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Abstract—The use of Computer systems to keep track of day 

to day activities for single-user systems as well as the 

implementation of business logic in enterprises is the demand of 

the hour. As it plays a vital role in making available information 

on one click as well as impacts improvement in business and 

influences the profit or loss. There is always a possible threat 

from unauthorized users as well as untrusted or unknown 

applications. Trivially a host is intended to run with a list of 

known or trusted applications based on user’s preference. Any 

application beyond the trusted list can be called as untrusted or 

unknown application, which is not expected to run on that host. 

Untrusted applications becomes available to a host from sources 

like websites, emails, external storage devices etc. Such untrusted 

programs may be malicious or non-malicious in nature but the 

presence must be detected, as it is not a trusted program from 

user’s view point. All such programs may target the system 

either to steal valuable information or to decrease the system 

performance without the knowledge of the user of the system. 

Antimalware vendors provide support to defend the system from 

malicious programs. They do not include users trusted program 

list in to consideration. It is also true that new instances of 

attacks are found very frequently. Hence there is a need for a 

system which can be self-defending from anomalous activities on 

the system with reference to a trusted program list. In this paper 

design of an “Anomalous In-Memory Process detector based on 

the use of the DLL (Dynamic Link Library) sequence” is 

proposed, which does accountability of trusted programs 

intended to run on a particular host and create a knowledgebase 

of classes of processes with TF-IDF (Term Frequency-Inverse 

Document Frequency) multinomial logistic regression based 

learning approach. This knowledgebase becomes useful to map a 

suspected In-memory process to a class of processes using loaded 

DLL’s of it. With a cross-validation approach, the suspected 

process and processes of its predicted class are used to conclude 

whether it is a trusted, variant of the trusted or untrusted process 

for that host. Not necessarily the untrusted program is a malware 

but it may be a program not listed in the trusted program list for 

the specific host. Hence this work aims to detect anomaly in 

concern with list of trusted applications based on user’s 

preference by doing a dynamic analysis on In-memory processes. 

Keywords—Anomalous In-memory Process; dynamic analysis; 

DLL hijacking; DLL injection; TF-IDF multinomial logistic 

regression 

I. INTRODUCTION 

In the 21
st
 century use of computers is becoming quite 

obvious in all fields, starting with the banking sector, 
education sector, health sector, e-commerce, etc. The use of 

computers is not only limited to such big domains; but also are 
extended to be used by individuals in their home‘s, small 
offices, and various goods‘ retail counters to keep track of 
their day to day activities. Whether large commercial sectors 
or small retail counters or individual use of computers 
increases day by day with the availability of Internet facilities. 

On the contrary, the risk of the exploitation of data and 
information kept on computers also increases day by day 
because of the exposure of computers to the outside world due 
to internet connectivity. There are intelligent programmers, 
who somehow put a piece of code (a small program which is 
unknown or untrusted) on a computer of interest with an 
intention of either stealing or misusing the data kept on 
computers or making computers non operable. Such programs 
are referred to as malware or potentially unwanted application 
(PUA). There exist many categories of such malware like 
viruses, worm, spyware, adware, ransomware, etc. The 
adverse effect of the presence of malware on a computer 
system scales from a very small impact to an extremely large 
impact. PUA do not have any specific types as they seem to be 
normal programs but there may a possible threat due to the 
presence of them. 

Quick heal annual threat report 2019 says that prediction 
of becoming vicious about ransomware happened to be true in 
2018. Only in one month, the ransomware detection reached 
2Million in 2018. Also, the prediction about small and 
medium-sized businesses to be in the red zone became true. 
Cryptojacking is a new buzzword suppressing ransomware, 
which is a process of using someone‘s computer to earn 
money. The only sign of a computer used for cryptojacking is 
a little slower computer performance while executing 
programs. The CPU is targeted up to 100% by cryptojacking 
which leads to hardware faults slowly. The owner of the 
compromised computer becomes unaware of being a victim of 
cryptojacking. The report says about detection of more than 
800k cases of cryptojacking in 2018. It also has given 
information about an Infector named W32.Pioneer.CZ1, 
which injects the files on to disk and then decrypts the 
malicious DLL present in the file and drops it to do malicious 
activities. ―Fig. 1‖ shows the frequency of attack of various 
malware types per day, per hour, and per minute referring to 
Quick heal threat report 2019 [1]. Internet security threat 
report, Symantec 2019 says 69 million events detected in 2018 
which is 4 times to cases in 2017. The report also speaks about 
PUA which is not necessarily harmful but may lead to security 
risks. The existence of such PUA may also result in Host-
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Based exploits. It also says about cases of Cryptojacking and 
its consequences. The report mentioned about supply chain 
attacks which target third party software by injecting code into 
its libraries. These libraries are integrated into larger software 
projects. Injection of code in to libraries can be understood as 
DLL injection, which is a possible approach of exploiting a 
host [2]. 

