
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

185 | P a g e

www.ijacsa.thesai.org

Detection of Anomalous In-Memory Process based on

DLL Sequence

Binayak Panda
1
, Dr. Satya Narayan Tripathy

2

PG. Dept. of Computer Science

Berhampur University, Berhampur

Odisha, India

Abstract—The use of Computer systems to keep track of day

to day activities for single-user systems as well as the

implementation of business logic in enterprises is the demand of

the hour. As it plays a vital role in making available information

on one click as well as impacts improvement in business and

influences the profit or loss. There is always a possible threat

from unauthorized users as well as untrusted or unknown

applications. Trivially a host is intended to run with a list of

known or trusted applications based on user’s preference. Any

application beyond the trusted list can be called as untrusted or

unknown application, which is not expected to run on that host.

Untrusted applications becomes available to a host from sources

like websites, emails, external storage devices etc. Such untrusted

programs may be malicious or non-malicious in nature but the

presence must be detected, as it is not a trusted program from

user’s view point. All such programs may target the system

either to steal valuable information or to decrease the system

performance without the knowledge of the user of the system.

Antimalware vendors provide support to defend the system from

malicious programs. They do not include users trusted program

list in to consideration. It is also true that new instances of

attacks are found very frequently. Hence there is a need for a

system which can be self-defending from anomalous activities on

the system with reference to a trusted program list. In this paper

design of an “Anomalous In-Memory Process detector based on

the use of the DLL (Dynamic Link Library) sequence” is

proposed, which does accountability of trusted programs

intended to run on a particular host and create a knowledgebase

of classes of processes with TF-IDF (Term Frequency-Inverse

Document Frequency) multinomial logistic regression based

learning approach. This knowledgebase becomes useful to map a

suspected In-memory process to a class of processes using loaded

DLL’s of it. With a cross-validation approach, the suspected

process and processes of its predicted class are used to conclude

whether it is a trusted, variant of the trusted or untrusted process

for that host. Not necessarily the untrusted program is a malware

but it may be a program not listed in the trusted program list for

the specific host. Hence this work aims to detect anomaly in

concern with list of trusted applications based on user’s

preference by doing a dynamic analysis on In-memory processes.

Keywords—Anomalous In-memory Process; dynamic analysis;

DLL hijacking; DLL injection; TF-IDF multinomial logistic

regression

I. INTRODUCTION

In the 21
st
 century use of computers is becoming quite

obvious in all fields, starting with the banking sector,
education sector, health sector, e-commerce, etc. The use of

computers is not only limited to such big domains; but also are
extended to be used by individuals in their home‘s, small
offices, and various goods‘ retail counters to keep track of
their day to day activities. Whether large commercial sectors
or small retail counters or individual use of computers
increases day by day with the availability of Internet facilities.

On the contrary, the risk of the exploitation of data and
information kept on computers also increases day by day
because of the exposure of computers to the outside world due
to internet connectivity. There are intelligent programmers,
who somehow put a piece of code (a small program which is
unknown or untrusted) on a computer of interest with an
intention of either stealing or misusing the data kept on
computers or making computers non operable. Such programs
are referred to as malware or potentially unwanted application
(PUA). There exist many categories of such malware like
viruses, worm, spyware, adware, ransomware, etc. The
adverse effect of the presence of malware on a computer
system scales from a very small impact to an extremely large
impact. PUA do not have any specific types as they seem to be
normal programs but there may a possible threat due to the
presence of them.

Quick heal annual threat report 2019 says that prediction
of becoming vicious about ransomware happened to be true in
2018. Only in one month, the ransomware detection reached
2Million in 2018. Also, the prediction about small and
medium-sized businesses to be in the red zone became true.
Cryptojacking is a new buzzword suppressing ransomware,
which is a process of using someone‘s computer to earn
money. The only sign of a computer used for cryptojacking is
a little slower computer performance while executing
programs. The CPU is targeted up to 100% by cryptojacking
which leads to hardware faults slowly. The owner of the
compromised computer becomes unaware of being a victim of
cryptojacking. The report says about detection of more than
800k cases of cryptojacking in 2018. It also has given
information about an Infector named W32.Pioneer.CZ1,
which injects the files on to disk and then decrypts the
malicious DLL present in the file and drops it to do malicious
activities. ―Fig. 1‖ shows the frequency of attack of various
malware types per day, per hour, and per minute referring to
Quick heal threat report 2019 [1]. Internet security threat
report, Symantec 2019 says 69 million events detected in 2018
which is 4 times to cases in 2017. The report also speaks about
PUA which is not necessarily harmful but may lead to security
risks. The existence of such PUA may also result in Host-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

186 | P a g e

www.ijacsa.thesai.org

Based exploits. It also says about cases of Cryptojacking and
its consequences. The report mentioned about supply chain
attacks which target third party software by injecting code into
its libraries. These libraries are integrated into larger software
projects. Injection of code in to libraries can be understood as
DLL injection, which is a possible approach of exploiting a
host [2].

The case of infector W32.Pioneer.CZ1, supply chain attack
and possibility of threat due to the presence of PUA points out
a need of a system for real time detection of host based
exploitations. Antimalware vendors do provide support in
detecting malicious programs with signature based static
analysis but they don‘t take users preference in to
consideration. Hence some unwanted or unknown programs
referring to users preferred list left undetected. Such unknown
programs may be a malware or PUA, which is a possible
threat to that host. These observations motivated to apply
multi-class classification approach on known or trusted
processes using their respective list of loaded DLL‘s on a host
considering its users preferred list of programs. This
knowledge helps in detecting a deviation from known In-
memory processes which is either a malfunctioned known
process or unknown process or untrusted process using some
potentially unwanted DLL or malfunctioned DLL.

