HarmonyMoves system that
predicts the future trajectory of a moving query object when
the object’s movement history or past trajectories is absent. In
addition, HarmonyMoves helps moving objects that lost their
ways to go their destinations or follow recognized routes. The
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Fig. 7. Impact of increasing number of future steps

system leverages the harmony between the query object and
other moving objects that are existing in the space at the same
time, explores similarities in their trajectories. If the harmony
exist, HarmonyMoves utilizes these similarities to predict the
query object’s future paths. Otherwise, HarmonyMoves try to
get the nearest object within specific distance to the query
object and the then utilize the nearest object’s trajectory to
guide object that lost their ways. The system composed of three
main components; Harmony Checker Module, Normal Objects
Handler Module, and Vagrant Objects Handler Module.
Experiments showed that HarmonyMoves provided accurate
prediction results and achieved high performance.

In the future work, we plan to make HarmonyMoves
able to handle huge number of end-users who submit
several predictive queries on the cloud-based through big data
frameworks, like Apache-Spark. This makes HarmonyMoves
more generic and scalable framework.
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[2] Francisco Neto, Cláudio Baptista, and Claudio Campelo. Prediction of
Destinations and Routes in Urban Trips with Automated Identification
of Place Types and Stay Points. Brazilian Journal of Cartography,
2016.

[3] Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László
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