The case of infector W32.Pioneer.CZ1, supply chain attack 
and possibility of threat due to the presence of PUA points out 
a need of a system for real time detection of host based 
exploitations. Antimalware vendors do provide support in 
detecting malicious programs with signature based static 
analysis but they don‘t take users preference in to 
consideration. Hence some unwanted or unknown programs 
referring to users preferred list left undetected. Such unknown 
programs may be a malware or PUA, which is a possible 
threat to that host. These observations motivated to apply 
multi-class classification approach on known or trusted 
processes using their respective list of loaded DLL‘s on a host 
considering its users preferred list of programs. This 
knowledge helps in detecting a deviation from known In-
memory processes which is either a malfunctioned known 
process or unknown process or untrusted process using some 
potentially unwanted DLL or malfunctioned DLL. 

The organization of the remaining sections in this paper is 
as follows: Section 2 speaks about the related works on 
malware analysis considering In-memory processes and 
injection of unwanted DLL‘s. Section 3 speaks about the 
design of the System in detecting anomalies or deviations with 
respect to In-memory processes and their respective loaded 
DLL‘s. It is about designing an Anomalous In-Memory 
Process detector based on the use of DLL‘s, which learns the 
trusted programs intended to run on a particular host and 
creates multiple class of them referring their usage of DLL‘s. 
With a cross validation approach a suspected process gets 
validated with processes of a class it is mapped to and gets 
detected as either trusted or variant of trusted or untrusted for 
the specific host. Section 4 speaks about the experimental 
setup for the empirical evaluation of the system. Section 5 
describes the concluding remark of the work. 

 

Fig. 1. Malware Attack on Windows in 2019. 

II. RELATED WORK 

Analysis of the behavior of unknown programs like PUA, 
malware etc. is becoming truly diversified. Various forms of 
analysis are done on a system to identify a threat to the 
information stored on the computer. The analysis can be in the 
form of identification of untrusted programs available on 
secondary storage or anomalous In-memory processes. The 
approaches of analysis can be said as either static or dynamic 
or hybrid or memory-based [3]. The static analysis considers 
opcode‘s, N-gram opcode sequences, control flow graph as 
features to analyze further without executing the programs. 
The dynamic analysis considers function calls, API calls, 
function parameters, instruction traces, and instruction flows 
as features to analyze further after executing the programs [4]. 
The hybrid analysis is a combination of static analysis and 
dynamic analysis [5]. The memory-based analysis is also a 
kind of dynamic analysis that considers network connection 
information, changes in registry keys and In-memory 
processes and there DLL sequences for further analysis during 
the execution of programs [6, 7, 8]. With run time attributes of 
benign process using string analysis for anomaly detection in 
Android operating system is found effective [9]. Studying the 
behavior of malware is becoming popular with memory 
forensic techniques for malware injection and hidden 
processes [10]. DLL injection is a process where the malicious 
DLL gets injected on to an In-memory process and the control 
of execution gets transferred to that code block [11]. 
Reflective DLL injection has also gained popularity where 
they do malicious activities in memory only without leaving 
any footprint [12, 13]. 

A Windows application uses DLL files during runtime to 
load libraries. It tries to locate the DLL with a hierarchy of 
searches. First, it tries to find with the given path. But when it 
fails to locate, it searches at some predefined set of directories. 
Malware programs breaches this search order to load 
malicious DLL during run time. In this context, DLL-Side 
loading is becoming a very popular method for attacking 
Windows systems [14]. In such cases, the malware payload 
places the spoofed malicious DLL into a specific location so 
that the spoofed DLL gets loaded instead of legitimate DLL. 
Such DLL-Side loading bypasses the signature-based static 
analysis process. This DLL load order hijacking process to 
load a malicious DLL in run time can also be referred to as 
DLL hijacking. A variant of such an approach where a 
malware launcher loads the malicious DLL compromising a 
victim processes memory whereby loads the malicious DLL 
by creating a thread. Such an approach of entry of malicious 
DLL onto to system is referred to as DLL Injection. With this 
approach, the program loads unintended DLL‘s due to the 
presence of side-loading vulnerability of Windows side-by-
side manifests [15]. 

Typically when malware attacks, it makes available its 
payload physically on the system storage and gets loaded on to 
memory to do the malicious activity. In such cases either the 
traditional static analysis using signature-based detection 
becomes helpful or the dynamic analysis considering the 
various run-time behaviors of processes becomes helpful. But 
Fileless malware has become a new possible attack type, 
where the malware is not saving the payload on system 
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storage rather it malfunctions the trusted and legitimate 
processes of the Operating System. It injects the malicious 
program directly on to the compromised processes memory 
without dropping any file to the file system. As no physical 
file presents the Sandbox detection approach fails. Again as 
there is no possibility of having a signature, hence the 
signature detection also fails. Hence the detection complexity 
becomes too high for Fileless malware. The possibility of 
investigating Fileless malware is only limited to analysis of 
the behavior of the system using the snapshots of In-memory 
processes, which is considered here as Memory based analysis 
[16]. Information retrieval theory is applied with a dynamic 
analysis to extract API calls and system calls to classify 
malicious programs. They are stored in documents on which 
the TF-IDF weighting approach is applied to get a good 
accuracy of malware classification [17]. 