The organization of the remaining sections in this paper is
as follows: Section 2 speaks about the related works on
malware analysis considering In-memory processes and
injection of unwanted DLL‘s. Section 3 speaks about the
design of the System in detecting anomalies or deviations with
respect to In-memory processes and their respective loaded
DLL‘s. It is about designing an Anomalous In-Memory
Process detector based on the use of DLL‘s, which learns the
trusted programs intended to run on a particular host and
creates multiple class of them referring their usage of DLL‘s.
With a cross validation approach a suspected process gets
validated with processes of a class it is mapped to and gets
detected as either trusted or variant of trusted or untrusted for
the specific host. Section 4 speaks about the experimental
setup for the empirical evaluation of the system. Section 5
describes the concluding remark of the work.

Fig. 1. Malware Attack on Windows in 2019.

II. RELATED WORK

Analysis of the behavior of unknown programs like PUA,
malware etc. is becoming truly diversified. Various forms of
analysis are done on a system to identify a threat to the
information stored on the computer. The analysis can be in the
form of identification of untrusted programs available on
secondary storage or anomalous In-memory processes. The
approaches of analysis can be said as either static or dynamic
or hybrid or memory-based [3]. The static analysis considers
opcode‘s, N-gram opcode sequences, control flow graph as
features to analyze further without executing the programs.
The dynamic analysis considers function calls, API calls,
function parameters, instruction traces, and instruction flows
as features to analyze further after executing the programs [4].
The hybrid analysis is a combination of static analysis and
dynamic analysis [5]. The memory-based analysis is also a
kind of dynamic analysis that considers network connection
information, changes in registry keys and In-memory
processes and there DLL sequences for further analysis during
the execution of programs [6, 7, 8]. With run time attributes of
benign process using string analysis for anomaly detection in
Android operating system is found effective [9]. Studying the
behavior of malware is becoming popular with memory
forensic techniques for malware injection and hidden
processes [10]. DLL injection is a process where the malicious
DLL gets injected on to an In-memory process and the control
of execution gets transferred to that code block [11].
Reflective DLL injection has also gained popularity where
they do malicious activities in memory only without leaving
any footprint [12, 13].

A Windows application uses DLL files during runtime to
load libraries. It tries to locate the DLL with a hierarchy of
searches. First, it tries to find with the given path. But when it
fails to locate, it searches at some predefined set of directories.
Malware programs breaches this search order to load
malicious DLL during run time. In this context, DLL-Side
loading is becoming a very popular method for attacking
Windows systems [14]. In such cases, the malware payload
places the spoofed malicious DLL into a specific location so
that the spoofed DLL gets loaded instead of legitimate DLL.
Such DLL-Side loading bypasses the signature-based static
analysis process. This DLL load order hijacking process to
load a malicious DLL in run time can also be referred to as
DLL hijacking. A variant of such an approach where a
malware launcher loads the malicious DLL compromising a
victim processes memory whereby loads the malicious DLL
by creating a thread. Such an approach of entry of malicious
DLL onto to system is referred to as DLL Injection. With this
approach, the program loads unintended DLL‘s due to the
presence of side-loading vulnerability of Windows side-by-
side manifests [15].

Typically when malware attacks, it makes available its
payload physically on the system storage and gets loaded on to
memory to do the malicious activity. In such cases either the
traditional static analysis using signature-based detection
becomes helpful or the dynamic analysis considering the
various run-time behaviors of processes becomes helpful. But
Fileless malware has become a new possible attack type,
where the malware is not saving the payload on system

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

187 | P a g e

www.ijacsa.thesai.org

storage rather it malfunctions the trusted and legitimate
processes of the Operating System. It injects the malicious
program directly on to the compromised processes memory
without dropping any file to the file system. As no physical
file presents the Sandbox detection approach fails. Again as
there is no possibility of having a signature, hence the
signature detection also fails. Hence the detection complexity
becomes too high for Fileless malware. The possibility of
investigating Fileless malware is only limited to analysis of
the behavior of the system using the snapshots of In-memory
processes, which is considered here as Memory based analysis
[16]. Information retrieval theory is applied with a dynamic
analysis to extract API calls and system calls to classify
malicious programs. They are stored in documents on which
the TF-IDF weighting approach is applied to get a good
accuracy of malware classification [17].

In this paper, a novel approach is proposed considering
memory based dynamic analysis of In-memory processes in
identifying any deviation from the trusted process list of a
particular host. The DLL lists of In-memory processes are
taken in to consideration for deciding a suspected process as
either trusted or variant of trusted or untrusted for a specific
host. The list of trusted in-memory processes are classified in
to multiple classes considering the DLL sequences they use at
various instances. A suspected process gets mapped in to one
of the trusted class of processes based on its DLL sequence.
For this multi-class classification DLL lists are formed as
attribute vectors with Vector Space Model (VSM), on which
TF-IDF multinomial Logistic regression is used to train the
system. Objective of training process is to prepare a
knowledgebase of classes of processes, which are considered
as known or trusted and legitimate processes from the
viewpoint of a particular user. This system can take an In-
memory process at any random instance of time and do a
prediction of its class using the learned knowledge base. The
cosine similarity metric is used to cross-validate a suspected
process with all the processes of the predicted class before
concluding it as either a trusted or variant of a trusted or
untrusted process for that specific host. In this work a list of
processes are declared as trusted processes from the user‘s
regular use viewpoint. A variant of a trusted process is
understood as a process of an updated version application
from trusted list. Any other process other than a trusted or a
variant of trusted is understood as untrusted.

