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Abstract—In this paper, we introduce a new classification 

approach that learns class dependent Gaussian kernels and the 

belongingness likelihood of the data points with respect to each 

class. The proposed Support Kernel Classification (SKC) is 

designed to characterize and discriminate between the data 

instances from the different classes. It relies on the maximization 

of the intra-class distances and the minimization of the intra-

class distances to learn the optimal Gaussian parameters. In fact, 

a novel objective function is proposed to model each class using 

one Gaussian function. The experiments conducted using 

synthetic datasets demonstrated the effectiveness of the proposed 

algorithm. Moreover, the results obtained using real datasets 

proved that the proposed classifier outperforms the relevant state 

of the art approaches. 
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I. INTRODUCTION 

Classification finds applications in many real-world 
problems related to different fields. Such applications include, 
for example, analyzing customer data in the areas of 
commerce [1-2], detecting fraud to benefit industry and 
government [3], improving the learning process in education 
[4], predicting the climate for crop production [5], and 
assisting doctors in detecting anomalies in the healthcare [6]. 
In order to solve these classifications problems, many 
approaches have been reported in the literature [7]. However, 
most approaches assume that the different categories can be 
separated using linear boundaries, and thus, they are effective 
when the data has a simple geometric characteristic with well-
separated categories. 

Kernel-based approaches [8] have been proposed as an 
alternative solution. They map the data into a new feature 
space in such a way that categorizing classes with complex 
boundaries can be reduced to a simple categorization problem 
in the new feature space. Nevertheless, the choice of an 
optimal kernel that allows separating linearly the different 
categories of the data is a challenging problem [9]. The most 
common used kernel is the Gaussian kernel due to its 
statistical and geometrical proprieties [10]. However, it is 
sensitive to the choice of the Gaussian parameters. An 
exhaustive search of these parameters requires training the 
classifier many times to consider different possible values. In 
addition to the problems related to the selection of the set of 
possible values, and to the time complexity, the exhaustive 
search may also lead to an over-fitting problem. In fact, the 
Gaussian parameters are selected based on the value of a 
criterion function that is computed on the training data [11-

13]. Moreover, a global parameter over the entire data may be 
inappropriate when the different categories have large 
characteristics variations. 

In this paper, we propose a novel classification algorithm 
named the Support Kernel Classifier (SKC). It categorizes the 
data by learning a Gaussian kernel for each category. SKC is 
designed to learn the Gaussian parameters from the intrinsic 
geometric characteristics of the data. More specifically, the 
kernel parameters are learned by minimizing the intra-class 
distances and maximizing the inter-class distances 
simultaneously. Moreover, the proposed classifier learns the 
probability of each data point to belong to each class. In fact, 
it does not use crisp assignment where an instance belongs or 
not to a class, but rather learns its likelihood to belong to it. 
This is intended to better describe the data. Besides, it allows 
avoiding the over-fitting problem. 

The rest of the report is as follows: In Section II, we 
present the related works. Section III describes the proposed 
approach. The experimental results and analysis are outlined 
in Section IV. Finally, we conclude the report and highlight 
the future works in Section V. 

II. RELATED WORKS 

In this review, we focus on the main classification 
approaches based on the Gaussian kernel. More specifically, 
we focus on the approaches that learn the Gaussian parameters 
such as the support vector machine [15], the Gaussian mixture 
[16], and the radial basis function neural network [17]. 

A. Parameters Selection for the Support Vector Machine 

The typical SVM [15] algorithm was extended by mapping 
the input data vectors into high-dimensional feature space 
[18]. This mapping can be obtained by using a kernel function 
         [19]. Thus, the SVM discriminant function becomes: 

     ∑                             (1) 

Although any kernel function can be used, the Gaussian 
kernel is widely used. It is defined as: 

 (     )       
‖     ‖

 

                (2) 

The choice of the Gaussian parameter,  , affects the SVM 
performance. As shown in Fig. 1, when   is too small, the 
discriminant function surrounds each data point, which may 
lead to an over-fitting problem. Yet, if   is too large, the 
discriminant function surrounds all points, which yields 
mapping all points into a single one [20]. 
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(a)     (b)    (c) 

Fig. 1. Hyperplane Affected by the Value of σ: (a) σ=0.1, (b) σ=2.6 and (c) σ=10 [20]. 

Since the value of the Gaussian parameter has a large 
impact on the SVM classification results, several attempts have 
been proposed in the literature to determine this parameter. 