In this paper, a novel approach is proposed considering 
memory based dynamic analysis of In-memory processes in 
identifying any deviation from the trusted process list of a 
particular host. The DLL lists of In-memory processes are 
taken in to consideration for deciding a suspected process as 
either trusted or variant of trusted or untrusted for a specific 
host. The list of trusted in-memory processes are classified in 
to multiple classes considering the DLL sequences they use at 
various instances. A suspected process gets mapped in to one 
of the trusted class of processes based on its DLL sequence. 
For this multi-class classification DLL lists are formed as 
attribute vectors with Vector Space Model (VSM), on which 
TF-IDF multinomial Logistic regression is used to train the 
system. Objective of training process is to prepare a 
knowledgebase of classes of processes, which are considered 
as known or trusted and legitimate processes from the 
viewpoint of a particular user. This system can take an In-
memory process at any random instance of time and do a 
prediction of its class using the learned knowledge base. The 
cosine similarity metric is used to cross-validate a suspected 
process with all the processes of the predicted class before 
concluding it as either a trusted or variant of a trusted or 
untrusted process for that specific host. In this work a list of 
processes are declared as trusted processes from the user‘s 
regular use viewpoint. A variant of a trusted process is 
understood as a process of an updated version application 
from trusted list. Any other process other than a trusted or a 
variant of trusted is understood as untrusted. 

III. SYSTEM DESIGN 

A. System Overview 

The anomalous In-memory process detection system can 
be divided into three parts: data preprocessing, the process 
class prediction model of the system, and cross-validation of 
the predictors result. Data preprocessing is about collecting 
the DLL sequences loaded for all In-memory processes with 
reference to a given list of trusted applications of the specific 
host, using Windows Sysinternals Process utilities like 
Pslist.exe and Listdlls.exe [18]. Pslist.exe shows information 
about In-memory processes. Listdlls.exe shows the list of 
DLL‘s loaded for a specific process at that time instance. A 
TF-IDF weight matrix gets generated defining weight of each 
DLL in the collected DLL sequences for the list of In-memory 

processes. The said system applies multinomial classification 
on the data set of In-memory processes to classify them in to 
multiple classes of processes based on DLL sequences as 
feature vector. The process class prediction model is trained 
and tested using the generated data set. For the training and 
testing phase of the system multinomial Logistic Regression, 
multinomial Naive Bayes, and Support Vector Classifier 
(SVM-SVC for multiclass problem) mechanisms are used. 
The training phase of the model uses the approach of learning 
the usual activity of a host from In-memory processes and 
their respective DLL sequences to create the knowledge base 
of processes as multiple classes. The testing phase of the 
model uses the knowledge gained in the training phase, to 
decide accuracy of the system in classifying In-memory 
processes to their class. Cosine similarity measure is used for 
Cross Validation of the predictors result. With cosine 
similarity the DLL sequence of a suspected In-memory 
process is compared with DLL sequences of processes of the 
predicted class to verify the similarity of the suspected process 
and subsequently to say whether the process is a trusted, 
variant of trusted or untrusted. 

B. Data Preprocessing 

There are various run time attributes of an In-memory 
process, which speaks about the behavior of it. Some 
attributes are process path, process name, process priority, 
number of threads, number of handles, private virtual 
memory, path of all the DLL‘s loaded, etc. In this system, the 
focus is given on two run time attributes namely path of the 
process and path of all the DLL‘s loaded. Pslist.exe is used to 
collect all the process names and their respective process ids. 
―Fig. 2‖ represents a sample output which is a list of elements 
a.k.a. In_Memory_Process_List where each element is a 2-
tuple say Process_tuple (pname,pid) containing process name 
and process id for all the In-Memory processes at a particular 
time instance. 

Listdlls.exe is used to collect all the DLL‘s loaded on to 
the memory for each element of the In_Memory_Process_List 
at that time instance. ―Fig. 3‖ represents the absolute path of 
the program corresponding to one of the In-memory process 
and the absolute path of all its loaded DLL‘s. There will be a 
list of such records based on the number of In-memory 
processes at that time instance. Let that be referred as a 
Database DLL List a.k.a. DBDLLList[].The algorithmic steps 
for generating a collection of DBDLLList‘s at various time 
instances is explained in Algorithm 1 which is a.k.a. 
IMPDLLList. 

 

Fig. 2. In_Memory_Process_List at a Time Instance. 
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Fig. 3. One Record of DBDLLList[]. 

Algorithm 1: IMPDLLList 

Require: Pslist.exe and Listdlls.exe are expected to be present 

locally. They are to be invoked with administrative rights. 

Ensure: DBDLLList[] A data set consisting of records of all 

the In-memory processes, where each record will be the 

absolute path of executable of the In-memory process and 

absolute path of all the DLL‘s loaded at that particular time 

instance. Fig. 3 represents one record of DBDLLList[]. 