III. SYSTEM DESIGN

A. System Overview

The anomalous In-memory process detection system can
be divided into three parts: data preprocessing, the process
class prediction model of the system, and cross-validation of
the predictors result. Data preprocessing is about collecting
the DLL sequences loaded for all In-memory processes with
reference to a given list of trusted applications of the specific
host, using Windows Sysinternals Process utilities like
Pslist.exe and Listdlls.exe [18]. Pslist.exe shows information
about In-memory processes. Listdlls.exe shows the list of
DLL‘s loaded for a specific process at that time instance. A
TF-IDF weight matrix gets generated defining weight of each
DLL in the collected DLL sequences for the list of In-memory

processes. The said system applies multinomial classification
on the data set of In-memory processes to classify them in to
multiple classes of processes based on DLL sequences as
feature vector. The process class prediction model is trained
and tested using the generated data set. For the training and
testing phase of the system multinomial Logistic Regression,
multinomial Naive Bayes, and Support Vector Classifier
(SVM-SVC for multiclass problem) mechanisms are used.
The training phase of the model uses the approach of learning
the usual activity of a host from In-memory processes and
their respective DLL sequences to create the knowledge base
of processes as multiple classes. The testing phase of the
model uses the knowledge gained in the training phase, to
decide accuracy of the system in classifying In-memory
processes to their class. Cosine similarity measure is used for
Cross Validation of the predictors result. With cosine
similarity the DLL sequence of a suspected In-memory
process is compared with DLL sequences of processes of the
predicted class to verify the similarity of the suspected process
and subsequently to say whether the process is a trusted,
variant of trusted or untrusted.

B. Data Preprocessing

There are various run time attributes of an In-memory
process, which speaks about the behavior of it. Some
attributes are process path, process name, process priority,
number of threads, number of handles, private virtual
memory, path of all the DLL‘s loaded, etc. In this system, the
focus is given on two run time attributes namely path of the
process and path of all the DLL‘s loaded. Pslist.exe is used to
collect all the process names and their respective process ids.
―Fig. 2‖ represents a sample output which is a list of elements
a.k.a. In_Memory_Process_List where each element is a 2-
tuple say Process_tuple (pname,pid) containing process name
and process id for all the In-Memory processes at a particular
time instance.

Listdlls.exe is used to collect all the DLL‘s loaded on to
the memory for each element of the In_Memory_Process_List
at that time instance. ―Fig. 3‖ represents the absolute path of
the program corresponding to one of the In-memory process
and the absolute path of all its loaded DLL‘s. There will be a
list of such records based on the number of In-memory
processes at that time instance. Let that be referred as a
Database DLL List a.k.a. DBDLLList[].The algorithmic steps
for generating a collection of DBDLLList‘s at various time
instances is explained in Algorithm 1 which is a.k.a.
IMPDLLList.

Fig. 2. In_Memory_Process_List at a Time Instance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

188 | P a g e

www.ijacsa.thesai.org

Fig. 3. One Record of DBDLLList[].

Algorithm 1: IMPDLLList

Require: Pslist.exe and Listdlls.exe are expected to be present

locally. They are to be invoked with administrative rights.

Ensure: DBDLLList[] A data set consisting of records of all

the In-memory processes, where each record will be the

absolute path of executable of the In-memory process and

absolute path of all the DLL‘s loaded at that particular time

instance. Fig. 3 represents one record of DBDLLList[].

1. In_Memory_Process_List = Os.System(Pslist.exe)

2. Initialize DBDLLList[] = NULL

3. For each Process_tuple in In_Memory_Process_List

a. Process_Id =Process_tuple[1]

b. Temp_DLL_List=Os.System(Listdlls.exe, Process_Id)

c. Temp_DLL_List=Prune.out(‗\s+‘,‘ ‗,Temp_DLL_List)

d. DBDLLList[].append(Temp_DLL_List)
4. Return DBDLLList[]

From ―Fig. 3‖ related to one of the records of
DBDLLList[], it is observed that absolute path of program as
well as DLL‘s contains symbols like forward-slash (/), hyphen
(-), and dot (.) , which are considered as special characters and
separators in various platforms. To fit the collected data well
in the system, an encryption process is carried out on
processes and DLL‘s. A unique class label say p_i is assigned
for all instances of a process-i considering its absolute path.
Each individual DLL in the DLL sequences is encoded with a
unique id, named as dll_i. The process of encryption on
DBDLLList[] is explained in Algorithm 2 which is a.k.a.
Encrypt_DBDLLList. It helps in preparing the data set ready
for TF-IDF weight matrix construction.

Algorithm 2: Encrypt_DBDLLList

Require: DBDLLList[] : Collection of records as shown in

―Fig. 3.‖

Ensure: A list EncrDBDLLList[] and a dictionary

DictDBDLLList{} as explained below.

(a) EncrDBDLLList[]: An encrypted set consisting of records

of all the In-memory processes where each record will be in

the form of a process class label (p_i) followed by a sequence

of DLL id‘s (dll_i). A sample of the expected output is shown

in ―Fig. 4.‖

(b) DictDBDLLList{}: A dictionary of {key: value} pairs.

