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Abstract—This paper reports a real-time localization 

algorithm system that has a main function to determine the 

location of devices accurately. The model can locate the 

smartphone position passively (which do not need a set on a 

smartphone) as long as the Wi-Fi is turned on. The algorithm 

uses Intersection Density, and the Nonlinear Least Square 

Algorithm (NLS) method that utilizes the Lavenberg-Marquart 

method. To minimize the localization error, Kalman Filter (KF) 

is used. The algorithm is computed under Matlab approach. The 

most obtained model will be implemented in this Wi-Fi tracker 

system using RSSI-based distance for indoor crowd monitoring. 

According to the experiment result, KF can improve Hit ratio of 

81.15 %.   Hit ratio is predicting results of a location that is less 

than 5 m from the actual area (location). It can be obtained from 

several RSSI scans, the calculation is as follows: the number of 

non-error results divided by the number of RSSI scans and 

multiplied by 100%. 
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intersection density method; Nonlinear Least Square (NLS) 
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I. INTRODUCTION 

In 4.0 era, crowd monitoring/tracking system has become 
very useful application because it provides some summaries 
and insights about flow, direction, density and activity of 
people in certain public and private areas. A prior work 
described the use of a real-time Wi-Fi tracking system for 
business intelligence in the retail company [1]. The methods 
can be used in the crowd monitoring system, e.g., image-based 
and non-image-based method. Generally, image or video-
based system requires high-cost and complex computation. 
Also, that approach has several other disadvantages: it only 
covers a small line-of-sight (LoS) area and difficult to obtain 
high estimation accuracy when overlap and occlusion exist in 
the crowd. In other hands, the video-based method does not 
work in dark or smoke environments and also less privacy of 
the target [2].  The non-image-based method can overcome 
drawbacks in image-based methods, especially in the cost 
factor, and it can cover a high LoS area. 

Nowadays, most people bring their smartphones 
everywhere they go. The Wi-Fi access point facilities have 
also been installed in many places; it will trigger most people 
to turn on their Wi-Fi on smartphones. We can use this fact to 
track-down them using a Wi-Fi-based approach. The Wi-Fi 
devices on a smartphone will reveal their MAC address data 
through probe-request data whenever the Wi-Fi devices on. In 
other words, when the device activates Wi-Fi, they will 
eventually broadcast probe request data containing useful 
information; for example, MAC addresses data of device and 
time-stamp [3-5]. Because the MAC address is a unique 
identifier, it can be used to identify the presence of people in a 
particular location. In this work, we used Wi-Fi-based RSSI 
localization to estimate or monitor the crowd pattern at certain 
places. A similar approach has been proposed in work at [6] 
and [7]. 

Radio Frequency (RF) technologies such as GPS, RFID, 
Bluetooth, and Wi-Fi, use radio signals to find the device’s 
location. Generally, we put the sensor (node) to sense the RF 
signal parameter then estimate the location from that 
parameter. Some of RF parameter that has been used by 
researchers: Time difference of Arrival [8], Time of Arrival 
[9], Angle of Arrival [10], and RSSI [11]. The RSSI-based 
localization provides a simpler node compared to the other 
methods. But this approach gives a major problem to the 
detection accuracy due to the high variance on RSSI value, the 
techniques to overcome it, e.g., Bayes Filter [12], Particle 
Filter, and so on. 

There is a various method that has been proposed in the 
Wi-Fi RSSI-based indoor localization, like Finger-printing, 
Distance-based localization, etc. This work will provide GUI 
to monitor the indoor crowd, based on the RSSI localization 
method. However, the biggest problem in the real application 
is, the RSSI value measured at the node is unstable. They keep 
changing dynamically because of the presence of noise. The 
distribution of RSSI value most likely to be Gaussian. 
Therefore, correction values by using the Kalman Filter (KF) 
is made. 
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In this work, the set of RSSI data is scanned in multiple 
sensors (nodes). One of two recommended localization 
algorithms: Intersection Density and Non-Linear Least Square 
(NLS) will be used in this experiment. The localization 
algorithm is used to estimate the location of each device 
precisely. Whereas the KF algorithm is used to overcome the 
noises in RSSI signals that are scanned in sensor. 