1. In_Memory_Process_List = Os.System(Pslist.exe) 

2. Initialize DBDLLList[] = NULL 

3. For each Process_tuple in In_Memory_Process_List 

a. Process_Id =Process_tuple[1] 

b. Temp_DLL_List=Os.System(Listdlls.exe, Process_Id) 

c. Temp_DLL_List=Prune.out(‗\s+‘,‘ ‗,Temp_DLL_List) 

d. DBDLLList[].append(Temp_DLL_List) 
4. Return DBDLLList[] 

From ―Fig. 3‖ related to one of the records of 
DBDLLList[], it is observed that absolute path of program as 
well as DLL‘s contains symbols like forward-slash (/), hyphen 
(-), and dot (.) , which are considered as special characters and 
separators in various platforms. To fit the collected data well 
in the system, an encryption process is carried out on 
processes and DLL‘s. A unique class label say p_i is assigned 
for all instances of a process-i considering its absolute path. 
Each individual DLL in the DLL sequences is encoded with a 
unique id, named as dll_i. The process of encryption on 
DBDLLList[] is explained in Algorithm 2 which is a.k.a. 
Encrypt_DBDLLList. It helps in preparing the data set ready 
for TF-IDF weight matrix construction. 

Algorithm 2: Encrypt_DBDLLList  

Require: DBDLLList[] : Collection of records as shown in 

―Fig. 3.‖ 

Ensure: A list EncrDBDLLList[] and a dictionary 

DictDBDLLList{} as explained below. 

(a) EncrDBDLLList[]: An encrypted set consisting of records 

of all the In-memory processes where each record will be in 

the form of a process class label (p_i) followed by a sequence 

of DLL id‘s (dll_i). A sample of the expected output is shown 

in ―Fig. 4.‖ 

(b) DictDBDLLList{}: A dictionary of {key: value} pairs. 

When the key is some p_i, the value is the absolute path of the 

respective In-memory process. When the key is some dll_i, 

the value is the absolute path of respective DLL. A Sample of 

the expected output is shown in ―Fig. 5.‖ 

1. Initialize EncrDBDLLList[]=NULL 

2. Initialize DictDBDLLList{}=EMPETY 

3. For each record in DBDLLList[] 

a. words = split ( record , ― ―) 

b. If words[0] is in DictDBDLLList.values() 

p_i= DictDBDLLList.values(words[0]) 

EncrDBDLLList[].append(p_i) 

Else 

p_j= generate_next_process_class_id() 

DictDBDLLList[p_j]= words[0] 

EncrDBDLLList[].append(p_j) 

c. For each word in words[1..n] 

If word is in DictDBDLLList.values() 

dll_i= DictDBDLLList.values(word) 

EncrDBDLLList[].append(dll_i) 

Else 

dll_j= generate_next_dll_id()  

DictDBDLLList[dll_j]= word 

EncrDBDLLList[].append(dll_j) 

d. EncrDBDLLList[].append(LineBreak) 
4. Return EncrDBDLLList[] and DictDBDLLList{} 

 

Fig. 4. Some Records of EncrDBDLLList[]. 

 

Fig. 5. Some Records of DictDBDLLList{}. 
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C. Process Class Prediction Model 

The records present in EncrDBDLLList[] are being 
tokenized using the classical separator blank space. With this 
an In-memory process P is represented as a text       
*             +where each Si is considered as a string of the 
text. Here S0 represents the process class p_i for an In-memory 
process. S1 to Sn represents DLL sequence of that process 
where each Si represents dll_i for      . Let C is the set of 
the text representation of m In-memory processes such 

that  *     
       

       
         

 + , where each      
 represents 

the text representation of i
th

 In-memory process. Further C is 
split into two lists named as Ctags and Cdocs. Where S0 will be 

included in Ctags when          
            

     Sj will be 

included in Cdocs when         
                      

  
    

The use of VSM is very common in representing textual 
documents algebraically as vectors in a multidimensional 
space [19]. The components of such a vector represent the 
importance of a term in a document. TF-IDF is very popular in 
evaluating how important a word is in a document. TF-IDF 
weighting schema is the most popularly used approach in 
converting textual documents to a VSM [20]. 

In this context, Ctags is the document representing the list 
of classes of In-memory processes, where existence of more 
than 3 classes observed. Cdocs is the list of DLL‘s for process 
classes in Ctags. Cdocs is treated as a textual document, which is 
the list of the text representation of DLL sequences of all In-
memory processes. The TF-IDF weighting schema is applied 
to find out the VSM view of the system for a particular host. 
Considering TF-IDF over raw frequencies of occurrences of 
words is to scale down the impact of very frequently occurring 
words in a document which is empirically less informative 
than the words of less frequency. Cdocs is represented by a 
―Feature-DLL to In-Memory-Process‖ weight matrix, where 
the element (i,j) illustrates an association of i

th 
DLL to j

th
 In-

memory Process. Using TF-IDF weighting schema, the weight 
of i

th 
DLL to j

th
 In-Memory Process is denoted as      and 

defined as given in (1). 