When the key is some p_i, the value is the absolute path of the

respective In-memory process. When the key is some dll_i,

the value is the absolute path of respective DLL. A Sample of

the expected output is shown in ―Fig. 5.‖

1. Initialize EncrDBDLLList[]=NULL

2. Initialize DictDBDLLList{}=EMPETY

3. For each record in DBDLLList[]

a. words = split (record , ― ―)

b. If words[0] is in DictDBDLLList.values()

p_i= DictDBDLLList.values(words[0])

EncrDBDLLList[].append(p_i)

Else

p_j= generate_next_process_class_id()

DictDBDLLList[p_j]= words[0]

EncrDBDLLList[].append(p_j)

c. For each word in words[1..n]

If word is in DictDBDLLList.values()

dll_i= DictDBDLLList.values(word)

EncrDBDLLList[].append(dll_i)

Else

dll_j= generate_next_dll_id()

DictDBDLLList[dll_j]= word

EncrDBDLLList[].append(dll_j)

d. EncrDBDLLList[].append(LineBreak)
4. Return EncrDBDLLList[] and DictDBDLLList{}

Fig. 4. Some Records of EncrDBDLLList[].

Fig. 5. Some Records of DictDBDLLList{}.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

189 | P a g e

www.ijacsa.thesai.org

C. Process Class Prediction Model

The records present in EncrDBDLLList[] are being
tokenized using the classical separator blank space. With this
an In-memory process P is represented as a text
* +where each Si is considered as a string of the
text. Here S0 represents the process class p_i for an In-memory
process. S1 to Sn represents DLL sequence of that process
where each Si represents dll_i for . Let C is the set of
the text representation of m In-memory processes such

that *

 + , where each
 represents

the text representation of i
th

 In-memory process. Further C is
split into two lists named as Ctags and Cdocs. Where S0 will be

included in Ctags when

 Sj will be

included in Cdocs when

The use of VSM is very common in representing textual
documents algebraically as vectors in a multidimensional
space [19]. The components of such a vector represent the
importance of a term in a document. TF-IDF is very popular in
evaluating how important a word is in a document. TF-IDF
weighting schema is the most popularly used approach in
converting textual documents to a VSM [20].

In this context, Ctags is the document representing the list
of classes of In-memory processes, where existence of more
than 3 classes observed. Cdocs is the list of DLL‘s for process
classes in Ctags. Cdocs is treated as a textual document, which is
the list of the text representation of DLL sequences of all In-
memory processes. The TF-IDF weighting schema is applied
to find out the VSM view of the system for a particular host.
Considering TF-IDF over raw frequencies of occurrences of
words is to scale down the impact of very frequently occurring
words in a document which is empirically less informative
than the words of less frequency. Cdocs is represented by a
―Feature-DLL to In-Memory-Process‖ weight matrix, where
the element (i,j) illustrates an association of i

th
DLL to j

th
 In-

memory Process. Using TF-IDF weighting schema, the weight
of i

th
DLL to j

th
 In-Memory Process is denoted as and

defined as given in (1).

 (1)

 in (1) is the L2 normalized term frequency for i
th

 DLL

with respect to the j
th

 In-memory process. The Term
Frequency is defined as given in (2).

√∑ ()

 (2)

Here is the number of occurrences of i
th

DLL in j
th

 In-

memory Process, and √∑ ()

 is the magnitude of the

vector representation of DLL‘s present in the j
th

 In-memory
Process.

 in (1) is the Inverse document frequency for i
th

 DLL
in Cdocs. The Inverse Document Frequency is defined as
given in (3).

 (
| |

 | | |
) (3)

Here | | represents the total number of In-memory
processes and | | | represents the number of In-
memory processes in Cdocs containing the i

th
DLL i.e. Si. Using

(1) W the weight matrix of Cdocs is found for the ‗Feature-DLL
to In-Memory-Process‘ matrix representation of the system. W
is typically a sparse matrix and tells statistically how
important a DLL is to an In-memory process in the collection
of all the In-memory processes.

Weight matrix W is then split into a training and testing
data set with 3:1 ratio with random sample selection.
Multinomial logistic regression, multinomial Naïve Bayes,
and SVM-SVC (SVC) learning methods are applied on the
proposed model. The objective is to choose the classifier
which results with highest accuracy in process class prediction
by using a DLL sequence as attribute vector. ―Fig. 6‖ shows
the functional representation of the model.

Fig. 6. Process Class Prediction Model.

D. Cross Validation

The cosine similarity measure is used to cross-validate the
suspected process with all the processes of the predicted
process class. It is used to find the relative closeness of the
suspected process with the trusted processes of the predicted
class. Cosine Similarity is a similarity distance measure which
finds the cosine angle between two vectors u and v, which is
defined as given in (4).

 ()

| | | |
 (4)

Here is the dot product of two vectors u and v.
| | | |represents product of magnitudes of vectors u and v ,
respectively. Cosine angle as 0

o
 (i.e. Cosine distance measured

as 1) between two vectors concludes both are similar where as
an angle close to 0

o
 (i.e. Cosine distance measured is close to

1) indicates they are closely similar. What must be the
accepted value to consider case of closely similar vectors to
case of similar vectors depends on field of application and
experiential results? But a larger angle says they are
dissimilar.