The authors in [21] proposed a Gaussian parameters 
selection approach for a the outlier detection problem. They 
used the dual function as a criterion to find the optimal kernel 
parameters. In particular, the introduced the criterion [21]: 

   ∑           
 
    ∑                           (3) 

Similarly, the authors in [20] used a dual function as an 
extension of the criterion in (3). They proposed the following 
objective function: 

   ∑           
 
       ∑                          (4) 

Inspired by the “Fisher linear discrimination” (FLD) [11], 
the authors in [22] proposed to find the Gaussian parameters 
using an objective function that minimizes the intra- class 
distances and maximizes the inter-class distances. The 
proposed criterion was defined as: 

     
  
    

 

‖     ‖               (5) 

Where and          are the mean of the two classes 

while   
        

  are the coincidences of two classes defined as: 

  
     

 

  
∑ ∑  (       )

  
   

  
                     (6) 

The authors in [23] proposed an approach to learn the 
Gaussian parameters based on maximizing the “kernel target 
alignment” (KTA) objective function [12]. KTA maximizes the 
intra-class similarities and minimizes the intra-class 
similarities using given the following expression: 

        
〈    ̀〉 

√〈   〉 〈  ̀   ̀〉 
             (7) 

where              and           . Note that 
〈    ̀〉  is the difference between the intra-class similarities 
and the intra-class similarities as defined below: 

〈    ̀〉  ∑              
 ∑              

          (8) 

where          is the Gaussian kernel function. The 

optimal   is obtained by maximizing the following objective 
function: 

     

      (∑         
. 

‖     ‖
 

  /  

∑         
. 

‖     ‖
 

  /)             (9) 

The optimization problem formulated in (9) is solved by 
computing the partial derivative and setting it to zero. Thus, 

 〈    ̀〉 

  
 

 

   (∑ ‖     ‖
 
        

. 
‖     ‖

 

  /  
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‖     ‖

 

  /)         (10) 

For the SVM-based approaches, various criterion have 
been proposed to select the optimal Gaussian parameters 
[20][21][22]. These approaches are similar to the exhaustive 
search. Yet, the approach in [31] learns the Gaussian 
parameter by maximizing the intra-class similarities and 
minimizing the intra-class similarities. However, this approach 
is suitable for the two-class problems only. 

B. Parameters Selection for the Gaussian Mixture Models 

Typical Gaussian Mixture Model (GMM) classifier [16] 
relies on Bayesian framework, Gaussian probabilistic 
modelling and the expectation maximization (EM) algorithm 
[13]. In particular, it assumes that the data can be modelled as 
a mixture of a finite number of Gaussian functions. GMMs 
compute the probability density functions (PDF), )|( iCXP

[24], for the data instance   given the class iC . Then, they 

classify the test instances using the Bayes’ rule [25] using 
theses PDfs as: 

    |      |    
     

    
           (11) 

where       is the class   prior probability and      
serves as a normalization term. Note that the GMM assumes 

that the probability density functions, )|( iCXP , are a 

weighted sum of multiple Gaussians as: 

   |    ∑   
  
                (12) 

In (12),    is the number of Gaussians and    is the 
weight associated with the k

th
 Gaussian    constrained to: 

∑   
  
                 (13) 
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The k
th

 Gaussian    is formulated as: 

   
 

      ⁄ |  |  ⁄   [            
        ⁄ ]         (14) 

where     and    are the mean and the covariance, 
respectively. The GMMs can be defined through three 
parameters. Namely, the set of mean,     , the set of 
covariances,     , and the weights,      represent the model 
parameters. The EM [13] is the iterative optimization 
approach typically used to estimate these parameters. 

In order to estimate the three parameters   ,   , and   , 
the Maximum Likelihood Estimation (MLE) algorithm [26] 
can be used. 

Let                 be a set of data points and let      |    

be the conditional probability of    belonging to cluster c 
defined by              where     is the centroid of the 
cluster and     its covariance matrix. One should note that the 
set of mean      is initialized using the K-means clustering 
algorithm [14]. 

GMM [24] defines the total probability distribution of    
as: 

           ∑   
 
        |             (15) 

where C is the number of clusters and    which represents 
the ratio of the number of data instances in the cluster c is 
computed as: 

   
  

 
             (16) 

with    is the number of instances assigned to the cluster 
c. GMM [27] optimizes the log-likelihood of the total 
probability distribution of    below 

  ∑              
 
              (17) 

The probability that the instance    belongs to cluster c, is 
defined as: 

    
       |   

          
            (18) 

In fact,     is considered as the membership of the data 
instance    to the cluster   such that: 

∑       
               (19) 

The number of data points assigned to cluster   can be 
expressed as  

   ∑    
 
               (20) 