                              (1) 

      in (1) is the L2 normalized term frequency for i
th

 DLL 

with respect to the j
th

 In-memory process. The Term 
Frequency      is defined as given in (2). 

      
    

√∑ (    )
 

 

              (2) 

Here      is the number of occurrences of i
th 

DLL in j
th

 In-

memory Process, and √∑ (    )
 

  is the magnitude of the 

vector representation of DLL‘s present in the j
th

 In-memory 
Process. 

     in (1) is the Inverse document frequency for i
th

 DLL 
in Cdocs. The Inverse Document Frequency     is defined as 
given in (3). 

        (
|     |

  |     |        |
)            (3) 

Here |     |  represents the total number of In-memory 
processes and |     |        | represents the number of In-
memory processes in Cdocs containing the i

th 
DLL i.e. Si. Using 

(1) W the weight matrix of Cdocs is found for the ‗Feature-DLL 
to In-Memory-Process‘ matrix representation of the system. W 
is typically a sparse matrix and tells statistically how 
important a DLL is to an In-memory process in the collection 
of all the In-memory processes. 

Weight matrix W is then split into a training and testing 
data set with 3:1 ratio with random sample selection. 
Multinomial logistic regression, multinomial Naïve Bayes, 
and SVM-SVC (SVC) learning methods are applied on the 
proposed model. The objective is to choose the classifier 
which results with highest accuracy in process class prediction 
by using a DLL sequence as attribute vector. ―Fig. 6‖ shows 
the functional representation of the model. 

 

Fig. 6. Process Class Prediction Model. 

D. Cross Validation 

The cosine similarity measure is used to cross-validate the 
suspected process with all the processes of the predicted 
process class. It is used to find the relative closeness of the 
suspected process with the trusted processes of the predicted 
class. Cosine Similarity is a similarity distance measure which 
finds the cosine angle between two vectors u and v, which is 
defined as given in (4). 

   ( )  
   

| | | |
               (4) 

Here     is the dot product of two vectors u and v. 
| |  | |represents product of magnitudes of vectors u and v , 
respectively. Cosine angle as 0

o
 (i.e. Cosine distance measured 

as 1) between two vectors concludes both are similar where as 
an angle close to 0

o
 (i.e. Cosine distance measured is close to 

1) indicates they are closely similar. What must be the 
accepted value to consider case of closely similar vectors to 
case of similar vectors depends on field of application and 
experiential results? But a larger angle says they are 
dissimilar. 

The proposed system has the objective of detecting 
anomalous In-memory processes on a specific host with 
reference to trusted applications list. With VSM and TF-IDF 
any In-memory process can be represented as a weighted 
vector considering DLL sequence as attribute vector. Hence 
any suspected process can be applied on the model to find its 
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process class. All the processes of the predicted process class 
can be compared with the suspected process using the Cosine 
similarity measure. This cosine similarity distance is used to 
conclude whether the suspected process is to be considered as 
trusted, variant of trusted or untrusted. The algorithmic steps 
of cross validation are explained in Algorithm 3 which is 
a.k.a. Cross_validate_suspected_process. The algorithm needs 
a Suspected_Process information similar to the sample record 
shown in ―Fig. 3‖, i.e. in the form of [process_path, dll1_path, 
dll2_path,….,dllm_path]. It also refers EncrDBDLLList[] and 
DictDBDLLList{} which are found during learning stage of 
model using Algorithm 2 Encrypt_DBDLLList, to encode 
the Suspected Process information such that it can be applied 
on Process Class Prediction Model. β1 and β2 are the threshold 
values for considering cosine distance measure to decide 
process as a trusted and a variant of some trusted program, 
respectively. 

The Suspected_Process will be a trusted process if the 
number of processes of the predicted class whose Cosine 
distance is measured as 1 with the Suspected_Process 
becomes   the threshold β1. Here β1 will be the minimum 
count for the number of processes of the predicted class whose 
Cosine distance is measured as 1 with the Suspected_Process. 
An optimize value for β1 to be found from experiment for a 
specific host. 

The Suspected_Process will be a variant of some trusted 
process if the average of Cosine distances measured between 
the processes of predicted class and the Suspected_Process 
becomes   the threshold β2. Here β2 will be the minimum 
average cosine distance between the processes of predicted 
class and the Suspected_Process. An optimize value for β2 to 
be found from experiment for a specific host. 

The Suspected_Process which fails to qualify the threshold 
β1 followed by β2 will be an untrusted process. 

Algorithm 3: Cross_validate_suspected_process 

Require: Suspected_Process Information, EncrDBDLLList[] 

and DictDBDLLList{} as explained above. β1 is the threshold 

to conclude Suspected_Process is trusted and β2 is the 

threshold to conclude Suspected_Process is a variant of some 

trusted process as explained above. 