The proposed system has the objective of detecting
anomalous In-memory processes on a specific host with
reference to trusted applications list. With VSM and TF-IDF
any In-memory process can be represented as a weighted
vector considering DLL sequence as attribute vector. Hence
any suspected process can be applied on the model to find its

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

190 | P a g e

www.ijacsa.thesai.org

process class. All the processes of the predicted process class
can be compared with the suspected process using the Cosine
similarity measure. This cosine similarity distance is used to
conclude whether the suspected process is to be considered as
trusted, variant of trusted or untrusted. The algorithmic steps
of cross validation are explained in Algorithm 3 which is
a.k.a. Cross_validate_suspected_process. The algorithm needs
a Suspected_Process information similar to the sample record
shown in ―Fig. 3‖, i.e. in the form of [process_path, dll1_path,
dll2_path,….,dllm_path]. It also refers EncrDBDLLList[] and
DictDBDLLList{} which are found during learning stage of
model using Algorithm 2 Encrypt_DBDLLList, to encode
the Suspected Process information such that it can be applied
on Process Class Prediction Model. β1 and β2 are the threshold
values for considering cosine distance measure to decide
process as a trusted and a variant of some trusted program,
respectively.

The Suspected_Process will be a trusted process if the
number of processes of the predicted class whose Cosine
distance is measured as 1 with the Suspected_Process
becomes the threshold β1. Here β1 will be the minimum
count for the number of processes of the predicted class whose
Cosine distance is measured as 1 with the Suspected_Process.
An optimize value for β1 to be found from experiment for a
specific host.

The Suspected_Process will be a variant of some trusted
process if the average of Cosine distances measured between
the processes of predicted class and the Suspected_Process
becomes the threshold β2. Here β2 will be the minimum
average cosine distance between the processes of predicted
class and the Suspected_Process. An optimize value for β2 to
be found from experiment for a specific host.

The Suspected_Process which fails to qualify the threshold
β1 followed by β2 will be an untrusted process.

Algorithm 3: Cross_validate_suspected_process

Require: Suspected_Process Information, EncrDBDLLList[]

and DictDBDLLList{} as explained above. β1 is the threshold

to conclude Suspected_Process is trusted and β2 is the

threshold to conclude Suspected_Process is a variant of some

trusted process as explained above.

Ensure: Trusted or A variant of trusted or Untrusted as

explained above

1. encr_process= Encrypt_DBDLLList (Suspected_process ,

DictDBDLLList{})

2. predict_process_class=

ProcessClassPredictionModel(encr_process)

3. Initialize verify_proces_list[]=NULL

4. verify_proces_list.append(encr_process)

5. For p_class in EncrDBDLLList[]

If (p_class[0] == predict_process_class)

verify_proces_list.append(p_class[1..n])

6. TF_IDF_mtrix= tf_idf_vectorizer(verify_proces_list[])

7. Cosine_mesure[]=cosine_similarity(TF_IDF_mtrix[0],

TF_IDF_mtrix[1..n])

8. If (count(Cosine_mesure[].value(‗1‘)) >= β1)

Print (Trusted)

Else if (average(Cosine_mesure[]) >= β2)

Print (A variant of Trusted Application hence

assumed as trusted)

Else

 Print (Untrusted)

9. End

IV. EXPERIMENTAL SETUP AND EVALUATION

For the experimental setup and evaluation of the proposed
system following steps are taken.

 A questionnaire is used to collect the list of application
programs with reference to specific users‘ interest. It is
considered as the trusted application list for this host
and any other application is assumed as untrusted.
Table I and Table II show a sample list of system
processes and trusted processes of the host
respectively. Combination of such system processes
and processes of the trusted application is considered
as the list of trusted processes on which anomalous
activity is monitored.

 The Algorithm-1 IMPDLLList is invoked with a fresh
installation of the Windows operating system along
with all the listed trusted application software‘s. The
invocation of the algorithm is scheduled depending on
use of various application programs time to time.
IMPDLLList is invoked aperiodically for
approximately 20 times a day for a continuous run of a
specific time duration (e.g. 5 hours a day) to generate
DBDLLList[]. With the above-said schedule
IMPDLLList is invoked for 10 days to generate the
final trusted DBDLLList[], which contained around
10000 records. One record of DBDLLList[] is shown in
―Fig. 3.‖.

 The algorithm Encrypt_DBDLLList is invoked on the
trusted DBDLLList[], to generate EncrDBDLLList[]
and DictDBDLLList{}. The model is trained and tested
with training and testing set of 3:1 ratio with random
sample selection on these 10000 records.

The proposed model works on a multi-class problem
where the In-memory processes of a host are classified into
several classes and a suspected process gets predicted to
belong to a specific class of the processes. The performance of
three classifiers are compared in terms of accuracy, {Micro |
Macro | Weighted} Precision, {Micro | Macro | Weighted}
Recall and {Micro | Macro | Weighted} F1-score considering
the multinomial classification approaches named multinomial
Logistic Regression, multinomial Naïve Bayes and SVM-SVC
(further referred as SVC in this paper). For a binomial
classification case evaluation of performance metrics is done
based on positive class and negative class, whereas for a
multinomial classification case evaluation of performance
metrics is done based on One-vs.-Rest (OvR) classes. For each
class in case of multinomial classification the below
mentioned basic parameters are found, which are used to
evaluate overall performance metrics of the model. The basic
parameters referred above are True Positive (TP) — the
classifier correctly predicts the class, True Negative (TN) —
the classifier correctly predicts which are not of the class,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

191 | P a g e

www.ijacsa.thesai.org

False Positive (FP) — the classifier incorrectly predicts other
classes to be of the class and False Negative (FN) — the
classifier incorrectly predicts the class to be of other class.
Table III explains pictorially a sample case of three classes in
which how TP, FP, FN, and TN for CLASS1 to be considered
in a multinomial classification scenario.

