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Abstract—This paper aims to highlight the motivations for 

investigating genetic algorithms to solve the DNA Fragments 

Assembly problem (DNA_FA). DNA_FA is an optimization 

problem that attempts to reconstruct the original DNA sequence 

by finding the shortest DNA sequence from a given set of 

fragments. We showed that the DNA_FA optimization problem is 

a special case of the two well-known optimization problems: The 

Traveling Salesman Problem (TSP) and the Quadratic 

Assignment Problem (QAP). TSP and QAP are important 

problems in the field of combinatorial optimization and for 

which there exists an abundant literature. Genetic Algorithms 

(GA) applied to these problems have led to very satisfactory 

results in practice. In the perspective of designing efficient 

genetic algorithms to solve DNA_FA we showed the existence of a 

polynomial-time reduction of DNA-FA into TSP and QAP 

enabling us to point out some technical similarities in terms of 

solutions and search space complexity. We then conceptually 

designed a genetic algorithm platform for solving the DNA-FA 

problem inspired from the existing efficient genetic algorithms in 

the literature solving TSP and QAP problems. This platform 

offers several ingredients enabling us to create several variants of 

GA solvers for the DNA assembly optimization problems. 
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I. INTRODUCTION 

The DNA fragment assembly problem attempts to 
reconstruct the original DNA sequence by finding the shortest 
DNA sequence from a large number of fragments [1]. 
DNA_FA is a hard optimization problem due to its high 
complexity, the larger the sequence, the larger the fragments 
set input and consequently the higher and harder computation 
[2]. Metaheuristics have been shown to be the best alternative 
techniques to solve this problem. Especially, the DNA_FA 
problem was tackled with some metaheuristic algorithms such 
as Genetic Algorithms [3], Tabu Search [4], Simulated 
Annealing [5], Particle Swarm Optimization [6], and Ant 
Colony Optimization [7]. 

The famous Traveling Salesman Problem (TSP) and the 
Quadratic Assignment Problem (QAP) are two important 
problems in the field of combinatorial optimization and for 
which there exists an abundant literature. Genetic Algorithms 
applied to these problems have led to very satisfactory results 
in practice [8],[9],[10]. 

Our main contributions are: first, we presented a formal 
proof of the existence of a polynomial-time reduction of 

DNA_FA into TSP and QAP enabling us to point out some 
technical similarities in terms of solutions and search space 
complexity. Particularly, we have theoretically demonstrated 
that all these three optimization problems have a similar 
topological structure and they need to explore a search space 
of solutions with a same complexity to find an optimal 
solution. Notice that although many works mentioned the 
relationship between DNA_FA with the TSP problem, but to 
the best of our knowledge none provided a formal 
demonstration enabling to take advantages from the existent 
solvers of TSP and QAP problems to treat efficiently the 
DNA_FA problem. For this purpose, we revisited the 
relationship and the similarities between DNA_FA and TSP 
and established a new relationship and similarities between 
DNA_FA and QAP. Second, as the TSP and QAP problems 
were solved efficiently using GA algorithms, we believe it is 
worth to exploit these similarities in order to deeply 
investigate the use of GA algorithms for solving the DNA_FA 
problem. Based on these facts, we proposed a genetic 
algorithm platform including main GA concepts and tools 
(selection, crossover, mutation, …) enabling us to design 
several variants of GA solvers for the DNA_FA. The platform 
regroups the best GA concepts inspired from the existing 
efficient genetic algorithms in the literature solving TSP and 
QAP problems such that when they are used synergistically, 
we lead to efficient GA solvers. Few research works based on 
GA have been developed to solve the DNA_FA problem; the 
more recent GA algorithm used a basic schema with 
traditional simple GA concepts [11]. We think there is ample 
room for improvements by integrating the more recent 
advanced GA concepts used for solving TSP and QAP 
problems. 

The remaining sections of the paper are structured as 
follows. The related work is discussed in Section II. 
Section III presents the DNA_FA, TSP, and QAP problems 
formally and provides formal proof of the equivalence 
between these three problems. In Section IV the existing GA 
solutions to solve the DNA_FA problem, TSP, and QAP are 
presented and discuss these solutions in Section V. Finally, we 
proposed, in section VI a GA platform for designing efficient 
GA solvers for the DNA_FA problem. 

II. RELATED WORK 

Through research in the previous literature, we found some 
studies that indicated a relationship between TSP and 
DNA_FA problem [12],[13],[14]. In 1995 Parsons et al. [12] 
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noticed the similarity between DNA_FA and TSP but they 
argued that the mapping is not easy for some issues; some of 
these issues are (i) the DNA_FA problem is a maximization 
problem where the TSP is a minimization problem, and (ii) the 
TSP seeks to find a Hamiltonian circuit where the DNA_FA 
seeks to find a Hamiltonian path. In 2013 Mallén and 
Fernández [15] tried to overcome these issues by adding a 
dummy city with zero distance to all the other cities to form an 
open Hamiltonian path instead of a Hamiltonian circuit. Also, 
they multiplied the objective function by (-1) to convert the 
maximization into minimization. 

There are many studies mentioned the relationship 
between TSP and QAP [16],[17],[18],[19]. However, no study 
has formally shown the relationship between the DNA_FA 
problem with the TSP and QAP problems. Moreover, no study 
has explored the numerous similarities between the DNA_FA 
problem with the TSP and QAP problems to take advantage of 
the many efficient techniques developed for these two 
problems in order to solve the DNA_FA problem. 