This paper is composed by four sections: 1) Introduction 
that discusses why RSSI-based localization method is selected 
for Wi-Fi tracking application, 2) Methods discusses proposed 
system and the used algorithms, 3) Results and Analysis, and 
the last section is 4) Conclusion. 

II. METHODS 

A. Proposed Systems 

Fig. 1 shows a proposed architecture of the Wi-Fi Tracker 
system. It consists of two main parts: the node system and the 
server system. The node system has a primary function to sniff 
the devices (smartphones) data on the site. Then the server 
will compute and analyze the data and make a summary about 
the situation on the dashboard. As informed by [3-5], when the 
devices activate their Wi-Fi, they will broadcast wireless 
signature data containing unique information about the 
devices, which is a MAC address. According to our previous 
experiment, as in [5], the packet request data is Wi-Fi’s packet 
data associated with it. From that data, we also got the 
information besides MAC address data: Timestamp and RSSI. 

In the first step, we placed the node at several points on the 
site. Afterward, the devices on the sites will broadcast the 
packet request data to the surrounding access point (AP). The 
smartphone broadcasts the packet request data when its Wi-Fi 
is turned on, and they do not have to be connected with Node. 

In other cases, the smartphone can be connected with the 
surrounding AP. As long as they broadcast the packet request 
data, the system will continue work.  Every node on the sites 
will sniff the packet data emitted by the devices. The node 
must be in monitoring mode to sniff those packet data. Then 
the nodes will send the data to the server. 

Before the data sent to the server, the data will be 
encrypted using TLS/SSL with 1024-RSA encryption. The 
nodes will connect to our proposed access point (Wi-Fi tracker 
access point) and send the data to the server using Message 
Queuing Telemetry Transport (MQTT) protocol. 

The server will collect the data from all nodes by 
subscribing to the MQTT broker based on the designed topic. 
The server will decrypt the packet data, then collect the data 
and organize them based on the MAC address information. 
Therefore, in the server, we will get a set of MAC address and 
their corresponding RSSI in every node. From this set of data, 
we will compute the location of each device using the 
algorithm (NLS and KF algorithms). The raw data and 
processed data (smartphone and its location) will be stored in 
a database. In our system, we used MongoDB as a database 
system. We will also provide the dashboard based on a web 
application that runs on our server. Beside serve basic 
configuration to the system, the web will also provide the 
information (analyzed data). 

But in this work focuses on the algorithm part. RSSI data 
is collected and then computed through Matlab simulation. 
The most optimum algorithm is then implemented in a server 
using the Phyton script (further research). Thus, our system 
will have a high-accuracy in tracking the devices. Three 
approaches: Intersection Density, NLS, and linear KF are 
computed. 

 

Fig. 1. Wi-Fi Tracker System Architecture. 
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B. Localization Algorithm 

A node network with a known location is expected to get 
the RSSI value from the devices. Then from this set of RSSI 
measurements, the device location can be predicted by 
estimating the distance between the smartphone and the node. 
First, we estimate the distance between nodes and devices 
using the path-loss model and RSSI values. We can formulate 
a mathematical representation of our problem as follows: 

 Given 𝑚 known nodes, each is located at (𝑥𝑖 , 𝑦𝑖)   𝑖 =

1,  2,  … ,  𝑚. The RSSI value measured at node 𝑖-th are 

𝑃𝑖   𝑖 = 1,  2,  … ,  𝑚 

 From the data set of {(𝑥𝑖 , 𝑦𝑖 , 𝑃𝑖)} then we estimate the 

location of devices (𝑥, 𝑦 ) 