In the proposed model the below-given performance
metrics are calculated for three multi-classification approaches
named as OvR Logistic Regression, OvR Naïve Bayes and
OvR SVC. Recall for a class says a fraction of all samples of
that class which is predicted correctly, which is evaluated as
given in (5). Precision for a class says a fraction of all
predicted samples of that class which is predicted correctly,
which is evaluated as given in (6). F1 score of a class will be
the harmonic mean of precision and recall of that class, which
is evaluated as given (7).

 (5)

 (6)

 (7)

TABLE I. LIST OF SYSTEM PROCESSES TO SUPPORT TRUSTED

PROCESSES

Process name Process Path

Cmd C:\Windows\System32\cmd.exe

Conhost C:\Windows\system32\conhost.exe

Conhost C:\Windows\system32\conhost.exe

Csrss C:\Windows\system32\csrss.exe

Csrss C:\Windows\system32\csrss.exe

Dwm C:\Windows\system32\Dwm.exe

Hkcmd C:\Windows\System32\hkcmd.exe

Igfxpers C:\Windows\System32\igfxpers.exe

Igfxsrvc C:\Windows\system32\igfxsrvc.exe

Igfxtray C:\Windows\System32\igfxtray.exe

Lsass C:\Windows\system32\lsass.exe

Lsm C:\Windows\system32\lsm.exe

SearchIndexer C:\Windows\system32\SearchIndexer.exe

Services C:\Windows\system32\services.exe

Smss C:\Windows\System32\smss.exe

Spoolsv C:\Windows\System32\spoolsv.exe

Svchost C:\Windows\system32\svchost.exe

Svchost C:\Windows\System32\svchost.exe

Svchost C:\Windows\system32\svchost.exe

Svchost C:\Windows\system32\svchost.exe

Taskhost C:\Windows\system32\taskhost.exe

Wininit C:\Windows\system32\wininit.exe

winlogon C:\Windows\system32\winlogon.exe

wuauclt C:\Windows\system32\wuauclt.exe

WUDFHost C:\Windows\System32\WUDFHost.exe

explorer C:\Windows\Explorer.EXE

TABLE II. A SAMPLE LIST OF TRUSTED PROCESSES OF A HOST

Process namez Process Path

notepad C:\Windows\system32\NOTEPAD.EXE

devcpp C:\ProgramFiles\Dev-Cpp\devcpp.exe

firefox C:\ProgramFiles\MozillaFirefox\firefox.exe

SnippingTool C:\Windows\system32\SnippingTool.exe

notepad++ C:\ProgramFiles\Notepad++\notepad++.exe

Vlc C:\ProgramFiles\VideoLAN\VLC\vlc.exe

FreeCell C:\ProgramFiles\MicrosoftGames\FreeCell\FreeCell.exe

Hearts C:\ProgramFiles\MicrosoftGames\hearts\hearts.exe

Chess C:\ProgramFiles\MicrosoftGames\chess\chess.exe

chrome C:\ProgramFiles\Google\Chrome\Application\chrome.exe

EXCEL C:\ProgramFiles\MicrosoftOffice\Office12\EXCEL.EXE

Zoom C:\Users\binu\AppData\Roaming\Zoom\bin\Zoom.exe

AcroRd32
C:\ProgramFiles\Adobe\AcrobatReaderDC\Reader\AcroR

d32.exe

pythonw
C:\Users\binu\AppData\Local\Programs\Python\Python36-
32\pythonw.exe

POWERPNT
C:\ProgramFiles\MicrosoftOffice\Office12\POWERPNT.

EXE

WINWORD
C:\ProgramFiles\MicrosoftOffice\Office12\WINWORD.E
XE

TABLE III. TP, FP, TN, AND FN FOR CLASS1 IN MULTINOMIAL CASE

Predicted Class
True Class

Class 1 Class 2 Class 3

Class 1 TP FP

Class 2
FN TN

Class 3

For a multi-class scenario: Micro precision, Micro recall
and Micro F1Score are calculated globally considering total
TP, total FP, and total FN of the model instead of considering
individual classes. In such case Accuracy of the model is same
as Micro precision, Micro Recall, and Micro F1Score
measured for the model globally. Macro precision, Macro
recall and Macro F1Score are calculated considering the
precision, recall, and F1Score of individual classes and taking
the un-weighted mean of the measures. The Weighted
precision, weighted recall and Weighted F1Score are
calculated considering the precision, recall, and F1Score of
individual classes and taking the weighted mean of the
measures. The weight for each class is the total number of
samples of that class. Accuracy and all the calculated Micro,
Macro and Weighted performance metrics for the considered
classifiers on the testing data is shown in Table IV.

The comparison of accuracy for the three classifiers OvR
Logistic Regression, OvR Naïve Bayes and OvR SVC is
plotted in ―Fig. 7‖. It has been found that the performance of
OvR SVC is better than OvR Naïve Bayes but OvR Logistic
Regression is found better than OvR SVC. The comparison of
precision, recall and F1score for all three classifiers is plotted
in ―Fig. 8‖, ―Fig. 9‖ and ―Fig. 10‖, respectively. Considering
all these metrics, it is found that OvR Logistic Regression

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

192 | P a g e

www.ijacsa.thesai.org

Classifier is most efficient for the model in comparison to
other two classifiers. OvR Logistic Regression Classifier
outperformed others with accuracy rate as 97% in predicting a
process to its class and highest rates in precision, recall and
F1Score.