The covariance matrix,     is then defined as 

   (
 

  
)∑        

 
                         (21) 

with 

   (
 

  
)∑      

 
              (22) 

Similarly to the MLE [35] approach, the maximum a 
posterior (MAP) approach [28] computes the GMM 
parameters   ,   , and   . However, it estimates    

          by maximizing the posterior probability function not 
the likelihood function. More specifically, MAP finds    that 
maximizes: 

     ∏     |   
      
              (23) 

MAP assumes that    is a random variable with a 
distribution. In fact, it relies on the equation: 

             |                  (24) 

Note      |    represents the conditional probability that 
an instance    belongs to a cluster   defined by    
         . Where    is the centroid of the cluster and     is its 
covariance matrix. For each mixture   in the prior model, MAP 
[28] defines the posterior probability      |    as: 

    |    
    |        

     
           (25) 

The optimal    is a random variable defined by: 

           
∏     |     

          (26) 

Since       is not dependent of   , one can write 

           
∏     |          

          (27) 

This yields 

           
∑        |                

        (28) 

If   follows a normal distribution       , where μ is 
random and    is fixed. Then, 

    |          
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This gives 

   |       
 

     
   , 
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As it can be seen,    |         is proportional to 

   , 
 

    
       -           (31) 

where 

   
  

 

     
   

  
 

     
              (32) 

and 

    
    

 

     
  (

 

   
 

  
 )

  

          (33) 

Consequently, it follows a normal distribution with    and 
    as parameters. 

One can claim that MLE [26] and MAP [38] are efficient 
approaches that provide interpretable results. However, MLE 
[36] based solutions are prone to over-fitting [33]. On the 
other hand, MAP [28] addresses the over-fitting problem 
through the assumption that the parameters of the Gaussian 
distribution that fits the data are known. 
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C. Parameters Selection for Radial basis Function Network 

(RBFN) 

The Radial Basis Function Network (RBFN) is a particular 
neural network where the Gaussian distribution is used 
as activation functions [29]. Besides, the network output is a 
combination of Gaussian functions of the inputs: 

         ∑             
            (34) 

where       is the output corresponding to the input x,    

are the weights, and          is the Gaussian function 

characterized by the parameters        . Figure 2 displays the 
architecture of a RBFN. 

Training the RBFN involves learning the optimal weights 
          . These weights are learned using gradient 
descent. Therefore, the iterative learning process requires 
deriving the training error, which is defined as: 

  
 

 
∑         

            (35) 

where    is the target label and    is the output label. 

The authors in [31] used the Gradient descent to learn 
iteratively the Gaussian parameters. Let           be the 
vector including the mean  , the standard deviations σ, and the 
set of weighs   respectively. The update equation of V is 
defined as follows: 

             
  

  
           (36) 

where   is the learning rate.  

In [32], the researchers proposed the learning of the 
Gaussian parameters based on the intra-class and inter-class 

structures in the training data. Specifically, the mean    of 
each class   is computed. Then, the distance    is defined as 

the distance between the mean    and furthest sample   
belonging to the class   based on the distance. 

   ‖      ‖            (37) 

The second step consists in computing the distance 
between each mean and the closest mean to it. 

            (       )                    (38) 

 

Fig. 2. Radial basis Function Network Architecture [30]. 

Given a confidence parameter  , the width of class k,   
  

is: 

  
  

  

√|   |
            (39) 

The overlap between class k and class I (  
 ) is: 

  
                         (40) 

where   is a factor that controls the overlap between the 
classes. The Gaussian parameter, σ, with respect to class k, is 

defined in [32] as the largest value between   
  and   

 : 

          
      

             (41) 

As the choice of   is not straightforward, the authors in 
[32] suggested the following approximation: 

  
∑

  

√|   |

 
   

∑           
   

            (42) 

The value of the Gaussian parameter, σ, is then updated 
using gradient descent by deriving the training error defined in 
(35). 

These approaches may be prone to local minima. The 
approach in [20] tries to avoid the problem by suggesting a 
way to initialize the parameter based on the intra- and inter-
class similarities. However, the suggested approach requires 
the estimation of other parameters. 

III. THE PROPOSED SUPPORT KERNEL CLASSIFICATION 

Kernel classification approaches are intended to categorize 
the data by mapping it into a new feature space. This mapping 
reduces the complex classification task to a simpler problem 
in the new feature space. The Gaussian kernel function is 
commonly used due to its analytical characteristics. However, 
the performance of the Gaussian kernel based classifiers 
depends on the setting of the Gaussian parameters. In this 
work, we propose a new kernel-based classification approach 
where each class is modeled using a Gaussian function. The 
optimal Gaussian parameters are learned by optimizing a 
novel objective functions. 