There are two general steps of RSSI-based distance 
estimation, first is Distance estimation, by using path-loss 
model, the value of 𝑃𝑖  is used to estimate the distance between 
the smartphone and node i-th (𝑑𝑖), and the second one is (b) 
Location estimation. From the set of measurable distance 

{𝑑𝑖}, the smartphone location (𝑥, 𝑦 ) is estimated. This step 

can be done using localization algorithm, such as 
Triangulation, Trilateration, Intersection Density, Linear Least 
Square, NLS, etc. In this work, we have tried two methods: 
Intersection Density and NLS. We compare them which is the 
best one to be used as the localization algorithm. 

 Path-Loss model 

Path-loss is a reduction in power density of the 
electromagnetic waves as it propagates through space 
(attenuation). It represents signal level attenuation caused by 
free-space propagation, reflection, diffraction, absorption, and 
scattering. There are various path-loss models that have been 
established to represent Wi-Fi communication as well as the 
condition in the room. In this work, we used the log-distance 
path-loss model as in Eq.1, 

𝑃(𝑑) = 𝑃(𝑑0) − 10 𝛼 𝑙𝑜𝑔
𝑑

𝑑0
+  𝑋𝜎            (1) 

Where 𝑃(𝑑)  is power at distance d, 𝑃(𝑑0)  is reference 
power that emitted by smartphone (power at distance d0 = 1m), 
𝛼  is Path-loss exponent (depending on the surrounding 
environment, related to attenuation factor). Later, 𝑋𝜎 is Zero-
mean, and σ-variance is a random variable (from noise, 
shadowing, multi-path effect). 

The path-loss exponent value depends on the surrounding 
environment, thus to get the precise value of this parameter, 
the calibration must be performed. The path-loss exponent 
value can be determined by measuring the RSSI value for 
several minutes at a specific distance in the room. From that 
data, by using the path-loss model in Eq. 1, the value of α can 
be computed. Table I shows path-loss exponent. 

The reference power value emitted by a smartphone has 
different from other smartphones. Due to our application is 
intended to detect many smartphone types at once, this 
parameter value cannot be determined by doing a calibration 
only. Hence, this is another point that we have to consider 
when performing the localization algorithm. 

TABLE. I. PATH-LOSS EXPONENT VALUE 

Environment  Path-Loss Exponent 

Free Space 2 

Urban area cellular radio 2.7 - 3.5 

Shadowed urban cellular radio 3.0 - 3.5 

In building LOS 1.6 to 1.8 

Obstructed in building 4 to 6 

Obstructed in factories 2 to 3 

When a Wi-Fi signal encounters another medium with 
different electrical properties, there is partly reflected signal 
and partly absorbed signal. The reflection coefficient is a 
complex function of the material properties and generally 
depends on signal frequency, polarization, and angle of 
incidence. The previous model (Eq. 1) is suitable for Line-of-
Sight (LOS) indoor environment. For the Non-Line-of-Sight 
(NLOS) environment, there is a more precise model that 
considers the attenuation factor from the existing obstacles. 
The multi-wall model can be expressed in Eq. 2, 

𝑃(𝑑) = 𝑃(𝑑0) − 10 𝛼 𝑙𝑜𝑔
𝑑

𝑑0
+  𝑋𝜎 +  ∑ 𝐴𝑖

𝑘
𝑖=1            (2) 

Where 𝑘 is a number of obstacles between transmitter and 
receiver and 𝐴𝑖  is an attenuation factor for obstacle i-th.  
Several examples of attenuation factor value for 2.4 GHz Wi-
Fi signal in various materials can be seen in Table II. 

Actually, in our application, this factor can only be 
controlled by setting the path-loss exponent value through a 
calibration in the room. Several precise path-loss models can 
represent the actual situation in the real case. Still, we use a 
simple path-loss model for this work. In a further 
improvement, it can be used for the more precise model that 
has higher accuracy to represent path-loss in the room. 

