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Abstract—In this paper, we propose a Computer Aided 

Diagnosis (CAD) system in order to assist the physicians in the 

early detection of Alzheimer’s Disease (AD) and ensure an 

effective diagnosis. The proposed framework is designed to be 

fully-automated upon the capture of the brain structure using 

Magnetic Resonance Imaging (MRI) scanners. The Voxel-Based 

Morphometry (VBM) analysis is a key element in the proposed 

detection process as it is intended to investigate the Gray Matter 

(GM) tissues in the captured MRI images. In other words, the 

feature extraction phase consists in encoding the voxel properties 

in the MRI images into numerical vectors. The resulting feature 

vectors are then fed into a Neighborhood Component Analysis 

and Feature Selection (NCFS) algorithm coupled with K-Nearest 

Neighbor (KNN) algorithm in order to learn a classification 

model able to recognize AD cases. The feature selection based on 

NCFS algorithm improved the overall classification 

performance. 
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I. INTRODUCTION 

Alzheimer’s Disease (AD) is an irreversible and 
progressive disorder that affects the brain of some elderly 
people. It destroys the memory and thinking skills and, 
eventually, the ability to perform simple tasks. Among older 
adults, it is the most common cause of dementia accounting 
for 60% to 80% of the cases. AD is ranked as the sixth cause 
of death in the United States, and moving to be in the third 
position based on recent statistic of the Alzheimer's 
Association [3]. In fact, the number of cases has drastically 
increased during the last 15 years. Currently, around 5 million 
Americans are diagnosed with AD and their number is 
expected to rise almost three-folds this number by 2050 as 
reported by the Alzheimer's Association [4]. According to the 
Saudi Alzheimer’s Disease Association [3], there are 130,000 
patients diagnosed with the disease in the kingdom. However, 
given the social norms and the lack of care systems in rural 
areas, these numbers represent probably a proportion of the 
actual cases. 

Typically, dementia patients lose their cognitive 
functioning abilities such as thinking and remembering as well 
as their behavioral abilities. For the severe cases, AD patients 
become completely dependent on others in their basic daily 
activities. Besides, the serious physical and mental 
responsibilities that need to be taken by a caregiver, who is 
usually a family member, financial obligations are induced as 
well. In fact, The Alzheimer's Association [3] claims that 
AD’s cost exceeds quarter of a trillion dollars nationwide. 

Although Alzheimer's has no cure at the time being, 
clinical trials are still undergoing to develop medicines able to 
cure this disease. In fact, there are treatments which slow or 
delay the symptoms and maintain the mental function of the 
patients as reported by The National Institute on Aging [29]. 
For that, early diagnosis benefits the patients to sort out their 
life plans, financial situations as well as any legal issues while 
they are capable to do so mentally. Furthermore, on a nation 
level, upon early diagnosis, trillions of dollars could be saved 
on medical and care costs. However, AD cannot be definitely 
diagnosed except through autopsy using a microscope to 
examine the brain tissues. On the other hand, clinical 
assessment is performed to rule out other causes of dementia 
through appropriate tests as shown in Web MD [35]. One 
should note that more accurate diagnosis is made possible 
through the identification of AD biomarkers which can help in 
detecting it even before clinical symptoms are reported on 
patients. Namely, neuroimaging is an example of biomarkers 
that can capture changes in the brain without any invasive 
procedure as introduced in [11]. 

Several researchers around the globe took the interest in 
designing Computer Aided Diagnosis (CAD) systems to assist 
in the early detection of this serious disease and assure an 
effective diagnosis [1]. In particular, image based approaches 
have been coupled with machine learning techniques to 
address the AD detection challenge. These efforts have 
yielded promising results and have exhibited noticeable 
margin for improvement. Despite these efforts, the choice of 
the appropriate features and ML techniques remains a 
challenging open problem with a considerable room for 
improvement. In other words, the selection of (i) the 
appropriate visual descriptors used to encode the visual 
properties of the dataset and (ii) the supervised learning 
algorithm to map these resulting feature vectors into the 
positive or negative classes, can be investigated to improve the 
overall CAD performance. Such CAD system can be used in 
hospitals to assist doctors and radiologists in the interpretation 
of the relevant medical images. This would increase the 
accuracy of the clinical diagnosis. 