Ensure: Trusted or A variant of trusted or Untrusted as 

explained above 

1. encr_process= Encrypt_DBDLLList (Suspected_process , 

DictDBDLLList{}) 

2. predict_process_class= 

ProcessClassPredictionModel(encr_process) 

3. Initialize verify_proces_list[]=NULL 

4. verify_proces_list.append(encr_process) 

5. For p_class in EncrDBDLLList[] 

If (p_class[0] == predict_process_class) 

verify_proces_list.append(p_class[1..n]) 

6. TF_IDF_mtrix= tf_idf_vectorizer(verify_proces_list[]) 

7. Cosine_mesure[]=cosine_similarity(TF_IDF_mtrix[0], 

TF_IDF_mtrix[1..n]) 

8. If (count(Cosine_mesure[].value( ‗1‘)) >= β1) 

Print (Trusted) 

Else if (average(Cosine_mesure[]) >= β2) 

Print (A variant of Trusted Application hence 

assumed as trusted) 

Else 

 Print (Untrusted) 

9. End 

IV. EXPERIMENTAL SETUP AND EVALUATION 

For the experimental setup and evaluation of the proposed 
system following steps are taken. 

 A questionnaire is used to collect the list of application 
programs with reference to specific users‘ interest. It is 
considered as the trusted application list for this host 
and any other application is assumed as untrusted. 
Table I and Table II show a sample list of system 
processes and trusted processes of the host 
respectively. Combination of such system processes 
and processes of the trusted application is considered 
as the list of trusted processes on which anomalous 
activity is monitored. 

 The Algorithm-1 IMPDLLList is invoked with a fresh 
installation of the Windows operating system along 
with all the listed trusted application software‘s. The 
invocation of the algorithm is scheduled depending on 
use of various application programs time to time. 
IMPDLLList is invoked aperiodically for 
approximately 20 times a day for a continuous run of a 
specific time duration (e.g. 5 hours a day) to generate 
DBDLLList[]. With the above-said schedule 
IMPDLLList is invoked for 10 days to generate the 
final trusted DBDLLList[], which contained around 
10000 records. One record of DBDLLList[] is shown in 
―Fig. 3.‖. 

 The algorithm Encrypt_DBDLLList is invoked on the 
trusted DBDLLList[], to generate EncrDBDLLList[] 
and DictDBDLLList{}. The model is trained and tested 
with training and testing set of 3:1 ratio with random 
sample selection on these 10000 records. 

The proposed model works on a multi-class problem 
where the In-memory processes of a host are classified into 
several classes and a suspected process gets predicted to 
belong to a specific class of the processes. The performance of 
three classifiers are compared in terms of accuracy, {Micro | 
Macro | Weighted} Precision, {Micro | Macro | Weighted} 
Recall and {Micro | Macro | Weighted} F1-score considering 
the multinomial classification approaches named multinomial 
Logistic Regression, multinomial Naïve Bayes and SVM-SVC 
(further referred as SVC in this paper). For a binomial 
classification case evaluation of performance metrics is done 
based on positive class and negative class, whereas for a 
multinomial classification case evaluation of performance 
metrics is done based on One-vs.-Rest (OvR) classes. For each 
class in case of multinomial classification the below 
mentioned basic parameters are found, which are used to 
evaluate overall performance metrics of the model. The basic 
parameters referred above are True Positive (TP) — the 
classifier correctly predicts the class, True Negative (TN) — 
the classifier correctly predicts which are not of the class, 
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False Positive (FP) — the classifier incorrectly predicts other 
classes to be of the class and False Negative (FN) — the 
classifier incorrectly predicts the class to be of other class. 
Table III explains pictorially a sample case of three classes in 
which how TP, FP, FN, and TN for CLASS1 to be considered 
in a multinomial classification scenario. 

In the proposed model the below-given performance 
metrics are calculated for three multi-classification approaches 
named as OvR Logistic Regression, OvR Naïve Bayes and 
OvR SVC. Recall for a class says a fraction of all samples of 
that class which is predicted correctly, which is evaluated as 
given in (5). Precision for a class says a fraction of all 
predicted samples of that class which is predicted correctly, 
which is evaluated as given in (6). F1 score of a class will be 
the harmonic mean of precision and recall of that class, which 
is evaluated as given (7). 

       
  

     
               (5) 

          
  

     
             (6) 

           
                

                
            (7) 