 Intersection Density 

The Intersection Density method estimates the smartphone 
location by utilizing pairs of known node locations to generate 
circles. By using multiple different pairs of the node, multiple 
circles can be derived, each of which intersects at smartphone 
location in the absence of noise and measurement errors. Of 
course, noise and measurement errors always exist in our 
measurements. This fact causes the intersection point does not 
intersect in a single point. However, Intersection Density 
assumes that a number of the intersection will be the highest 
in the surrounding of a smartphone location. Therefore, the 
smartphone location will be determined in the area that has the 
most intersections. 

TABLE. II. ATTENUATION FACTOR FROM SEVERAL OBSTACLES 

Obstacle Attenuation factor 

Concrete wall 10 cm -16 dBm 

Concrete wall 20 cm -29 dBm 

Metal -26 dBm 

Glass wall  -6 dBm 

Wooden wall -4 dBm 

Human body -3 dBm 
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First, from the log-distance model, by assuming that the 
surrounding has the same path exponent value for all 
directions, then we can obtain power difference as Eq. 3, 

𝑃𝑖𝑗 =  𝑃𝑖 − 𝑃𝑗 =   10 𝛼 log
𝑑𝑗

𝑑𝑖
            (3) 

Next step we define and measure the distance ratio for all 
known nodes as expressed by Eq. 4, 

 𝑑𝑖𝑗 =
𝑑

𝑖 

𝑑
𝑗 

=  10
𝑃𝑗 −𝑃

𝑖 

10𝛼              (4) 

The Intersection Density algorithm will map the set of 
node location {(𝑥𝑖 , 𝑦𝑖)}  and distance ratio {𝑑𝑖𝑗}  into set of 

circle with center {𝐶𝑖𝑗} and radius {𝑟𝑖𝑗}  as Eq. 5 and Eq. 6 

respectively, 

𝐶𝑖𝑗 = (
𝑥𝑗𝑑𝑖𝑗

2 −𝑥𝑖

𝑑𝑖𝑗
2 −1

,
𝑦𝑗𝑑𝑖𝑗

2 −𝑦𝑖

𝑑𝑖𝑗
2 −1

)             (5) 

𝑟𝑖𝑗  =√(
𝑥𝑗𝑑𝑖𝑗

2 −𝑥𝑖

𝑑𝑖𝑗
2 −1

) 

2

+  (
𝑦𝑗𝑑𝑖𝑗

2 −𝑦𝑖

𝑑𝑖𝑗
2 −1

) 

2

−  
𝑑𝑖𝑗

2 𝑥𝑗
2+𝑑𝑖𝑗

2 𝑦𝑗
2−𝑥𝑖

2−𝑦𝑖
2

𝑑𝑖𝑗
2 −1

         (6) 

The next step is to find location where the circles intersect 
each other. This can be done by generate circle equation, then 
find the location of the intersection by solving the equation for 
each pair of circles. Then we divide the map into several grid 

areas. Later, the smartphone location (𝑥, 𝑦 ) can be estimated 

in the location that has the most intersection points [13]. For 
example, in Fig. 2, the location of the smartphone can be 
estimated in the grid with the 𝑥 mark where on the grid there 
are the highest intersection point. 

 Non-Liniear Least Square Algorithm (NLS) 

This method finds the smartphone location by forming the 
objective function that represents the mean square error 
between the measurement and model. Then by using 
optimization function, we estimate the smartphone location 
(𝑥, 𝑦)  that minimizes our objection function. Because our 
objective function is nonlinear with the respects of the 
variable (𝑥 and 𝑦), then we called it NLS. From the path-loss 
model, we can calculate the power difference as Eq. 7, 

r1

r2

r3

c3
c2

c2

 

Fig. 2. Illustration of Intersection Density Method. 