Few genetic algorithms have been developed to solve the 
DNA_FA problem (see section IV for more details), compared 
to what have been developed for the TSP and QAP problems 
[9], [10], [20],[21], [22]. Moreover, these GA algorithms did 
not exploit the recent progress performed in the context of 
TSP and QAP problems. For instance, if we consider the 
crossover operator which is the main concept of GA 
algorithms, recently many modern crossover types (e.g. the 
Sequential Constructive Crossover) have been designed and 
successively tested for the TSP and QAP problems that have 
yielded to better performances. Due to the numerous 
similarities with the TSP and QAP problems shown in this 
paper, we believe and expect that well-designed GA solvers 
inspired from existing GA for these two problems would 
produce similar performance for DNA_FA problem. 
Unfortunately, no work investigated deeply these similarities 
in order to exploit the more advanced genetic algorithms 
designed for TSP and QAP for solving the DNA_FA problem. 
For this purpose, it is worth to investigate how these advanced 
operators originally designed for the TSP and QAP behave 
when they are applied to the DNA_FA problem. 

III. DNA_FA  VERSUS TSP AND QAP 

In this section we describe the optimization problems 
DNA_FA, TSP and QAP, then we provide formal proofs 
showing the existence of polynomial-time reductions of the 
DNA_FA problem into the TSP and QAP problems 
respectively. 

A. DNA_FA Problem 

Given a set of DNA fragments drown from a finite 
alphabet {A, T, C, G}, Adenine (A), Thymine (T), Guanine 
(G), and Cytosine (C). The goal of the DNA_FA problem is to 
find the shortest superstring sequence covering all fragments 
that is a superset of all input fragments. Intuitively, the goal is 
to find an optimal permutation of the fragments maximizing 
the number of overlaps between the fragments. 

Formally, given a set of   fragments              , 
drown from a finite alphabet Σ={𝐴,𝐶,𝐺,𝑇}, the problem 
consists in finding an optimal permutation of the fragments 

      
    

         that maximizes the number of overlaps 
between every pair of two consecutive fragments and thus 
minimizes the length of   . 

 𝐴    
    

         ∑               
      

 )  

             )          (1) 

B. TSP Problem 

Given a set of n cities along with the distance information 
between every pair of those cities, the goal of the Travelling 
Salesman Problem is to find the shortest tour that visits all 
cities once and returns to the starting city. 

The TSP problem can be modeled as follows. Let  
                             , the goal is to find the lowest 
cost tour such that. 

               ∑     )    )
   
        )  )          (2) 

where    )    ) is the distance between city    and city 

    , and    )  ) is the distance between city    and the 

starting city   . 

C. QAP Problem 

Given two sets of equal size “facilities” and “locations”, 
for each pair of locations, a distance is specified and for each 
pair of facilities a weight or a flow is specified. The problem 
is to assign all facilities to different locations with the goal is 
to minimize the total distances weighted by the corresponding 
flows. 

Formally, given two sets P ("facilities") and L 
("locations"), with a weight function w: P × P → R and a 
distance function d: L × L → R. The goal is to find the 
assignment f : P → L such that the cost function (the distance 
multiplied by the weight) is minimized: 

     ∑      )   (   )    ))                          (3) 

{\displaystyle\sum_{a,b\in P}w(a,b)\cdot d(f(a),f(b))} 

D. Polynomial Reduction of DNA_FA into TSP and QAP 

Notice that although many works mentioned the 
relationship between DNA_FA with the TSP problem [12], 
[13], [14], but to the best of our knowledge none provided a 
formal demonstration enabling to take advantages from the 
existent solvers of TSP and QAP problems to treat efficiently 
the DNA_FA problem. For this purpose, we revisited the 
relationship and the similarities between DNA_FA and TSP 
presented in [15] and established a new relationship and 
similarities between DNA_FA and QAP. Namely, we showed 
that DNA_FA is a special case of TSP and QAP problems. 

The DNA_FA problem can be represented as a directed 
complete weighted graph 𝐺       ) where   represents the 
set of fragments and   is the set of edges. The weight of an 
arc of G expresses the overlap cost between the two 
corresponding fragments and it is set to zero if there is no 
overlap. An optimal solution of DNA_FA corresponds to a 
Hamiltonian path in 𝐺. DNA_FA can be easily transformed 
into a TSP problem. Let’s consider 𝐺              ) the 
complete graph G of DNA_FA augmented by the virtual 
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vertex s connected to every vertex of V. For each vertex v of 

V, two arcs (s,v)E’ and (v,s)E’ with zero weights are added 
to G. We can easily see that the problem of finding a 
Hamiltonian path in G amounts to find an optimal solution to 
the TSP represented by the graph G’. Hence, DNA_FA is a 
special case of the TSP problem. 

Regarding the QAP, we established a new relationship 
between the DNA_FA problem and the QAP, we showed that 
DNA_FA is a special case of QAP problem as follows. Let’ us 
consider the set of fragments of the problem as a set of n 
facilities and the possible positions of each fragment in the 
solution sequence as a set of n locations. Taking into account 
the distance between a pair of locations as the overlap cost 
between their corresponding fragments, and set the flow equal 
to 1 for every pair of facilities, we can see that finding the 
optimal permutation assigning to each location exactly one 
facility so as to minimize the total cost (the distances 
multiplied by the weight) amounts to find an optimal solution 
to the associate DNA_FA problem. Thus, clearly DNA_FA is 
a special case of the QAP problem. 

As the famous TSP and QAP problems are NP-Hard [23], 
it follows automatically from this demonstration DNA_FA is 
also NP-hard. 

In the perspective of designing an effective and robust 
genetic algorithm platform for solving DNA_FA, Table I. 
points out some technical similarities in order to get out the 
most profit from the efficient genetic algorithms designed to 
solve TSP and QAP problems. 

From Table I, we can see that the three optimization 
problems need to explore a same size search space to find an 
optimal solution. 

TABLE I. TECHNICAL SIMILARITIES BETWEEN DNA-FA, TSP, AND QAP 

Characteristics DNA_FA TSP QAP 

Variables  Fragments Cities 
Facilities, 

locations 

Constraints 

Every fragment 

must be present 
in the final 

sequence. 

No duplicate 
fragment is 

allowed. 

Every city 

should be 

present in the 
tour. 

No duplicate 

city is allowed. 

Every facility 
should be 

assigned to one 

location. 
No duplicate 

facility or 

location is 
allowed. 