To ensure the result of the system in identifying a
suspected process as either trusted or variant of a trusted or
untrusted, the processes of predicted class for a suspected
process need to be cross-validated. Cross-validation of the
suspected process is done with processes of predicted class
considering cosine distance measure. As the OvR Logistic
Regression classifier resulted with higher accuracy over the
other two, it is chosen to predict the class of a suspected
process at any time instance. As explained in Algorithm 3
Cross_validate_suspected_process, Cosine distance is
measured between DLL sequence vector of a suspected
process and DLL sequence vectors of all the processes of the
predicted class. The calculated list of cosine distance measures
are used to reach a conclusion about the suspected In-memory
process as either a trusted or a variant of trusted or untrusted
type for the specific host. To evaluate the systems
performance 300 processes of mixed samples are selected
from the considered host. In these samples 200 processes are
from trusted process list, 40 processes are from variant of the
trusted process list and 60 processes are neither from the
trusted list of processes nor from variant of any trusted
process. Table V shows the confusion matrix for the 300
processes considered as suspected processes, which are
initially applied to process class prediction model and further
Cross validated using cosine distance measure. During the
Cross validation of suspected process with processes of
predicted class the optimized threshold value for β1 and β2 are
calculated by several iterations. For the considered host the
optimized value for β1 is found as 1, which is the minimum
number of processes from the predicted class with cosine
distance as 1 to the suspected process. The optimized value for
β2 is found as 0.90, which is the average cosine distance of
processes from the predicted class to the suspected process.
―Fig. 11‖ speaks about precision and recall of the case study
on the preferred host. In all cases, precision is above 95%.
Whereas for trusted and untrusted processes recall is more
than 93%, but for variant of process it is 84%.

TABLE IV. PERFORMANCE METRICS OF THE 3 MULTINOMIAL

CLASSIFIERS

Performance metrics OvR Log Reg OvR Naïve Bayes OvR SVC

Accuracy 0.97 0.88 0.92

Micro Precision 0.97 0.88 0.92

Micro Recall 0.97 0.88 0.92

Micro F1-score 0.97 0.88 0.92

Macro Precision 0.79 0.48 0.75

Macro Recall 0.8 0.5 0.76

Macro F1-score 0.79 0.47 0.75

Weighted Precision 0.95 0.7 0.9

Weighted Recall 0.97 0.88 0.92

Weighted F1-score 0.96 0.74 0.91

Fig. 7. Accuracy Comparison of the 3 Classifiers.

Fig. 8. Precision Comparison of the 3 Classifiers.

Fig. 9. Recall Comparison of the 3 Classifiers.

Fig. 10. F1Score Comparison of the 3 Classifiers.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

193 | P a g e

www.ijacsa.thesai.org

TABLE V. A CASE STUDY OF CROSS VALIDATION FOR THE SPECIFIC

HOST

Prediction Cross

Validated

Actual Cases applied to Model

Trusted Variant of Trusted Untrusted

Trusted 191 2 1

Variant of trusted 5 38 2

Untrusted 4 0 57

Fig. 11. Recall and Precision after Cross Validation of the Specific Host.

V. CONCLUSION

The said system considers the trusted process list of a
specific host as a multi-class problem considering DLL
sequences as attribute vectors for In-memory processes. The
objective of the system is to detect any deviation in the In-
memory processes of the specific host. The system works in
two stages. First stage is the process class prediction model,
which is used to predict the class of a suspected process
referring its DLL sequence as attribute vector. Second stage is
Cross validation of the suspected process with the processes of
predicted class. Three different multinomial classification
approaches considered during evaluation of the process class
prediction model where OvR Logistic Regression is proven to
be the best performer compared to others. With OvR Logistic
Regression 97% of accuracy and more than 95% of weighted
precision, recall, and F1 score achieved for the model. To
identify anomaly or deviation with some In-memory process
during Cross validation of the suspected process with
processes of the predicted class, use of cosine distance
measure is found very effective. The case study during
evaluation of system shows precision above 95% for all
trusted, variant of trusted and untrusted processes. Recall of
variant of trusted process is found as 84% where as 93% for
trusted and untrusted processes. These results are quite
impressive for finding any deviation with respect to In-
memory processes of the host under consideration. An
optimized value for threshold‘s β1 and β2 plays significant role
for concluding the suspected process as either trusted or
variant of a trusted or untrusted. In the case study using β1 as 1
and β2 as 0.9 shows the best performance on the host under
consideration. It is also observed higher β1 moves less
occurring trusted processes to a variant of trusted process and
higher β2 moves a variant of trusted to untrusted process.

Hence β1 and β2 has impact on false negative cases. A lower
value of β2 moves untrusted process to variant of trusted
process and variant of trusted to trusted process. Hence β2 has
impact on false positive cases. So an optimized value of β1 and

β2 has significant impact on the performance of the system. It
is also to be understood that the model's performance relies on
the agreed list of trusted processes by the user on a specific
host. The data collection for the training of process class
prediction model is to be done under a proper supervision, as a
biased data may result in higher false negatives or higher false
positives. This system is found effective with memory based
dynamic analysis for detection of anomaly or deviation from
its normal operation with reference to known or trusted In-
memory processes of a specific host. This system may help to
have zero-day detection with respect to the presence of
anomalous In-memory processes on a specific host which can
be either an unknown program or a PUA or a malware. This
system can be extended to find anomalies with In-memory
processes considering a group of hosts with possible
communication among the hosts. Using an efficient protocol
for exchanging information about processes may help in
reducing false negative or false positive cases. Analysis of
communication cost with expectations in decrease in false
positive and false negative cases may be crucial in
performance evaluation of the system.