In this paper, we propose to use standard features used to 
encode the biomarkers along with the Neighborhood 
Component Analysis and Feature Selection (NCFS) 
introduced in [15] as classification algorithm to improve the 
AD detection rate. More precisely, we intend to extract whole-
brain atrophy features from structural MRI obtained from 
ADNI then apply the supervised NCAFS classifier to select a 
relevant subset of the highly-dimensional features to use it in 
k-nearest neighbor classification. 
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The rest the paper is organized as follows: Section II 
introduces the background of this work, Section III discusses 
an overview of the CAD researches in AD, Section IV 
describes our classification framework, and a summary and 
conclusion are presented in Section V. 

II. RELATED WORKS 

Different approaches and different classification methods 
are being investigated to introduce a reliable classification 
system that can detect AD in an automatic manner. Moreover, 
as the features that are extracted from such medical images are 
usually high-dimensional, suitable selection and reduction 
methods have been adopted to enhance the classification 
performance, address the curse of dimensionality, and reduce 
the time complexity. 

In particular, the features extracted from structural images 
have been exploited in the design AD detections systems. 
Namely, the voxel-wise measures were commonly used when 
the intensities of the voxels were used as features. The voxels 
of choice are usually selected from the regions that exhibit 
differences between groups either found automatically by 
VBM or by prior knowledge of the anatomical regions 
affected by AD. For the later, pre-defined anatomically 
labeled atlases are used to locate those regions in the MR 
images. The authors in [9] relied on prior knowledge acquired 
by selecting 9 regions for which the voxels intensities were 
provided. Most of the selected regions were located in medial 
temporal lobe as its atrophy is considered a key biomarker. 
The number of features was then significantly reduced by 
pruning a Random Forest. To minimize the overfitting caused 
by the fact that the data includes more features than samples, 
multiple SVM classifiers were trained with random subsets 
from the pruned features and their dichotomic outcomes were 
averaged to create a classification index. On the other hand, 
the ROIs were specified on the basis of VBM analysis as 
outlined by the researchers in [5]. Accordingly, voxel values 
from the regions with decreased Gray Matter (GM) volume 
were used as raw features. The number of features was then 
reduced statistically using a probability distribution function 
that created a histogram of the intensity values. The optimal 
number of bins in the histograms was selected based on Fisher 
criterion maximization. As in [9], an SVM with linear kernel 
was used for the classification. 

A feature extraction approach, similar to the one proposed 
in [6], was outlined in [7] along with a feature ranking method 
as feature selection approach. The approach aims to measure 
the relevance and the discriminative power of the visual 
features using a statistical t-test. A subset containing the top 
ranked features was then fed into a linear SVM learner for the 
classification task. The framework outlined in [23] relied also 
on the voxel values of GM map. However, the voxels of the 
whole GM tissue were acquired instead of specific ROIs. For 
those features, bottom-up hierarchical clustering was 
conducted to build a tree that illustrates the structural 
relationships among them. Then, the relationships captured by 
the tree were imposed on a sparse learning to determine the 
informative features. More than one brain tissue was 
incorporated in the development of the system introduced in 
[21]. Specifically, voxel intensities in both GM and white 

matter (WM) maps were saved as raw features followed by 
reduction by means of the statistical model Partial Least 
Square (PLS). PLS is similar to the famous Principal 
Component Analysis (PCA). However, it takes the class labels 
into account. Combining the features resulted in a slightly 
better performance when coupled with a linear SVM 
compared to GM based performance. The Regularized 
Logistic Regression (RLR) was adopted by the researchers in 
[8] to directly operate on the density map of GM instead of 
performing the reduction and classification at two steps in the 
voxel space. Scores were assigned by the RLR classifier based 
on conditional probabilities metrics that captures the similarity 
of the anatomical patterns found in a given individual to those 
in AD patients. 