𝑃𝑖𝑗       =  𝑃𝑖 − 𝑃𝑗 =   10 𝛼 log
𝑑𝑗

𝑑𝑖
 

= 10 𝛼 log
√(𝑥−𝑥𝑗)2+(𝑦−𝑦𝑗)2

√(𝑥−𝑥𝑖)2+(𝑦−𝑦𝑖)2
= 5𝛼 log

(𝑥−𝑥𝑗)2+(𝑦−𝑦𝑗)2

(𝑥−𝑥𝑖)2+(𝑦−𝑦𝑖)2             (7) 

This power difference equation is used because we want to 
eliminate the power reference that emitted by smartphone, 
which are unknown for us. Still, this can be done by assuming 
that path-loss exponent is equal in all rooms. From the 
measured RSSI in nodes, we can compute the measured power 

different 𝑃𝑖𝑗
̅̅ ̅. Afterward, we correct the results using KF and 

then define objective function as the sum of squares of 
differences between the measured value and theoretical value 
as Eq. 8, 

𝑄(𝑥, 𝑦) =  ∑ [𝑃𝑖𝑗
̅̅ ̅ − 5𝛼 log

(𝑥−𝑥𝑗)
2

+(𝑦−𝑦𝑗)
2

(𝑥−𝑥𝑖)2+(𝑦−𝑦𝑖)2 ]

2

𝑖<𝑗 , 1 ≤ 𝑖 < 𝑗 ≤

𝑚                 (8) 

NLS algorithm finds the value of (𝑥, 𝑦 )  that minimizes 

the objective function of 𝑄(𝑥, 𝑦). Some common methods that 
can be used to solve the NLS problem, i.e., Gradient descent 
method, Gauss-Newton method, and Levenberg-Marquardt 
method. But, in this work, to find the solution, we used the 
Lavenberg-Marquart method. 

The objective function 𝑄(𝑥, 𝑦)  is nonlinear. In case, we 
can linearize the objective function using the Taylor series 
expansion; this method transforms the NLS into Linear Least 
Square method. We did not try it yet, however we think that 
the nonlinear model is more suitable for our systems, so we 
will use NLS instead. Eq. 9 shows objective function that 
consider initial power device, 

𝑄(𝑥, 𝑦) =  ∑ [𝑃𝑖𝑛𝑖𝑡 − 5𝛼 log(𝑥 − 𝑥𝑗)
2

+ (𝑦 − 𝑦𝑗)
2

−1≤𝑗≤𝑚

 𝑃�̅�]2  , −50 𝑑𝐵𝑚 <  𝑃𝑖𝑛𝑖𝑡 < −30 𝑑𝐵𝑚           (9) 

C. Kalman Filter 

If we observe the RSSI value that is scanned in node, we 
will find that the value is continuously changing even for the 
smartphone placed in the same location. There are so many 
factors that cause it. But in the real case, that is what actually 
happened; it will decrease the accuracy of our algorithm. To 
suppress this problem, we used KF to reduce the noise that 
happens in the node when performing a measurement. 

KF works well for the systems which are continuously 
changing; it can predict uncertain information about a 
dynamic system, what the system is going to next, and its 
value. This filter has some advantages: it requires less memory 
(only needs a previous state value other than the whole 
history) and also has fast computation (suitable for the real-
time applications). 

Generally, KF has two steps, which is the prediction step 
and the correction step. In the prediction step, KF makes a 
prediction based on the previous state. Then in the correction 
step, KF will correct the prediction value with regard to the 
measurement in this state. The general KF problem is stated as 
Eq. 10 and Eq. 11, 
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𝑋𝑘+1 = 𝑓(𝑋𝑘) + 𝑤𝑘           (10) 

𝑍𝑘 = ℎ(𝑋𝑘) + 𝑣𝑘           (11) 

Where X is system state vector, f(.) is transition function, Z 
is measurement vector, h(.) is measurement function, w is 
process noise, and v is measurement noise. Both w and v are 
zero mean Gaussian distribution with covariance Q and R, 
respectively. 