Objective 

Function 

Find an optimal 

permutation of 

the fragments in 
which the length 

of the sequence is 

minimized. 

Find an optimal 

permutation of 

cities (an 

optimal tour) in 

which the total 
cost of the tour 

is minimized. 

Find an optimal 

permutation of 
facilities 

(assignment of 

facilities to 
locations) in 

which the cost 

of the 
assignment is 

minimized. 

Feasible solution 

A sequence that 

contains all the 

fragments. 

A tour that 

visits all cities 

once. 

An assignment 

of each facility 

to one location 

Complexity NP-hard NP-hard NP-hard 

IV. GENETIC ALGORITHM (GA) SOLUTIONS 

Basic genetic algorithm schema contains various concepts 
such as population encoding, population initialization, fitness 
function, selection, crossover, mutation and replacement 
operators, and stopping conditions. 

Each concept has its importance in the algorithm; for 
instance, encoding the population represents a feasible 
solution of the problem. Basically, the type of the problem 
determines the appropriate encoding type (e.g., in the TSP a 
tour (individual) is usually encoded as a sequence of integers, 
where each integer represents a city). The initial population 
may influence the overall behavior of finding solutions.  
Getting a good initial population can strongly influence the 
performance of the search. The fitness function is used to 
evaluate the quality of each individual within the population. 
The fitness function has to be designed to accurately assess the 
individual's quality in order to select the best and the fittest 
individuals for crossover and mutation operations. Selection is 
the operation where the parents (individuals) are selected from 
the population according to the fitness function for crossover 
and mutation operations. The purpose of selection is to ensure 
that the fitter individuals in the population will be maintained 
so that the offspring produced has a higher fitness. The 
crossover operator plays the most crucial role in GA as it aims 
to explore the huge search space of the problem. Traditionally, 
it is a binary operation taking two individuals as parents to 
create new offspring. Recently, the crossover operator has 
been generalized to take more than two parents to generate 
new offspring. This type of crossover is called Multi-Parents 
Crossover (MPX) [24]. The mutation operator aims to ensure 
diversity in the population by allowing a certain change in the 
individual, which helps to escape local optima. The 
replacement allows individuals from the current generation to 
be replaced by better newly generated offspring. The stopping 
condition is a vital operator; it is necessary to identify a 
tradeoff between the algorithm stopping criteria and the 
algorithm performance. 

The fundamental concept behind GAs is inspired by 
natural evolution, where the GA operators evolve generations 
of potential solutions of a given problem. More in detail, the 
GA initiates a population of possible solutions (i.e., 
individuals) after defining the appropriate solution encoding. 
Then, calculates the fitness for each individual within the 
population using the fitness function. The selection operator 
then selects individuals (parents) based on their fitness to 
produce a new offspring by carrying out the crossover and 
mutation operations. The new offspring will inherit the 
parent’s characteristics and will be added to the next 
generation via a replacement strategy. This process keeps on 
iterating until the stopping condition is reached, and hence the 
solution with the best fitness value is returned. The GA 
procedure is illustrated in Fig. 1. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 10, 2020 

142 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 1. GA Procedure. 

A. GA solutions for the DNA_FA problem 

Here we review the previous works using genetic 
algorithms for the DNA_FA. As aforementioned, the 
DNA_FA problem reconstructs the original DNA from a large 
number of fragments. To illustrate the problem, consider the 
following example: 

An input of five fragments could look like: 

TCGG, GCAG, ATCG, CAGC, GATC. 

Two possible final sequences involving all input fragments 

are: 

CAGCAGATCGG (length = 11) 

GATCGGCAGC (length = 10) 

The latter sequence is better since its length is 10, compared to 

11 for the former sequence. 

In order to deal with this problem, let us introduce the 

following terms: 

Prefix: A substring comprising the first n characters of 

fragment f. 

Suffix: A substring comprising the last n characters of 

fragment f. 

Overlap (w): Common sequence between the suffix of one 

fragment and the prefix of another fragment. 

Contig: overlapped fragments without gaps. 

By applying the overlapping measure to the above 
example, we found that w (GCAG, CAGC) = 3 whereas w 
(CAGC, GCAG) = 2. This means that these two fragments can 
be represented in a sequence of 5 letters (4+4-3): GCAGC, 
which is better the other sequence of length 6: CAGCAG. 

The overlaps between fragments can be represented as a 
directed weighted complete graph. The set V of nodes in this 
graph corresponds to the set of fragments. A directed edge 

from fragment a to a different fragment b with weight t  0 
exists if the suffix of a with t characters is a prefix of b. 

Table II shows the overlap (w) matrix for the 
aforementioned example, the symbol (-) means there is no 
edge. 

TABLE II. THE OVERLAP MATRIX 

w TCGG GCAG ATCG CAGC GATC 

TCGG - 1 0 0 1 

GCAG 0 - 0 3 1 

ATCG 3 1 - 0 1 

CAGC 0 2 0 - 0 

GATC 2 0 3 1 - 

Once the overlap weighted directed complete graph is built 
as a pre-processing step, the DNA fragments assembly 
problem can be transformed into the problem of finding a 
Hamiltonian path that goes through every vertex (i.e. a 
complete order of the fragments). The quality of each path 
(i.e. sequence of fragments) is measured by the sum of the 
weights of its edges, which represents the total overlaps 
between fragments. 

There were relatively few historical studies in the area of 
DNA fragments assembly using genetic algorithms. Some 
preliminary works were carried out in the early 1990s [3], 
[12]. In later works GA algorithms were enhanced by 
combining them with other searching metaheuristics in order 
to achieve better results. For instance [25] proposed a method 
named SAX, it combines GA algorithm enhanced with the 
simulated annealing metaheuristic to solve the DNA-FA. SAX 
implemented a greedy approach to generate the initial 
population, the order crossover (OX) operator, and the 
inversion mutation operator. SAX enhanced the GA approach 
with the simulated annealing metaheuristic to escape local 
optima. The proposed method was able to achieve relatively 
better overlapping scores on different datasets that reach the 
size of 400k bp (characters). However, the drawback of this 
GA solver is its high computational time. The authors in [26] 
examined different types of the population initialization 
including random initialization, 2-opt heuristics, and greedy 
methods. The crossover operators implemented in this study 
were the Cycle crossover (CX), Edge Recombination (ERX), 
Order crossover OX, and Partial Mapped crossover (PMX). 
According to their results, when using the 2-opt to initialize 
the population, the quality of the solution is improved without 
a significant increase in the overall execution time, regardless 
of the type of the applied crossover. 