Instead of handling voxel values, the authors in [12] 
processed features further to obtain better visual data 
representation. Specifically, after VBM analysis, GM map 
generation and ROIs selection respectively, the texture 
features were extracted. Namely, the Gray Level Co-
occurrence Matrix (GLCM) and Gabor filters were used for 
the texture feature extraction. On the other hand, an SVM 
Recursive Feature Elimination (SVM-RFE) was used along 
with a covariance metric to remove redundant data and 
consider the relevant features only. Thu SVM-RFE discarded 
the least significant features for classification in a backward 
sequential selection manner while the covariance was used to 
measure the correlation between the features. The measure of 
the cortical thickness was adopted in [10]. It was obtained by 
measuring the distances between the vertices on the meshes of 
the inner and the outer cortical surfaces. The feature vector of 
each subject encoding the thicknesses information was then 
transformed to the frequency space to remove noise. To 
accomplish that, a Manifold Harmonic Transform with eigen 
functions of the Laplace–Beltrami operator as the basis 
function of the transform was used. A cut-off to a certain 
number of eigenvectors was made which filtered the high 
frequency components while preserving the discriminating 
low frequency data. Principal Component Analysis (PCA) was 
then used followed by Linear Discriminant Analysis to 
transform the feature vectors into points in LDA space then 
find the axis that best separates the groups. In [13], the 
features were constructed as an ensemble of the following: the 
average cortical thickness values, the standard deviation in 
cortical thickness, the total surface area of the cortex, the 
volumes of cortical and WM ROIs. Note that a Logistic 
Regression with stability selection introduced in [24] yielded 
the best results when couple with a random forest classifier. 
Beside voxel values and cortical thickness, other methods 
have been explored in this area as well. Namely, the 
researchers in [17] experimented the Wavelet coefficients 
obtained using a Two-dimensional Discrete Wavelet 
Transform (2D-DWT) along with Haar wavelet function of 
level 3. On the other hand, the Principal Component Analysis 
(PCA) was adopted as a dimensionality reduction technique 
and the Normalized Mutual Information Feature Selection 
(NMIFS) that is derived from the minimum Redundancy 
Maximum Relevance (mRMR) was used as feature selection. 
Circular Harmonic Functions (CHFs) were utilized in [2] to 
extract local features of hippocampus and posterior cingulate 
cortex (PCC) from each slice of the 3D MRI. Those two ROIs 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 10, 2020 

10 | P a g e  

www.ijacsa.thesai.org 

were selected for the noticeable harm the disease imposes on 
them. As depicted in [30], the features obtained from each 
ROI were then quantized using the bag-of-visual words 
approach by representing them as a histogram of occurrence 
of quantized visual features. The histograms of both ROIs 
were then combined in a single vector creating a signature for 
each subject. PCA was used for dimensionality reduction and 
the resulting features were finally fed into an SVM with the 
Radial Basis Function (RBF) as a kernel. Another approach 
introduced by the researchers consisted in fusing the features 
extracted from different modalities prior to learning the 
classification models. This was intended to exploit the 
complementary information provided by the different features 
to better capture the classes properties. Recently, the 
performance of deep learning on MRI and PET images was 
investigated in [22]. Automatic extraction of multi-level 
features was conducted by cascaded convolutional neural 
networks (CNN) on images from both modalities. The fully 
connected layer of the network was then followed by a 
softmax layer to perform the classification. 