D. Linear Kalman Filter Calculation 

In Linear KF, both the transition function f(.) and the 
measurement function h(.) are linear functions. We can divide 
into two steps as follows: 

 Prediction step: In this step, we have to predict the 
value based on the previous state. Project the state 
ahead using Eq. 12, while project the covariance matrix 
using Eq. 13, 

𝑋𝑘|𝑘−1 = 𝐹 ∗ 𝑋𝑘−1           (12) 

P𝑘|𝑘−1 = 𝐹 ∗ P𝑘−1 ∗ 𝐹𝑇 + 𝑄          (13) 

Where F is a transition matrix model, and the covariance 
matrix P represents the level of certainty of our prediction value. 

 Correction step: In this step, we correct our prediction 
based on the measurement result at this time. First, we 
have to compute the Kalman gain as expressed by 
Eq.  14, 

𝐾𝑘 = P𝑘|𝑘−1 ∗ 𝐻𝑇 ∗ (𝐻 ∗ P𝑘|𝑘−1 ∗ 𝐻𝑇 + 𝑅)−1        (14) 

Then, correct the prediction based on the measurement as 
Eq. 15, 

𝑋𝑘 =  𝑋𝑘|𝑘−1 + 𝐾𝑘 ∗ (𝑍𝑘 − 𝐻 ∗ 𝑋𝑘|𝑘−1)         (15) 

Additionally, we have to update the covariance matrix as 
Eq. 16, 

P𝑘 = (𝐼 − 𝐾𝑘 ∗ 𝐻) ∗ P𝑘|𝑘−1          (16) 

Where H is observation matrix model. 

In this application, each time step, we collect the RSSI 
value from all nodes then uses KF for each before using them 
for our algorithm. Fig. 3 illustrates how the KF is used in this 
work; the KF works for each node. Each computation requires 
the previous step value so that each time the calculation has 
been made. The value must be stored in memory. We only 
need previous value, so the other values can be removed after 
the computation has been done. KF block diagram can be seen 
in Fig. 4. 

Afterward, we define our state model which represent the 
RSSI value and the velocity of smartphone movement. This 
variable is intended to predict the RSSI when the smartphone 
is moved or not. We define our state vector as two variables: 
RSSI – velocity �̇�  (Eq. 17), and observation vector as the 
result of scanned RSSI from node (Eq. 18), 

𝑋 =  [
𝑅𝑆𝑆𝑖

�̇�
]            (17) 

𝑍 = [ 𝑅𝑆𝑆𝐼 ]            (18) 

RSSI from 

Node 1

RSSI from 

Node 2

RSSI from 

Node m

Kalman

Filter

Kalman 

Filter

Kalman 

Filter

NLS (x,y)

 

Fig. 3. Algorithm Architecture. 

 Prediction 

Step

Correction 

Step

Xk and Pk is stored in memory

Xk|k-1 and Pk|k-1

Measurement ZkInitial value X0, P0

State model Output

 

Fig. 4. Steps of KF. 

Then KF model used in this work can be expressed as Eq. 
19 to Eq. 22, where dt is time interval between the current step 
and the previous step. 

𝐹 =  [ 
1 −8 ∗ 𝑑𝑡
0 1

 ]           (19) 

𝐻 =  [1 0]            (20) 

𝑄 =  𝜎2 [
𝑑𝑡3/3 𝑑𝑡2/2

𝑑𝑡2/2 𝑑𝑡
]           (21) 

𝑅 =  [(
3.0∗𝑅𝑆𝑆𝐼 + 340

70
)2]           (22) 

III. RESULTS AND DISCUSSION 

A. Path-Loss Simulation 

We first examine the path-loss exponent value in the room 
to get a suitable path-loss model. We measure the RSSI value 
based on two parameters, i.e., several times against several 
known distances in the room. Fig. 5 visualizes a sample of 
obtained RSSI from the observed device. The measurement 
method is elaborated in [5]. 