Another work using GA approach is presented in [27], it 
combines different GA variations in different ways: (1) 
Recentering-Restarting GA (RRGA) in order to avoid getting 
stuck on local optima, (2) Island Model GA (RRGA+IM) 
which divides the population into multiple islands. And 
finally, (3) GA which uses Ring Species (RRGA+RS), where 
the population is treated as a ring. The first and last 
individuals of the population are considered adjacent. They 
used two methods to initialize the population; the identity 
permutation and the 2-opt heuristic method proposed in [26]. 
The PMX crossover and swap mutation operators are 
implemented for all GA variations. These methods proved to 
be better since it records more overlapping score for all the 
tested datasets than the results obtained in [25]. However, 
among these three methods (RRGA, RRGA+IM, RRGA+RS) 
there is not a dominatrix; they all have the same convergence 
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performance. For that reason, some restarting strategies were 
implemented in the next work [28] in order to distinguish the 
performance of the above three GA variations. These 
strategies include dynamic restart where the search restarts 
after convergence, forcing initial restart where the search is 
forced to restart again in order to escape local optima. The 
experimental results showed that the RRGA has better 
convergence performance than RRGA+IM and RRGA+RS. In 
[29] the authors used RRGA along with the Power Aware 
Local Search (PALS) as a genetic operator and the 2-opt 
heuristic for initializing the population. Three types of 
experiments were performed with the objective function is 
minimizing the number of contigs and maximizing the overlap 
score. In the first experiment, PALS was used as a genetic 
operator, in the second experiment PALS is used after 
executing the GA. Whereas, in the last experiment, PALS was 
used as a genetic operator and utilized after GA execution as 
well. The results show that the first experiment using PALS as 
a genetic operator performs better than the other two 
experiments. 

Despite the importance of the DNA fragments assembly 
problem, most of the previously mentioned studies ignore 
reporting the accuracy of their works (the degree to which the 
assembler covers the reference genome). However, there are 
some studies that assessed the accuracy as in [11]. In contracts 
with previous works that focused on maximizing the 
overlapping score as a fitness function, in [11] the fitness 
function is defined to minimizing the total length of a scaffold 
(the sum of the length of the contigs), and the number of 
contigs on the scaffold. The basic one-point order crossover 
has been implemented in this study. They assessed the 
accuracy and measured how the assembler actually covers the 
reference genome. In the next work [30] some improvements 
have been applied; the first one is to merge any two contigs 
that have overlapped between them longer than the length of 
the fragment. The other improvement is a post-processing step 
to merge each left chaff contigs into the appropriate location 
on long contigs (chaff means a contig of length shorter than 3–
4 times the fragment length). The experimental results showed 
that the algorithm found a single correct contig identical to the 
reference in over 95% of 200 runs for most instances and 
decreases to 87.5% for the largest instances. However, as they 
mentioned, the main drawback of their method is the higher 
computational time. 

Table III shows genetic algorithm performances in terms 
of the overlapping score for the DNA_FA problem. The first 
column represents the datasets used mainly in the literature 
with its mean fragment’s length and sequence length (within 
brackets), obtained from the National Center for 
Biotechnology Information NCBI

1
. The first 10 datasets were 

fragmented (i.e., cutting the original sequence into fragments) 
using a tool called GenFrag and denoted by the dataset name-
the coverage. These datasets are obtained from four 

                                                           
1 The National Center for Biotechnology Information (NCBI) is part of 

the United States National Library of Medicine(NLM), a branch of the 
National Institutes of Health (NIH). The NCBI houses a series of databases 

relevant to biotechnology and biomedicine and is an important resource for 

bioinformatics tools and services. Major databases include GenBank for DNA 
sequences. https://www.ncbi.nlm.nih.gov/guide/. 

sequences, ranging in length from 3 to 77 thousand bp. The 
“Acin” datasets fragmented using a different tool called the 
DNAgen; the “Acin” sequences are longer (except “Acin1”, 
which is the smallest one in this table) and more difficult since 
they contain longer and more fragments). The “Acin” datasets 
are obtained from six sequences, ranging in length from 2 to 
426 thousand bp. The rest columns are the references with the 
used method name (reference, method name), and for each 
method the sum of the generated overlapping score for each 
dataset is recorded. The symbol (-) means that this reference 
has not applied this method to the corresponding dataset. We 
considered in this table only references that report the 
overlapping score for their work. 

From Table III, SAX presents competitive results for the 
small datasets. RRGA_RS was more performant for the long 
datasets (“Acin”) comparing with the other methods, namely, 
it obtained more overlapping scores for three out of six “Acin” 
datasets. RRGA_IM gave satisfying results for eight out of 
sixteen reported datasets. GA2o is outperformed by the two 
other methods on the tested datasets. 

In view of all that has been mentioned so far, such studies 
suffer from a lack of efficiently dealing with the accuracy, the 
time and space complexities. While DNA fragments assembly 
is a growing field, although GA gave very satisfactory results 
for similar hard optimization problems TSP and QAP, 
research works based on genetic algorithms for DNA 
assembly remains relatively poor. From reviewing and 
studying the previous related works of the GA, we can see that 
there are different ways to initialize and to represent the 
population. Also, it is obvious that the type of crossover 
affects the produced results in terms of solution quality and 
computational time. However, combining the GA with other 
good metaheuristics algorithms could improve the solution 
quality. 