TABLE I. LIST OF SYSTEM PROCESSES TO SUPPORT TRUSTED 

PROCESSES 

Process name Process Path 

Cmd C:\Windows\System32\cmd.exe 

Conhost C:\Windows\system32\conhost.exe 

Conhost C:\Windows\system32\conhost.exe 

Csrss C:\Windows\system32\csrss.exe 

Csrss C:\Windows\system32\csrss.exe 

Dwm C:\Windows\system32\Dwm.exe 

Hkcmd C:\Windows\System32\hkcmd.exe 

Igfxpers C:\Windows\System32\igfxpers.exe 

Igfxsrvc C:\Windows\system32\igfxsrvc.exe 

Igfxtray C:\Windows\System32\igfxtray.exe 

Lsass C:\Windows\system32\lsass.exe 

Lsm C:\Windows\system32\lsm.exe 

SearchIndexer C:\Windows\system32\SearchIndexer.exe 

Services C:\Windows\system32\services.exe 

Smss C:\Windows\System32\smss.exe 

Spoolsv C:\Windows\System32\spoolsv.exe 

Svchost C:\Windows\system32\svchost.exe 

Svchost C:\Windows\System32\svchost.exe 

Svchost C:\Windows\system32\svchost.exe 

Svchost C:\Windows\system32\svchost.exe 

Taskhost C:\Windows\system32\taskhost.exe 

Wininit C:\Windows\system32\wininit.exe 

winlogon C:\Windows\system32\winlogon.exe 

wuauclt C:\Windows\system32\wuauclt.exe 

WUDFHost C:\Windows\System32\WUDFHost.exe 

explorer C:\Windows\Explorer.EXE 

TABLE II. A SAMPLE LIST OF TRUSTED PROCESSES OF A HOST 

Process namez Process Path 

notepad C:\Windows\system32\NOTEPAD.EXE 

devcpp C:\ProgramFiles\Dev-Cpp\devcpp.exe 

firefox C:\ProgramFiles\MozillaFirefox\firefox.exe 

SnippingTool C:\Windows\system32\SnippingTool.exe 

notepad++ C:\ProgramFiles\Notepad++\notepad++.exe 

Vlc C:\ProgramFiles\VideoLAN\VLC\vlc.exe 

FreeCell C:\ProgramFiles\MicrosoftGames\FreeCell\FreeCell.exe 

Hearts C:\ProgramFiles\MicrosoftGames\hearts\hearts.exe 

Chess C:\ProgramFiles\MicrosoftGames\chess\chess.exe 

chrome C:\ProgramFiles\Google\Chrome\Application\chrome.exe 

EXCEL C:\ProgramFiles\MicrosoftOffice\Office12\EXCEL.EXE 

Zoom C:\Users\binu\AppData\Roaming\Zoom\bin\Zoom.exe 

AcroRd32 
C:\ProgramFiles\Adobe\AcrobatReaderDC\Reader\AcroR

d32.exe 

pythonw 
C:\Users\binu\AppData\Local\Programs\Python\Python36-
32\pythonw.exe 

POWERPNT 
C:\ProgramFiles\MicrosoftOffice\Office12\POWERPNT.

EXE 

WINWORD 
C:\ProgramFiles\MicrosoftOffice\Office12\WINWORD.E
XE 

TABLE III. TP, FP, TN, AND FN FOR CLASS1 IN MULTINOMIAL CASE 

Predicted Class 
True Class 

Class 1 Class 2 Class 3 

Class 1 TP FP 

Class 2 
FN TN 

Class 3 

For a multi-class scenario: Micro precision, Micro recall 
and Micro F1Score are calculated globally considering total 
TP, total FP, and total FN of the model instead of considering 
individual classes. In such case Accuracy of the model is same 
as Micro precision, Micro Recall, and Micro F1Score 
measured for the model globally. Macro precision, Macro 
recall and Macro F1Score are calculated considering the 
precision, recall, and F1Score of individual classes and taking 
the un-weighted mean of the measures. The Weighted 
precision, weighted recall and Weighted F1Score are 
calculated considering the precision, recall, and F1Score of 
individual classes and taking the weighted mean of the 
measures. The weight for each class is the total number of 
samples of that class. Accuracy and all the calculated Micro, 
Macro and Weighted performance metrics for the considered 
classifiers on the testing data is shown in Table IV. 

The comparison of accuracy for the three classifiers OvR 
Logistic Regression, OvR Naïve Bayes and OvR SVC is 
plotted in ―Fig. 7‖. It has been found that the performance of 
OvR SVC is better than OvR Naïve Bayes but OvR Logistic 
Regression is found better than OvR SVC. The comparison of 
precision, recall and F1score for all three classifiers is plotted 
in ―Fig. 8‖, ―Fig. 9‖ and ―Fig. 10‖, respectively. Considering 
all these metrics, it is found that OvR Logistic Regression 
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Classifier is most efficient for the model in comparison to 
other two classifiers. OvR Logistic Regression Classifier 
outperformed others with accuracy rate as 97% in predicting a 
process to its class and highest rates in precision, recall and 
F1Score. 

To ensure the result of the system in identifying a 
suspected process as either trusted or variant of a trusted or 
untrusted, the processes of predicted class for a suspected 
process need to be cross-validated. Cross-validation of the 
suspected process is done with processes of predicted class 
considering cosine distance measure. As the OvR Logistic 
Regression classifier resulted with higher accuracy over the 
other two, it is chosen to predict the class of a suspected 
process at any time instance. As explained in Algorithm 3 
Cross_validate_suspected_process, Cosine distance is 
measured between DLL sequence vector of a suspected 
process and DLL sequence vectors of all the processes of the 
predicted class. The calculated list of cosine distance measures 
are used to reach a conclusion about the suspected In-memory 
process as either a trusted or a variant of trusted or untrusted 
type for the specific host. To evaluate the systems 
performance 300 processes of mixed samples are selected 
from the considered host. In these samples 200 processes are 
from trusted process list, 40 processes are from variant of the 
trusted process list and 60 processes are neither from the 
trusted list of processes nor from variant of any trusted 
process. Table V shows the confusion matrix for the 300 
processes considered as suspected processes, which are 
initially applied to process class prediction model and further 
Cross validated using cosine distance measure. During the 
Cross validation of suspected process with processes of 
predicted class the optimized threshold value for β1 and β2 are 
calculated by several iterations. For the considered host the 
optimized value for β1 is found as 1, which is the minimum 
number of processes from the predicted class with cosine 
distance as 1 to the suspected process. The optimized value for 
β2 is found as 0.90, which is the average cosine distance of 
processes from the predicted class to the suspected process. 
―Fig. 11‖ speaks about precision and recall of the case study 
on the preferred host. In all cases, precision is above 95%. 
Whereas for trusted and untrusted processes recall is more 
than 93%, but for variant of process it is 84%. 