In [18], the authors investigated the connectivity of the 
hippocampus, precuneus and primary visual cortex and 
correlated each with the voxels of the brain. Sixteen AD 
patients and sixteen healthy controls were considered for this 
research. It was revealed that AD patients showed greater FC 
in left hippocampus with right insula. In [34], four seeds, right 
and left hippocampi and isthmus of the cingulate cortices 
(ICCs), which are parts within DMN were selected in a multi-
class classification among them 10 AD, and 12 HC subjects. 
Pearson correlation coefficients were calculated between all 
possible pairs of the ROIs resulting in a 6-dimentional feature 
vectors. Then, to maximize the group differences and reduce 
noise, regularized LDA was applied to map the features into a 
one-dimensional sub-space. Finally, a decision tree was 
constructed and the classification was performed using 
AdaBoost ensemble learning. 

For ICA, the researchers in [31-32] experimented 8 
different types of FC measures and their variations to define 
the connections mostly related to the disease and might deliver 
better classification performance. Among these measures, 
matrices that record the connections between components 
obtained from ICA, the dynamics of these matrices found via 
a sliding window, and the graph properties of the matrices 
were used. For classification, Elastic net logistic regression 
was deployed to evaluate those measures individually. The FC 
dynamics variation outperformed the other measures. On the 
other hand, a new metric derived directly from the rs-fmri 
signal instead of FC measure was depicted in [20]. ICA was 
conducted to decompose the signals acquired from 15 AD and 
15 healthy elderlies into their spatial components and their 
weights of time-courses. Then, a goodness-of-fit (GoF) 
calculation, template matching and SVM classification were 
applied to identify the neuronal components among the 
decomposed ones. Next, a brain activity map was constructed 
based on these components by computations involving the 
BOLD signals amplitudes and their standard deviations. 
Hippocampus and accumbens were selected separately as part 
of several experiments to train a linear SVM model. The rs-
FMRI data obtained from ADNI as used to classify 20 healthy 

subjects and 20 patients with AD in [19] using a linear SVM 
model. The automated anatomical labeling (AAL) atlas, a 
software package and digital atlas of the human brain, was 
used to divide the whole brain into 90 distinct regions and 
construct a graph with the regions as nodes. The signal of each 
node was computed by averaging the time series of voxels in 
each region to represent them and Pearson’s correlation 
coefficients were employed to define the edges of the 
functional connectivity network. Graph metrics were then 
computed and used as discriminative features after selecting 
the optimal subset via Fisher score feature selection algorithm. 

III. PROPOSED METHOD 

This research is intended to design and implement a 
reliable CAD system for automatic detection of Alzheimer’s 
disease (AD) based on MR images. Specifically, typical 
features are extracted to encode the visual properties of the 
patient MRI image. Then, the mapping between these features 
and the pre-defined class values (AD or Not-AD) is learned in 
a supervised manner. In other word, a supervised learning task 
is carried out by training a classification model using the 
annotated features extracted from the MR images. The 
resulting model is then intended to predict the class label of 
any unannotated MRI image features. Typically, the available 
data is divided into training and testing sets. Each image from 
the training set is then processed to extract a new 
representation vector that encapsulates its visual properties. 
Thus, a matrix containing all the training vectors is then fed 
into the classification algorithm along with their 
corresponding labels to learn a model for this specific 
problem. The system is evaluated with the testing set by 
comparing the labels predicted by the learned model with the 
ground truth labels. Though feature selection is not typically a 
key element, it is considered an important step in cases of 
high-dimensional vectors as in AD classification problems. 

NCFS is an embedded feature selection method which 
aims to find a weighting vector w for the features. In fact, the 
optimal weight vector is the one that maximizes the leave-one-
out classification of nearest neighbor algorithm based on a 
gradient ascent technique. Let 
                                      be a set of N training 
samples where    is a d-dimensional feature vector and 
              is its corresponding class label. The weighted 
distance between two samples           is obtained using: 

  (      )  ∑   
 |        |

 
               (1) 

where    is the weight of the     feature in the vectors of 
the sample points. The Gradient ascent algorithm relies on 
differentiable functions to find the optimal solution. However, 
the function for selecting the nearest neighbors as a reference 
point for classification is non-differentiable, thus a probability 
distribution is used as an approximation to select the reference 
point. Equation (2) calculates the probability that    selects    

as the reference point. 
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where                  is a kernel function and σ is 
the kernel width which is a parameter between 0 till    that 
affect the selection probability of each point in the set; i.e. if 
     only nearest neighbors can be selected and if       
all the samples have the same chance. 