B. GA Solutions for TSP and QAP 

This section reviews GA algorithms designed to solve the 
TSP and QAP problems, and their associated experimental 
results. This review is not exhaustive, we considered only 
more recent GA algorithms designed with advanced concepts. 

GA design mainly begins with encoding the population. 
Different types of encoding were used for the optimization 
problems TSP and QAP. Most works of the wide literatures 
used the identity permutation such as for TSP in [10] [31] and 
QAP in [9]. Another advanced types of population encoding 
were used for TSP such as value encoding [20], and real 
number encoding [21]. 

The common strategies of generating of initial populations 
are the random generation as investigated for TSP in [21] and 
the greedy procedure as in [21]. Recently more advanced 
strategies have been designed; the Multi-Agent Reinforcement 
Learning (MARL) was proposed in [31] for solving TSP 
problems. The sequential sampling method has been 
implemented in [9] for solving QAP problem in order to 
improve the GA algorithm and to speed up the convergence. 

https://en.wikipedia.org/wiki/United_States_National_Library_of_Medicine
https://en.wikipedia.org/wiki/National_Institutes_of_Health
https://en.wikipedia.org/wiki/Biotechnology
https://en.wikipedia.org/wiki/Biomedicine
https://en.wikipedia.org/wiki/GenBank
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TABLE III. THE OVERLAPPING SCORE GENERATED BY THE GA FOR THE DNA FRAGMENTS ASSEMBLY PROBLEM. (* INDICATES THAT THE REFERENCE 

IMPLEMENTED MORE THAN FOUR METHODS, THE TABLE DISPLAYS THE RESULT OF THE BETTER ONE) 

Dataset (reference, method) 

Dataset (fragment length, sequence length) ([25],SAX) ([26], GA2o*) [27],RRGA) ([27],RRGA_RS) [27],RRGA_IM) 

x60189-4   (395, 3835) 11478 - 11478  11478 11478  

x60189-5   (286, 3835) 14027 13988.20 14161  14161  14161  

x60189-6   (343, 3835) 18301  18293.03 18301  18301  18184  

x60189-7   (387, 3835) 21268  21221 21228  21257  21218 

m15421-5    (398, 10089) 38726  37967.13 38675  38668  38667  

m15421-6    (350, 10089) 48048  - 48034  48048  48052  

m15421-7   (383, 10089) 55072  53041.89 55094  55020  54986  

j02459-7     (405, 20000) 115301  109513.62 116198  116110  116336  

bx842596-4 (708, 77292) 223029  - 227151  227090  227171  

bx842596-7 (703, 77292) 417680  - 441893  441867 442100  

Acin1 (182, 2170) 46865  - 47436  47450  47437  

Acin2 (1002, 147200) 144567  - 151285  151253  151243  

Acin3 (1001, 200741) 155789  - 167035  166882  167214  

Acin5 (1003, 329958) 145880  - 163061  163066  163027  

Acin7 (1003, 426840) 157032  - 179835  179932  179886  

Acin9 (1003, 156305) 314354  - 342936  342949  342965  

The selection operator can have an impact on the overall 
performance of the GA algorithm [21]. The roulette wheel is 
the common selection operator used for optimization problems 
[20],[31],[32] [21], the tournament selection was implemented 
for TSP [22], and the stochastic remainder selection was used 
for QAP  [33]. More recently in  [21], a greedy method was 
designed as a selection operator for TSP. 

The crossover operator is the main operator of GA as it 
plays a crucial role to explore efficiently the search space of 
the optimization problem. Hence, several advanced crossover 
operators have been designed for solving TSP as well as QAP 
using GA algorithms. The parents' characteristics are mainly 
inherited by crossover operators. The Sequential Constructive 
Crossover SCX is an intelligent crossover designed by Ahmed 
[10] to solve the TSP. A comparative study between SCX, 
ERX and generalized N-point crossover (GNX) for some 
benchmark TSPLIB

2
 instances found SCX outperforms ERX 

and GNX in term of the solution quality. Most recently, a 
modified version of sequential constructive crossover, named 
greedy SCX (GSCX) was proposed for solving TSP [34]. The 
reverse greedy sequential constructive crossover (RGSCX) 
and the comprehensive sequential constructive crossover 
(CSCX) are two new crossover operators enhancing SCX for 
solving TSP [35]. 

The encouraging results obtained using SCX proved its 
effectiveness to solve the TSP problem. Wherefore, Ahmed 
[33] investigated its effectiveness for the QAP problem. He 
compared SCX with one-point crossover (OPX) and swap 

                                                           
2 The TSPLIB is a library of samples for the TSP and other problem such 

as Hamiltonian cycle problem, Sequential ordering problem, and Capacitated 

vehicle routing problem. http://comopt.ifi.uni-heidelberg.de/software/ 
TSPLIB95/. 

path crossover (SPX), and concluded that SCX was better in 
terms of solution quality. An Improved Genetic Algorithm 
(IGA) adapting and implementing SCX with the combined 
mutation for finding effective solution to the QAP was 
proposed in [9]. The performance of IGA using the adaptive 
and exchange mutation was evaluated on some QAPLIB 
instances and compared to a simple GA algorithm. The results 
showed that the IGA was better in terms of solution quality. 
The gaps with the best-known solutions were improved by 
0.83% to 5.82% over the simple GA. However, the IGA takes 
longer time than the simple GA. SCX was also applied 
successfully for solving QAP with a combination of sequential 
sampling and random algorithms to generate the initial 
population [36]. Notice as well, the multi-point crossover 
implemented in [31] showed satisfying performance for 
solving TSP problems relatively to the classical crossover 
operators. 

Another types of advanced crossover operators were 
designed in [32] to solve the QAP relying on the idea of a 
frequency model. Three crossover operators were introduced 
for enhancing GA, namely, the Highest Frequency crossover 
(HFX), the Greedy HFX (GHFX), and the Highest Frequency 
Minimum Cost crossover (HFMCX). The authors presented a 
detailed comparative study between One Point crossover, 
Swap Path crossover, SCX, and the new three crossover 
operators. The experimental results showed that the frequency 
models were better in term of computational time, precisely, 
HFX and GHFX were faster by 2 and 1.5 times than SCX, 
respectively. However, in term of solution quality all 
crossover operators found good near-optimal solutions on the 
tested benchmarks. 