By using the path-loss model as Eq. 1, we can compute the 
path-loss exponent value for each measurement as shown in 
Fig. 6. We can estimate the path-loss exponent value of the 
room to be 2.4 – 2.7. We compute it in the room based on the 
selected room reference that is Research and Community 
Service (CRCS) Institut Teknologi Bandung building 1st floor. 
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Fig. 5. Example of RSSI Data Logger from “X Smartphone”. 

 

Fig. 6. Path-Loss Exponent Distribution. 

B. Intersection Density Simulation 

In second step, we measure the Intersection Density 
algorithm performance. At this simulation test, we take non-
real-time data from each node. We get RSSI data for 5 
minutes for each location, as illustrated in Fig. 5, then we take 
its average to represent the scanned RSSI value on each node. 
This data will be used in the Intersection Density algorithm. 
The computation is done using Matlab (offline computation). 
Suppose “X smartphone” and “Y smartphone” as detected 
devices. 

Fig. 7 illustrates several results of the Intersection Density 
algorithm. The real-location smartphone is located in a green 
mark. The estimated location lays in the area that has the 
highest intersection point. 

When the scanned RSSI does not represent the real power, 
the intersection point will be parted to each other. In this case, 
it is difficult to estimate the location because the intersection 
area will be “large”. Then if we used the real-time data, most 
of them do not intersect in our valid area. Hence, we assumed 
that this algorithm has low accuracy for real-time data, and we 
decide to try to use different methods, i.e., using NLS 
approach. 

C. NLS Simulation 

In this test, we measure the performance in our algorithm. 
We use real-time data that are measured in our server, 
although the computation is done in offline mode. Fig. 8 
depicts the simulation result of data collected by our server for 
5 minutes. The “X smartphone” is placed in the center of the 
room (pointed by a red mark). And four nodes are placed in 
the corner of the room (points A, B, C, and D). The blue circle 
represents the estimated point of the smartphone location. 

 
(a) 

(b) 

(c) 

(d) 

Fig. 7. Intersection Density Result: (a) X Smartphone Location I (b); X 

Smartphone Location II; (c) Y Smartphone Location I; (d) Y Smartphone 
Location II. 

0

200

400

600

800

1000

1200

1400

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 5.5

F
R

E
Q

U
E

N
C

Y

PATH-LOSS EXPONENT



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 1, 2020 

666 | P a g e  

www.ijacsa.thesai.org 

A B

C D

 

Fig. 8. NLS Simulation Result (X Smartphone) –Location I, using Eq. 8 

Approach. 

 

Fig. 9. Error Measurement of NLS Algorithm–Location I, using Eq. 8 

Approach. 

Then we measure the error by comparing the result as 
obtained in Fig. 8 to the real-location. If we define the hit ratio 
as the number when the estimated location has error 5 m or 
less in several periods, then this measurement has hit ratio = 
67.5 %. Fig. 9 shows the obtained graph that represents the 
error calculation. For NLS simulation, we only take Fig. 7(a) 
as a sample. 

In the latest observations (real-time test), we found a 
problem using the above algorithm (Eq. 8). Some devices that 
are placed outside the room, can also be detected as inside the 
room. After making some observations and analysis, we found 
what caused it. In Eq. 8, we tried to eliminate the initial power 
value that smartphone transmits. We did this because initial 
power is not a fixed variable that different smartphone gives 
different value. Let’s say that our sensor A, B, C, and D read 
RSSI value from a smartphone of -50 dBm, -50 dBm, -51 
dBm, and -51 dBm, respectively. Then we have the same 
smartphone, but we place it in different locations, and our 
sensor A, B, C, and D read RSSI of -60 dBm, -60 dBm, -61 
dBm, and -61 dBm respectively. The above algorithm (Eq. 8) 
will predict the same location for both conditions; this is 
because they have the same power different. 