The probability that a sample    is correctly classified can 
be calculated as: 

    ∑                       (3) 

with       iff       and       otherwise. 

The approximate leave-one-out classification accuracy can 
be found for a particular weighting vector as follows: 

     
 

 
 ∑     

 

 
 ∑ ∑                       (4) 

A regularization parameter      that can be tuned via 
cross validation is also included in the object function to 
reduce overfitting and accomplishing the feature selection by 
driving many of the weights in w to 0: 

The regularization term formulated as: 
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This derivative of the objective function yields the update 
equation for the gradient ascent. Algorithm 1 is a pseudocode 
of the neighborhood component feature selection procedure. 

Algorithm 1: Neighborhood Component Feature Selection 

 NCFS(T , α, σ, λ, η)⊲ T : training set, α:initial step length, σ: kernel 

width, λ: regularization parameter, η: small positive constant; 

 Initialization: w(0) = (1,1,...,1),      =−∞, t = 0 

 repeat 
 for i= 1,··· , N do 

 Compute pij and pi using w(t) according to (2) and (3) 

 for l= 1,··· , d do 

       
 

 
∑      ∑    |        |    ∑        |        |   

       
   

 

           

                 

                   
 If               then 

 α= 1.01α 

 else  

 α= 0.4α 

 until |             |       

         
 return w 

 

Fig. 1. Detailed Schema of the Proposed CAD System. 

Fig. 1 depicts the main components of the proposed 
system. 

This research relies on the images acquired using structural 
MRI for their ability to produce high resolution images 
without any injected substance as well as their potential to 
capture the structure of brain. The atrophies that are a key 
symptom of AD pathology can be detected using this 
modality. The T1-weighted sequence is generally used for AD 
scans as stated in [14] and so will be the images in this 
framework. Before employing the images in creating a 
classification model, pre-processing steps need to be carried 
out. T1-weighted images might exhibit non-uniform 
intensities throughout the brain caused by a low-frequency 
smooth signal known as bias field. Bias field is introduced to 
the scans due to the heterogeneous magnetic field of MRI 
scanners. This affects the images by blurring them and 
consequently reducing their high frequency content such as 
edges besides changing the gray level distribution of tissues 
from the same class as proved in [27]. Therefore, MR images 
were corrected for this flaw prior to subsequent processing. 
Fig. 2 shows the bias field effect on the MR images. N4 
intensity normalization method outlined in [33] as a variant of 
N3 algorithm known for bias correction in medical images, 
was also used for this purpose as suggested by ADNI. 
However, in order to produce precise statistics, images need to 
be aligned to reduce the variability between individuals since 
people have different sized and shaped brain structures. 
Spatial normalization (or registration) is the method that 
achieves that by transforming MR image of each individual to 
a reference frame called template. 

This process is guided by an atlas which locates the 
position of the different anatomical regions in the template 
space. Namely, we relied on the MNI templates provided by 
The Montreal Neurological Institute [28]. Specifically, we 
adopted their ICBM152 standard from The McConnel Brain 
Imaging Centre [27]. After the pre-processing phase suggested 
in [25-26], instead of pre-selecting ROIs from GM tissue to 
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extract their features, a whole brain analysis is performed to 
find all the areas that are different between AD patients and 
healthy elderlies. Following VBM analysis and highlighting 
the areas that differ between the two groups, these areas are 
selected as ROIs. The considered features are the voxel values 
(or intensities) belonging to these ROIs. The algorithm NCFS 
is then applied to the training set to rank the extracted features 
according to their amount of positive influence on a KNN 
classifier in a leave-one-out classification. A subset containing 
the highly ranked features will then be selected as the 
representing features to be used while training the 
classification model. 