In order to compare the effectiveness of different types of 
crossover operators for solving the QAP using GA algorithm, 
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Misevicius and Kilda [37] implemented twelve different 
crossover operators; including the uniform like crossover 
(ULX) and its modifications (the randomized ULX crossover 
(RULX), the ULX crossover combined with repair procedure 
(RX), the block crossover (BX), the uniform partially-mapped 
crossover (UPMX), the distance preserving crossover (DPX), 
the cycle crossover, the swap path crossover, the one point 
crossover, the order-based crossover, the cohesive crossover 
(COHX), and, finally, the multi-parent crossover (MPX). The 
comparison showed that the multi-parents’ crossover led to 
better performances. 

Various types of mutation have been investigated for the 
TSP and QAP problems, including the Exchange Mutation 
[31],[21],[22], the Reciprocal Exchange Mutation[10]. The 
principle of these two mutation operators is similar to the 
Swap Mutation, which randomly selects two positions in the 
individual and swap the corresponding values. More advanced 
mutation operators have been designed for the TSP and QAP 
problems such as the interchange mutation in [20], and the 
inversion mutation in [22] which it selects two positions 
within an individual and then inverts the substring between 
these two positions. The adaptive and combined mutation 
operators were proposed for solving QAP in [36]. The 
adaptive mutation assigns highest probability values for the 
fittest individuals; therefore, all individuals will not have the 
same likelihood of mutation. Whereas, the combined mutation 
combines more than one type of mutation operators. 

Table IV shows the results obtained for TSP in terms of 
the tour cost for some TSPLIB instances. The rows correspond 
to the results obtained for a problem instance by different 

types of crossover operators. The first column represents the 
dataset and its best-known solution (within parentheses), (e.g., 
bayg29 means the instance named “bayg” with 29 cities and 
the best-known solution 1610). The remaining columns 
display for each reference the name of the GA crossover 
operator as well as the obtained solution (tour cost). The 
symbol (-) means this crossover type has not been applied in 
this reference to the corresponding dataset. The table clearly 
shows that the Sequential Constructive Crossover (SCX) and 
the Smart Multi-Point Crossover (SMX) achieved better 
solutions for the tested datasets. 

Table V shows the results obtained for solving the QAP 
problem in terms of the solution quality, which measured by 
the percentage of deviation (excess%) of average solution 
value over the best-known solution value reported in 
QAPLIB. The lower the percentage the better the solution 
quality. The datasets used for the QAP were obtained from the 
QAPLIB [38], which is a library with instances size varies 
from 12 to 256 facilities (or locations). The table displays in 
the first column the names and the sizes of datasets (e.g., 
“tai20a” means the dataset named tai contains 20 facilities or 
locations; the character “a” means random instances, and the 
character “b” as in “tai20b” means real-life like instances) 
[38]. The remaining columns represent for each reference the 
name of the GA crossover operator types as well as the 
obtained solutions.  The symbol (-) means this crossover type 
has not been applied in this reference to the corresponding 
dataset. From this table we can notice that the multi-parents’ 
crossover (MPX) followed by the Sequential Constructive 
Crossover (SCX) dominate the other crossover types. 

TABLE IV. THE IMPACT OF GA CROSSOVER OPERATORS ON THE RESULTING TOURS OF TSP USING DIFFERENT DATASETS (TSPLIB INSTANCES) 

TSPLIB instances  
Ref [10]  Ref [31]  Ref [21]  Ref [34] Ref [35]  Ref [35]  

SCX SMX PMX GSCX RGSCX CSCX 

bayg29 (1610) 1610 - - 1634 - - 

Ftv33 (1286) - - - 1380 1396 1341 

Ftv35 (1473) - - - 1531 1583 1499 

Ftv38 (1530) - - - 1613 1672 1550 

P43 (5620) - - - 5631 5625 5627 

Ftv44 (1613) - - - 1706 1627 1613 

Ftv47 (1776) - - - 1846 1919 1833 

Ry48p (14422) - - - 15469 15293 14983 

att48 (33522) - 33522 33523.06 - - - 

eil51 (426) 426 426 - 436 - - 

berlin 52 (7542) 7542 7542 - 7926 - - 

eil76 (538) 538 538 - - - - 

pr76 (108159) 108159 108159 - 116844 - - 

kroa100 (21282) 21282 21282 - - - - 

eil101 (629) 629 629 - - - - 

lin105 (14379) 14379 14379 - 15921 - - 

bier127 (118282) - 118678 - - - - 
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TABLE V. THE  IMPACT OF GA CROSSOVER OPERATORS ON THE RESULTING SOLUTION QUALITY OF QAP USING DIFFERENT DATASETS (QALIP INSTANCES). 
(** INDICATES THAT THE REFERENCE IMPLEMENTED 12 DIFFERENT TYPES OF CROSSOVER OPERATORS, THE TABLE DISPLAYED THE BEST OBTAINED RESULT). 