To overcome this problem, we involve additional cases 
when using the NLS algorithm. First, we use the objective 
function as Eq. 9, which considers the initial power of the 
smartphone to decide whether a smartphone is placed inside or 
not. We use several initial power values and decide which one 
is the most optimum by looking at cost function (residual error 
from objective function in the solution), from that we decide 

which smartphone is in inside or outside the room. Then if the 
device is inside, we use the previous objective function (Eq. 8) 
to get a better estimate location by eliminating initial power 
value. 

D. KF Simulation 

As in previous step, we first measure the RSSI value of a 
node, then we use the KF. Lastly, we integrate it with the NLS 
algorithm. Fig. 10 visualizes the result comparison of raw data 
before and after filtering. The data is captured for a specific 
time, and the interest-device (we only interested in one device) 
which is moving around the node. The filtering technique is 
used to remove ‘random’ signal strength, which captured in a 
single node. As we observe, raw signal strength (blue-colored 
line) can be filtered out using KF (red-colored line). 

In line to Fig. 10, we can conclude that KF is able to 
overcome the ‘random’ signal strength. Later, we apply KF in 
each node. We compare the result of the algorithm before and 
after applying the KF as shown in Fig. 11. It illustrates the 
room with a dimension of 30 m x 10 m (the CRCS ITB room 
size). While A, B, C, and D point represents node system and 
placed on each corner. The smartphone is placed in the center 
of room (red mark). The blue circle indicates the result of the 
algorithm for several times. Later, we analyze the error of the 
predicted location with the actual location of the smartphone. 
Fig. 12 depicts the analysis result. In the accuracy of 5 m, we 
have a hit ratio of 68.115 %. 

Then for the same data, we use KF and the result of the 
algorithm is shown in Fig. 13, whereas the obtained graph is 
shown in Fig. 14. Using a filter, we have a hit ratio of 81.15 
%. According to the simulation result, we can summarize that 
KF can improve the hit ratio from 68.115% to 81.15 %. 

 

Fig. 10. The Scanned RSSI in the Node before and after using KF. 
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Fig. 11. The Predicted Location without KF, using Eq. 9 Approach. 
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Fig. 12. Error Analysis of the Algorithm without KF, using Eq. 9 Approach. 
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Fig. 13. The Predicted Location using KF. 

 

Fig. 14. Error Analysis of the Algorithm with KF. 

Based on the obtained information, it is confirmed that the 
NLS method has a better accuracy compared to the 
Intersection Density method in a real-time case, and KF can 
improve the accuracy of the NLS almost 13%. We predict that 
later, UKF will perform better performance than KF. The most 
optimum algorithm will be implemented in the RSSI-based 
Wi-Fi tracking application for indoor environment, such as a 
system presented by recent works: G. Pipelidis, et al. [14], and 
Fernandez, et al. [15]. But, our system will has a complete 
features compared to [14-15]. 

IV. CONCLUSION AND FUTURE WORKS 

The localization algorithm for the Wi-Fi tracker system 
has been modeled in this paper.  It has the primary function to 
determine the location of devices (e.g., smartphone, laptop, 
tablet, etc.) in an indoor environment based on the information 
which is collected in the server. Two localization algorithm 
using distance-based methods (i.e., Intersection Density and 
NLS algorithms) have been tried under a Matlab simulation. 
The Intersection Density algorithm performs well in non-real 
time data (with error within 3 – 5 m). But it has a low-
accuracy for real-time data (with error of >7 m or most 
intersection lies in outside valid area), while the NLS 
algorithm performs better than Intersection Density; it has the 
hit ratio (55 – 70%) for the real-time data. The use of KF can 
improve the hit ratio of 81.15 %.  

According to the experiment, we assume that our 
algorithm still has a low-accuracy for the real-time data case; 
it is because of the RSSI instability. In the next work, we will 
try to overcome this problem by using the Unscented Kalman 
Filter (UKF) to pre-process the RSSI. We can put the UKF 
algorithm after the localization result to get better results. 
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