 
(a)         (b)                 (c) 

Fig. 2. (a) Bias Field effect on a Slice of MR Image (b) Bias Field 

Frequency (c) Corrected Image. 

IV. EXPERIMENTS 

We conducted our experiments on a collection MRI 
images which includes 100 AD cases versus 100 healthy 
instances. This dataset was provided by the Alzheimer's 
Disease Neuroimaging Initiative (ADNI 2020). In particular, 
we compared the classification performance obtained using 
various classification methods. Specifically, some of the 
learned models were built using the original set of features, 
while others were built after some feature selection. Namely, 
the algorithms we used in these experiments are KNN 
classifier and SVM classifier (with two kernels: linear and 
RBF). The rationales behind this choice are: (i) NCFS is based 
on ranking the feature relevance according to their 
contribution in maximizing KNN classification performance. 
In other words, we intended to investigate whether selecting 
the top ranked features improves the performance of 
Alzheimer’ disease detection. (ii) SVM is widely used in 
related CAD systems and testing it on the designed features 
would provide a better perception on the validity of the 
proposed system compared to state of the art solutions. 
Furthermore, two other existing methods were tested on the 
same dataset and environment in order to provide a good 

ground for comparison. Specifically, the first method is based 
on PCA features reduction while the other relies on t-tests to 
sort the features and select the optimal ones. 

A. VBM Analysis 

After preprocessing the data, the gray matter tissue maps 
were analyzed with VBM to detect the atrophy regions that 
differentiated AD from HC group. For this particular analysis 
of the selected samples from AD and HC groups, three 
significant clusters which include different number of voxels 
were obtained. Fig. 3 illustrates the locations of these clusters 
while Table I provides their details. The values of the voxels 
belonging to the resulting clusters were then extracted from 
each sample then combined into one feature vector. This 
means that the feature vector is a concatenation of the voxels 
values from the three clusters per sample. In the following, we 
refer to this vector as raw features. 

B. Optimization of SVM Hyper-Parameters 

As depicted in [16], the SVM models rely on finding the 
optimal hyperplane which maximizes the margin between two 
classes. The optimization process is formulated using an 
objective function and resolved using typical mathematical 
optimization methods. This function is controlled by the 
parameters known as hyperparameters. Their settings affect 
the performance of the learning process. Therefore, these 
parameters need to be tuned to find the set of values which is 
optimal for solving a specific learning problem. Two kernels 
were investigated in this project. Namely, we used the linear 
and RBF kernels. For RBF kernel, a couple of parameters 
need to be optimized: the cost or regularization term and 
gamma or kernel width. The cost controls the trade-off 
between the misclassifications of training samples and width 
of the margin while the gamma controls the tradeoff between 
under-fitting loss and over-fitting loss. Both parameters were 
optimized in this work using Bayesian optimizer with 10-fold 
cross validation for every different set of features. 

C. Optimization of Lambda in NCFS 

A tuning via cross validation was conducted on a range of 
value starting from zero, where no regularization was 
enforced, to optimize the regularization parameter lambda. In 
each fold, the lambda values were used and the loss was 
assessed with Mean Squared Error (MSE). Fig. 4 reports the 
effect of choosing the appropriate regularization value 
showing the worst performance when the value was set to zero 
and an improved performance by more than 10% with 0.018. 

 

Fig. 3. Glass view of Atrophy Clusters Highlighted by VBM Analysis where k = 1400. 
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TABLE I. ATROPHY CLUSTERS INFO WHERE K = 1400 

Cluster ID MNI coordinates KE  (voxels quantity) 
T-value 
(peak-level) 

1 -26, -9, -14 36607 14.51 

2 24, -32, -6 8748 11.46 

3 59, -56, 30 1824 6.35 

 

Fig. 4. Loss Results of Tuning the NCFS Regularization Parameter Lambda 

Measured by MSE. 