TABLE IV. PERFORMANCE METRICS OF THE 3 MULTINOMIAL 

CLASSIFIERS 

Performance metrics OvR Log Reg OvR Naïve Bayes OvR SVC 

Accuracy 0.97 0.88 0.92 

Micro Precision 0.97 0.88 0.92 

Micro Recall 0.97 0.88 0.92 

Micro F1-score 0.97 0.88 0.92 

Macro Precision 0.79 0.48 0.75 

Macro Recall 0.8 0.5 0.76 

Macro F1-score 0.79 0.47 0.75 

Weighted Precision 0.95 0.7 0.9 

Weighted Recall 0.97 0.88 0.92 

Weighted F1-score 0.96 0.74 0.91 

 

Fig. 7. Accuracy Comparison of the 3 Classifiers. 

 

Fig. 8. Precision Comparison of the 3 Classifiers. 

 

Fig. 9. Recall Comparison of the 3 Classifiers. 

 

Fig. 10. F1Score Comparison of the 3 Classifiers. 
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TABLE V. A CASE STUDY OF CROSS VALIDATION FOR THE SPECIFIC 

HOST 

Prediction Cross 

Validated 

Actual Cases applied to Model 

Trusted Variant of Trusted Untrusted 

Trusted 191 2 1 

Variant of trusted 5 38 2 

Untrusted 4 0 57 

 

Fig. 11. Recall and Precision after Cross Validation of the Specific Host. 

V. CONCLUSION 

The said system considers the trusted process list of a 
specific host as a multi-class problem considering DLL 
sequences as attribute vectors for In-memory processes. The 
objective of the system is to detect any deviation in the In-
memory processes of the specific host. The system works in 
two stages. First stage is the process class prediction model, 
which is used to predict the class of a suspected process 
referring its DLL sequence as attribute vector. Second stage is 
Cross validation of the suspected process with the processes of 
predicted class. Three different multinomial classification 
approaches considered during evaluation of the process class 
prediction model where OvR Logistic Regression is proven to 
be the best performer compared to others. With OvR Logistic 
Regression 97% of accuracy and more than 95% of weighted 
precision, recall, and F1 score achieved for the model. To 
identify anomaly or deviation with some In-memory process 
during Cross validation of the suspected process with 
processes of the predicted class, use of cosine distance 
measure is found very effective. The case study during 
evaluation of system shows precision above 95% for all 
trusted, variant of trusted and untrusted processes. Recall of 
variant of trusted process is found as 84% where as 93% for 
trusted and untrusted processes. These results are quite 
impressive for finding any deviation with respect to In-
memory processes of the host under consideration. An 
optimized value for threshold‘s β1 and β2 plays significant role 
for concluding the suspected process as either trusted or 
variant of a trusted or untrusted. In the case study using β1 as 1 
and β2 as 0.9 shows the best performance on the host under 
consideration. It is also observed higher β1 moves less 
occurring trusted processes to a variant of trusted process and 
higher β2 moves a variant of trusted to untrusted process. 

Hence β1 and β2 has impact on false negative cases. A lower 
value of β2 moves untrusted process to variant of trusted 
process and variant of trusted to trusted process. Hence β2 has 
impact on false positive cases. So an optimized value of β1 and 

β2 has significant impact on the performance of the system. It 
is also to be understood that the model's performance relies on 
the agreed list of trusted processes by the user on a specific 
host. The data collection for the training of process class 
prediction model is to be done under a proper supervision, as a 
biased data may result in higher false negatives or higher false 
positives. This system is found effective with memory based 
dynamic analysis for detection of anomaly or deviation from 
its normal operation with reference to known or trusted In-
memory processes of a specific host. This system may help to 
have zero-day detection with respect to the presence of 
anomalous In-memory processes on a specific host which can 
be either an unknown program or a PUA or a malware. This 
system can be extended to find anomalies with In-memory 
processes considering a group of hosts with possible 
communication among the hosts. Using an efficient protocol 
for exchanging information about processes may help in 
reducing false negative or false positive cases. Analysis of 
communication cost with expectations in decrease in false 
positive and false negative cases may be crucial in 
performance evaluation of the system. 
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