QALIP instances 
Ref [32] Ref [33] Ref [37]** Ref [36] 

HFX GHFX HFMCX OPX SPX SCX MPX SCX 

Tai20a 6.81 5.59 4.82 6.57 5.59 4.50 0.246 1.20  

Tai20b 8.45 8.31 7.67 8.73 9.12 6.56 0.000 0.44 

Tai25a 6.18 5.82 5.33 5.01 5.61 4.58 0.150 1.71 

Tai25b 10.05 10.73 7.45 12.92 15.42 5.24 0.000 0.14 

Tai30a 6.11 6.12 5.66 5.16 5.49 4.29 0.035 2.30 

Tai30b 11.32 10.04 9.05 13.4 10.55 8.78 0.001 0.18 

Tai35a 5.78 5.21 5.71 4.92 5.35 4.95 0.194 2.42 

Tai35b 8.45 7.11 6.02 7.49 6.76 5.00 0.019 0.33 

Tai40a 7.44 6.23 4.23 4.97 5.76 4.53 0.374 2.48 

Tai40b 9.22 10.52 8.11 9.44 11.57 7.30 0.000 0.03 

Tai50a 7.13 5.47 5.46 5.00 4.91 4.51 0.583 3.07 

Tai50b 8.15 8.43 5.28 7.46 6.68 5.60 0.014 0.56 

Tai60a 6.73 6.00 5.74 4.89 4.60 4.54 0.572 3.28 

Tai60b 7.83 7.11 5.11 6.95 8.14 5.12 0.010 0.34 

Tai80a 5.41 4.55 4.02 4.32 3.83 4.35 0.218 3.41 

Tai80b 7.05 6.41 5.39 6.15 6.07 6.63 0.016 2.17 

Tai100a 5.49 5.04 3.65 4.04 3.22 4.02 0.108 2.92 

Tai100b 8.34 7.09 5.23 9.33 5.39 5.08 0.064 0.95 

Tai150b - - - - - - 0.241 1.81 

From the literature review we noticed that the TSP and 
QAP problems have been treated with various GA designs, 
including different advanced GA concepts. The SCX 
crossover emerges from the lot as it is shown experimentally 
to be the most performant crossover for the TSP and QAP 
problems. We also noticed that the exchange mutation 
operator is mostly used for TSP in the literature. The datasets 
used for the TSP were obtained from the TSPLIB, which is a 
library of instances of the TSP and related problems from 
various sources and of various types with number of cities 
varies from 14 to more than 33k cities. 

The QAP literature review included other types of 
performant crossover operators; as the frequency models and 
the multi-parents’ crossover. 

V. DISCUSSION 

In the light of what has been studied and reviewed so far, 
we noticed that GA algorithms applied to the TSP and QAP 
problems have led to very satisfactory performances in 
practice.  We likewise noticed that some advanced types of 
genetic algorithm operators have been widely used for the two 
problems, and their effectiveness has been investigated to 
solve these two problems. Unfortunately, these advanced GA 
operators have not yet been exploited for solving the 
DNA_FA problem. The similarities between DNA_FA and 
these two problems pointed out in this paper are strong 
indicators of the benefit that the use of the advanced GA 
algorithms can bring to solve the DNA_FA problem. That is 

why it is worth to design GA platform including advanced GA 
operators and to investigate its effectiveness for solving the 
DNA_FA problem. 

More in detail, we have noticed that the most efficient 
crossover operators SCX, frequency model and the multi-
parent crossovers have not been adapted and exploited for the 
DNA_FA problem. Likewise, the 2-opt heuristics for 
initializing the population was used few times for the 
DNA_FA problem. Regarding the mutation operators, the 
Adaptive and Combined mutation designed for the TSP and 
QAP problems can be exploited for the DNA_FA problem. 

In order to design GA platform including advanced GA 
operators, Table VI summarizes the main GA operators and 
their values and Table VII shows the used GA operators so far 
for each problem (DNA_FA, TSP, QAP). As well as the 
different GA parameters tunings: such as the population size, 
the crossover and mutation probabilities, the number of 
generations, and the number of runs. Defining a proper setting 
for GA parameters can drastically improve the algorithm 
performance. However, it is not an easy task, generally the 
parameters are set experimentally, and Table VII supplies 
some GA parameter settings for the three optimization 
problems. From Table VII, we can clearly see the advanced 
operators that have not been adapted and implemented so far 
for the DNA_FA problem. 
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VI. GA PLATFORM TO SOLVE THE DNA_FA PROBLEM 

Our GA platform design to solve the DNA_FA problem is 
inspired from the efficient GA approaches developed for the 
TSP and QAP problems. The GA platform gathers several 
advanced GA operators and tools which have shown their 
effectiveness in the TSP and QAP contexts. The GA platform 
contains the best advanced GA tools for our problem 
DNA_FA and one could build many variants of GA 
algorithms for solving it by integrating in different and 
judicious ways the ingredients of this platform. 

A. The Flowchart of the GA Platform 

Fig. 2 presents the flowchart of our GA platform to solve 
the DNA_FA problem. 

B. The GA Concepts of the Designed Platform 

1) Initial population: Our GA platform design includes 

the random, the greedy and the 2-opt heuristics strategies 

which yielded to good performances as shown in [27][28][29]. 

The previous works showed that the computational time when 

using the 2-opt and greedy initialization strategies was better 

than when using the random way. 

2) Fitness function: As the fitness function is repeatedly 

applied to each individual of each generation it should be 

relatively easy to compute and should also give an accurate 

evaluation of the quality of each individual. We reported two 

related fitness functions from the literature. The first one is a 

simple fitness function that sums the overlap for each of the 

adjacent fragment’s pairs, as expressed by the formula (4) in 

[3]. 

    ∑            
             (4) 

where          is the overlap between fragment i and 
fragment i + 1. This function attempts to maximize the value 
F1. 

TABLE VI. GA OPERATORS AND THEIR VALUES 

GA operator values 

Population encoding Integer encoding, value encoding. 

Population initialization Random initialization, greedy initialization, 2-opt heuristics initialization, and sequential sampling initialization. 

Crossover operator 

Multi-parents crossover, order crossover, cycle crossover, edge recombination crossover, partial mapped crossover, sequential 

constructive crossover, greedy sequential constructive crossover, reverse greedy sequential constructive crossover, comprehensive 

sequential constructive crossover,  one-point crossover, highest frequency crossover, greedy highest frequency crossover, highest 
frequency minimum cost crossover, uniform like crossover, randomized uniform like crossover, block crossover,  uniform 

partially mapped crossover, distance preserving crossover, cohesive crossover, and smart multi-point crossover. 

Mutation operator 
Inversion mutation, swap mutation, reciprocal mutation, exchange mutation, interchange mutation, combined mutation, and 

adaptive mutation. 