D. Feature Weighting using NCFS 

After optimizing NCFS parameters, the best value was 
used in the algorithm to rank the raw features. Then, to reduce 
the dimensionality of the ranked features, a threshold (or 
cutoff) was determined by iteratively adjusting the number of 
selected features and feed them to an SVM classifier where its 
performance is evaluated with 10-fold cross validation. The 
adjustment started by taking a wider range of values and large 
step size in order to have a rough estimation where the optimal 
number is located. After that, in the span that had the highest 
accuracy, a second adjustment was repeated within its bound 
with smaller step size as shown in Fig. 5. 

E. T-Test based Feature Ranking 

As previously mentioned, another type of feature selection 
was tested in this work. The raw features were ranked using T-
test method according to their T-values. For selecting the 
optimal number of features, the same method used with NCFS 
features was applied here. The corresponding results are 
reported in Fig. 6. Though the authors in [7] proposed using 
fisher criterion to automatically determine the threshold, 
following our method in determining it won’t have major 
effect as their classification model is also SVM which we use 
in the evaluation of the optimal number. 

F. Features Reduction using PCA 

The high dimensionality of raw features was reduced using 
PCA method. PCA was chosen in our comparative analysis for 
its effectiveness in significantly reducing the number of 
features and also being compared to t-test features. Similar to 
the previous work, using 10-fold cross validation, the 
orthogonal principal components of the raw features and 
training samples were extracted in every fold to train the 
models. The number of components was equal to the number 
of training samples and they were used directly as the features; 

that resulted in a vector with 200 dimensions in our case. 
However, to improve the PCA performance we only selected 
the components that retained 95% of data information which 
further reduced the dimensions to only 75. The improvement 
in classification is described in Table II. 

G. Results obtained using SVM Models 

In our experiments, every feature set was used to train and 
test three classification models. More specifically, we used 
KNN along with a linear-kernel SVM and a Gaussian RBF 
SVM. First, we present the results obtained using SVM 
classifiers. 

Table III reports the accuracy, sensitivity, specificity and 
AUC measures attained using the two SVM classifiers 
associated with the considered features. As it can be seen, 
linear SVM yielded noticeably higher accuracy. In particular, 
it resulted in a 4.5% increase for the raw features while the 
others did not exhibit large differences in their accuracies as 
they did not go above 1%. On the other hand, from the 
sensitivity perspective, which is considered an important 
measure in this study and the medical field in general, SVM 
with RBF kernel attained 4.5% improvement in the 
classification of AD patients with the t-test features compared 
to the linear kernel. NCFS and PCA features remained rather 
consistent across the two models but giving better overall 
performance with the linear kernel. Raw and PCA features 
scored the highest accuracy among the other features in the 
linear model and PCA in the RBF model. 

 
(a)     (b) 

Fig. 5. The Accuracies from Training an SVM Model with NCFS Features 

of different Dimensions. (a) The First Adjustment Results with Higher Range 

and Step Size (b) The Second Adjustment within the Bound of the Highest 
Accuracy Span and Small Step Size. 

 
(a)     (b) 

Fig. 6. The Accuracies from Training an SVM Model with T-Test Features 

of different Dimensions. (a) The First Adjustment Results with Higher Range 

and Step Size (b) The Second Adjustment within the Bound of the Highest 
Accuracy Span and Small Step Size; Threshold = 40. 
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TABLE II. DIFFERENCES IN CLASSIFICATION RESULTS OF PCA WITH ALL 