REFERENCES

[1] Quick Heal threat report (2019): https://www.quickheal.co.in/
documents/threat-report/QH-Annual-Threat-Report-2019.pdf.

[2] Internet Security threat report, Symantec (2019) : https://docs.broadcom.
com/doc/istr-24-2019-en.

[3] Sihwail, Rami & Omar, Khairuddin & Zainol Ariffin, Khairul Akram.
(2018). A survey on malware analysis techniques: static, dynamic,
hybrid, and memory analysis. 8. 1662. 10.18517/ijaseit.8.4-2.6827.

[4] E. Gandotra, D. Bansal, and S. Sofat, ―Malware Analysis and
Classification: A Survey,‖ J. Inf. Secur., vol. 05, no. 02, pp. 56–64,
2014.

[5] P. V. Shijo and A. Salim, ―Integrated static and dynamic analysis for
malware detection,‖ in Procedia Computer Science, 2015, vol. 46, pp.
804–811.

[6] Watson, Michael & Shirazi, Syed Noorulhassan & Marnerides, Angelos
& Mauthe, Andreas & Hutchison, David. (2015). Malware Detection in
Cloud Computing Infrastructures. IEEE Transactions on Dependable
and Secure Computing. 13. 1-1. 10.1109/TDSC.2015.2457918.

[7] R. Mosli, R. Li, B. Yuan, and Y. Pan, ―Automated malware detection
using artifacts in forensic memory images,‖ in 2016 IEEE Symposium
on Technologies for Homeland Security, HST 2016, 2016, pp. 1–6.

[8] C. Rathnayaka and A. Jamdagni, ―An efficient approach for advanced
malware analysis using memory forensic technique,‖ Proc. - 16th IEEE
Int. Conf. Trust. Secur. Priv. Comput. Commun. 11th IEEE Int. Conf.
Big Data Sci. Eng. 14th IEEE Int. Conf. Embed. Softw. Syst., pp. 1145–
1150, 2017.

[9] Sanz, Borja & Santos, Igor & Ugarte-Pedrero, Xabier & Laorden, Carlos
& Nieves, Javier & Bringas, Pablo. (2014). Anomaly Detection Using
String Analysis for Android Malware Detection. 10.1007/978-3-319-
01854-6_48.

[10] C. W. Tien, J. W. Liao, S. C. Chang, and S. Y. Kuo,(2017) ―Memory
forensics using virtual machine introspection for Malware analysis,‖ in
2017 IEEE Conference on Dependable and Secure Computing, 2017, pp.
518–519.

[11] S. Kim, J. Park, K. Lee, I. You, and K. Yim, (2012): ―A Brief Survey on
Rootkit Techniques in Malicious Codes,‖ J. Internet Serv. Inf. Secur.,
vol. 3, no. 4, pp. 134–147, 2012.

[12] Navaki Arefi, Meisam & Alexander, Geoffrey & Rokham, Hooman &
Chen, Aokun & Faloutsos, Michalis & Wei, Xuetao & Oliveira, Daniela

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

194 | P a g e

www.ijacsa.thesai.org

& Crandall, Jedidiah. (2018): FAROS: Illuminating In-memory
Injection Attacks via Provenance-Based Whole-System Dynamic
Information Flow Tracking. 231-242. 10.1109/DSN.2018.00034.

[13] A. Hosseini, ―Ten Process Injection Techniques: A Technical Survey of
Common and Trending Process Injection Techniques,‖ 2017. [Online].
Available: https://www.endgame.com/blog/technicalblog/ ten-process-
injection-techniques-technical-survey-common-andtrending-process.

[14] Amanda Steward. (2014): FireEye DLL Side-Loading: A Thorn in the
Side of the Anti-Virus Industry. Retrieved March 13, 2020.

[15] Microsoft. (2018, May 31): About Side-by-Side Assemblies. Retrieved
March 13, 2020.

[16] K., Sudhakar & Kumar, Sushil. (2019): An emerging threat Fileless
malware: a survey and research challenges. In Cyber Security 3. 1.

Publisher: Springer (Biomed Central Ltd.) Dec- 2019
DOI:10.1186/s42400-019-0043-x.

[17] Cheng, J.Y.C., Tsai, T.S., Yang, C.S., (2013): An information retrieval
approach for malware classification based on Windows API calls. Int.
Conf. on Machine Learning and Cybernetics, p.1678-1683.
https://doi.org/10.1109/ICMLC.2013.6890868.

[18] Windows Sysinternals Process Utilities: https://docs.microsoft.com/en-
us/sysinternals/downloads/process-utilities.

[19] Baeza-Yates, R.A., Ribeiro-Neto, B (1999): Modern Information
Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA (1999).

[20] Salton, G., McGill, M.: Introduction to modern information retrieval.
McGraw-Hill New York (1983).

https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/rpt-dll-sideloading.pdf
https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/rpt-dll-sideloading.pdf
https://doi.org/10.1109/ICMLC.2013.6890868
https://docs.microsoft.com/en-us/sysinternals/downloads/process-utilities
https://docs.microsoft.com/en-us/sysinternals/downloads/process-utilities