Selection operator Roulette wheel selection, tournament selection, greedy selection, and stochastic reminder selection. 

Stopping condition Number of generations, CPU time, no improvement for number of iterations. 

TABLE VII. THE EXISTING GA DESIGN AND EXPERIMENTAL SETTINGS FOR DNA_FA, TSP AND QAP 

GA design and 

experimental settings 
DNA_FA TSP QAP 

Population encoding 

Integer number  

(sequence of integer numbers, each of 

which represents a city to be visited) 

 integer numbers, value encoding (sequence of 

some values such as real numbers, characters, 

each of which represents a city to be visited) 

Integer numbers 

Population initialization Random, greedy, 2-opt heuristics Random, greedy, MARL Sequential sampling, random 

Population size  
Varies from 11 to 2500 
Individuals. 

Varies from 20 to 200 individuals. Varies from 30 to 200 individuals. 

Selection Tournament. Roulette wheel, tournament, greedy. 
Roulette wheel, stochastic 

reminder selection. 

Crossover 
OX, ER, PMX,  

one-point order. CX 

SCX, ERX, GNX, PMX, smart multi point 

crossover, order insert crossover. 

SCX, OPX, SPX, HFX, GHFX, 

HFMCX, MPX. 

Mutation Inversion mutation, swap mutation 
Reciprocal mutation, exchange mutation, 

interchange mutation, inversion mutation 

Reciprocal exchange mutation, 

combined mutation, adaptive 
mutation, swap mutation 

Crossover probability Varies from (60% to 100%) Varies from (90% to 100%) 100% 

Mutation probability 2% Varies from (1% to 20%) Varies from (5% to 15%) 

Stopping condition No improvement for number of iterations. Optimal rout, number of generations. Number of generations, CPU time. 

Number of runs From 5 runs to 30 runs From 10 runs to 30 runs. 20 runs. 

Number of generations Varying from (1 K to 512 K) generations Varying from (20 to 10k) generations. 
Varying from (5000 to 10k) 

generations. 
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Fig. 2. GA Platform Design for the DNA Fragments Assembly Problem.

The second fitness function F2 is expressed by the formula 
(5) in [3]. 

    ∑  ∑ |   |         
   

 
             (5) 

The fitness function F2 considers the overlap between 

adjacent fragments and the overlap between non-adjacent 

fragments as well. However, the complexities of F1 and F2 are 

different, F1 takes O(  ) where F2 is of O(  ) because all 

pairs of fragments must be considered [3]. These two fitness 

functions are included in the platform. 

3) Selection operator: Several selection operators were 

used for these three problems as shown in Table VI (e.g., 

roulette wheel selection, rank selection, elitist selection, and 

tournament selection). As roulette wheel selection widely used 

and consumes least amount of time, and tournament selection 

can maintain diversity by giving an equal chance to all the 

individuals to compete [39]; The roulette wheel selection and 

the tournament selection are selected to be added to the 

platform. 

4) Crossover operator: Several crossover operators SCX, 

CX, PMX, ERX, and Order Crossover are candidate to be 

included in the platform. A special attention should be given 

to the SCX crossover as it was one of the best operators for 

the TSP and QAP problems and we predict same performance 

in the DNA_FA context. 

5) Mutation operator: The swap mutation operator with 

its variants were widely used for DNA_FA, TSP, and QAP. 

Combined and adaptive mutation was designed for the QAP 

problem. The last one seems more suitable as it was 

performant for the QAP problem. 

VII. CONCLUSION 

This paper aims to show why it is worth to investigate 
genetic algorithms for solving the DNA fragment assembly 
problem. We have provided a simple formal proof showing 
the relationship between this problem and the famous TSP and 
QAP problems enabling us to extract some similarities 
between these three optimization problems. TSP and QAP 
have been solved efficiently using GA algorithms designed 
with advanced GA operators and tools. For this reason, we 
exploited the extracted similarities between the DNA_FA 
problem and the TSP and QAP problems to design an efficient 
GA platform integrating several advanced operators used for 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 10, 2020 

149 | P a g e  

www.ijacsa.thesai.org 

TSP and QAP. Our future work is to implement the designed 
GA platform and to conduct comprehensive experiments in 
order to get the best combination of integrating the different 
operators of GA to build a robust solver for the DNA_FA 
problem. 
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APPENDIX 

TABLE VIII. SYMBOLS AND NOTATIONS 

Symbol  Refer to 

DNA_FA DNA Fragments Assembly problem. 

TSP Traveling Salesman Problem. 

QAP Quadratic Assignment Problem. 

GA  Genetic Algorithms. 

A Adenine (A). 

T Thymine (T). 

G Guanine (G). 

C Cytosine (C). 

MPX Multi-Parents Crossover.  

OX order crossover. 

CX Cycle Crossover. 

ERX  Edge Recombination Crossover. 

PMX Partial Mapped crossover. 

SCX Sequential Constructive Crossover.  

GSCX Greedy Sequential Constructive Crossover. 

RGSCX Reverse Greedy Sequential Constructive Crossover. 

CSCX Comprehensive Sequential Constructive Crossover. 

OPX One-Point Crossover. 

HFX Highest Frequency Crossover. 

GHFX Greedy Highest Frequency Crossover. 

HFMCX Highest Frequency Minimum Cost Crossover. 

ULX Uniform Like Crossover. 

RULX Randomized Uniform Like Crossover. 

BX Block Crossover. 

UPMX Uniform Partially Mapped Crossover. 

DPX Distance Preserving Crossover. 

COHX Cohesive Crossover. 

SMX Smart Multi-Point Crossover. 

MARL Multi-Agent Reinforcement Learning. 

RRGA Recentering-Restarting Genetic Algorithm. 

RRGA+IM Island Model Genetic Algorithm. 

RRGA+RS Ring Species Genetic Algorithm. 

PALS Power Aware Local Search. 

NCBI The National Center for Biotechnology Information. 

TSPLIB TSP library. 

QAPLIB QAP library. 

 