THE COMPONENTS AND THE COMPONENTS WITH 95% PRESERVE 

 Linear SVM 

Features Acc % Sen % Spe % AUC % 

PCA-All 77.58 73.15 81.74 85.83 

PCA 87.00 83.33 90.43 92.38 

TABLE III. CLASSIFICATION RESULTS OF SVM MODELS ON EACH TYPE 

OF FEATURE 

 Linear SVM RBF SVM 

Features 
Acc 

% 

Sen 

% 

Spe 

% 

AUC 

% 

Acc 

% 

Sen 

% 

Spe 

% 

AUC 

% 

Raw  87.0 87.0 86.9 93.3 82.5 78.7 86.0 91.2 

NCFS  84.3 82.4 86.0 91.5 83.8 79.6 87.8 90.2 

T-test  81.6 75.0 87.8 88.7 82.5 79.6 85.2 85.0 

PCA 87.0 83.3 90.4 92.3 86.1 82.4 89.5 91.7 

Fig. 7 and Fig. 8 depict the ROC curves produced by 
plotting the true and false positive rates from each classifier. 
The higher the curve is, the larger AUC value which measures 
the area under this curve and the better the classifier. T-test 
features showed the least AUC values with RBF kernel which 
can be perceived in how low its curve is in Fig. 8 compared to 
the other curves. The unexpected performance of the raw 
features can be attributed to two facts. The first one is that 
these features are a result of a statistical analysis that 
discriminates between the two groups. This yields a fair 
separability between the data instances from the two classes. 
The second fact is that kernel SVM is a powerful classifier 
when the hyperparameters are optimized and can handle 
efficiently highly dimensional data. 

H. Results Obtained using KNN 

The classification results obtained using KNN yielded 
different but predictable results. The Manhattan distance (or 
city block) was used as the distance metric to decide the 
nearest neighbors of any given sample. As it can be seen in 
Table IV, the number of neighbors K was set to be 3, 5 and 7 
respectively to assess its effect on the performance. NCFS 
features resulted in the highest performance measures and 
ROC curve, followed by t-test features as confirmed by Fig. 9. 
As NCFS ranked the features based on their contribution in 
maximizing KNN classification, this had an advantage of 
giving it a classification power similar to SVM classifier. 
Unfortunately, the sensitivity dropped by about 5% compared 
to SVM results. This means that more AD instances were 
misclassified in all number of neighbors variations and could 
indicate that the initial features weren’t discriminative enough. 
Likewise, the performance with raw features declined in this 
round in all the three settings. Unlike SVM, KNN doesn’t 
have the ability to deal with the high dimensionality in data 
which in turn affected the distance by the irrelevant features. 

 

Fig. 7. ROC Curves for Linear SVM Classifications with the different 

Features Types. 

 

Fig. 8. ROC Curves for RBF-SVM Classifications with the different 

Features Types. 

 

Fig. 9. ROC Curves for KNN Classifications with the different Features 

Types. 
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TABLE IV. CLASSIFICATION RESULTS OF KNN MODELS ON EACH TYPE OF FEATURE WITH DIFFERENT NUMBER OF NEIGHBORS K 

 K = 3  K = 5  K = 7 

Features Acc % Sen % Spe % AUC %  Acc % Sen % Spe % AUC %  Acc % Sen % Spe % AUC % 

Raw  78.5 72.2 84.4 81.4  78.0 66.7 88.7 83.9  78.9 68.5 88.7 85.0 

NCFS  83.0 76.9 88.7 87.2  81.6 77.8 85.2 88.6  83.0 78.7 87.0 89.2 

T-test  80.3 76.9 83.5 84.4  80.7 75.9 85.2 86.8  82.5 76.9 87.8 87.8 

PCA 77.6 66.7 87.8 83.1  79.8 69.4 89.6 85.0  80.3 70.4 89.6 85.3 

V. CONCLUSIONS 

In this paper, we proposed a fully-automated CAD system 
able to detect AD cases. A detailed description of the different 
component of the proposed system was provided. In 
particular, the Neighborhood Component Analysis and 
Feature Selection (NCFS) approach was combined with K-
Nearest Neighbor (KNN) as the supervised learning algorithm 
intended to perform feature selection and AD detection. The 
obtained results confirmed the effectiveness of the proposed 
unsupervised learning approach as well as the discriminative 
power of the features used to encode the image visual 
properties. 
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