Let a Gaussian function be defined as: 

        ( 
   
 

  
 )           (43) 

where    is the scaling parameter, and     
  represents the 

distance between the data points    and   . In this work, we 

use the squared Euclidian distance defined as: 

   
  |     |

                
          (44) 

The optimal set of Gaussian parameters      is obtained by 
minimizing the intra-class distances and maximizing the inter-
class distances. More specifically, the proposed approach 
formulates and minimizes the intra-class distances as follows: 

  
      ∑ ∑    

    
 (     ( 

   
 

  
 ))     

       
   

      
         (45) 
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Similarly, it maximizes the inter-class distances below: 

  
      ∑ ∑ (   

       
      

 (     
 )) (        

   
      
   

   ( 
   

 

  
 ))     

            (46) 

In (45) and (46),        represents the number of 

observations in the training set                   
,           is a 

constant that determines the degree of overlapping between 

classes,    
  represents a regularization term, and     

expresses the likelihood that the observation    belongs to the 

class  . Note that     satisfies: 

       and ∑    
 
      for                       (47) 

where C is the number of classes. Notice that the 
regularization term is integrated in (45) in order to avoid the 
trivial solution of large scaling parameter,   , which would 
map all data instances into one single point. On the other 
hand, the regularization term in (47) is intended to avoid the 
trivial solution of a scaling parameter equal to zero. Besides, 
  allows ensures the tradeoff between the minimization of 

       and the maximization of       . Note that   is also 

learned through the optimization of        and       . 

The distance,    , between the data points    and   , in the 

new feature space is defined as: 

         ( 
   

 

  
 )           (48) 

The Gaussian parameters      are defined with respect to 
each class in order to better handle the distribution and the 
geometric characteristics of each class. The proposed 
approach learns the scaling parameter    for each class and the 
likelihood for each observation    to belong to class   using 
the given the training set. Moreover, the objective functions 

  
      and   

      are based on the relational distances between 
pairs of data instances rather than the distance between the 
data instances and the classes. This relaxes the assumption that 
each class fits a spherical shape [34]. In fact, the objective 

functions   
      and   

      do not use the class 
means/centroids. In the proposed approach, the mean is used 
only in the testing phase. It is computed after learning          
of each class  . 

A. Optimization with Respect to     

In order to optimize   
      and   

      with respect to    , 

we use the relational dual described in [35]. It defines the 
relation between the relational distance       and the distance 

between point    and class  ,      using the probabilities       
as follows: 

    ∑    
   

 

∑    
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 ∑    
       

     
      
   

      
       (49) 

Using the relational dual, we rewrite (45) and (46) and 
obtain the following set of equations system: 

{
  
      ∑    

         
        

   

  
      ∑       

          
        

   

         (50) 

In order to optimize   
      and   

     with respect to    , 

subject to the constraint in (47), we use the language 
multipliers to obtain: 

{
        ∑    

         
    (∑       

   )
       
   

        ∑ (     )
 
        

    (∑       
   )

       
   

   (51) 

where     is as defined in (49) and    is the Lagrange 

multiplier variable. Setting the derivatives with respect to     

of the set of equations in (51) to zero yields: 

    
           .           (52) 

Thus, 
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and, 
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This results in 
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B. Optimization with Respect to  i 

In order to optimize       and        with respect to   , we 

derive   
     and   

      with respect to   
  and set the 

derivatives to zero. First, we set the derivative of   
     to zero 

and to obtain: 

   
     

   
   ∑ ∑    
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 )           (57) 

which yields: 
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Substituting (58) in (46) gives 
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   (   
       

      
 (     

 ))
 

       
   (  

   ( 
   

 

  
 )) 

 
 

  
 ∑ ∑        

      
    

       
      

    ( 
   

 

  
 )         (59) 

The derivative of (59) with respect to   
  can be written as: 
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Which results in: 
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where 
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and 
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Based on an iterative optimization approach and the 
assumption that     and     do not change significantly from 

one iteration to another, we      and     can be updated 

alternatively using (61), and (56), respectively. Once    and 
      are optimized with respect to each class  , we define the 

prototype for each category. Then, it can be used during the 
testing phase in order to predict the class value for any 
unlabeled data point. Along with the standard deviation   , we 
propose to use the mean    of each class   as its prototype. 
Specifically, we define it as: 

   
∑    

    
      
   

∑    
       

   

            (64) 

where     is as defined in (49). The proposed training 

algorithm is depicted below: 

Algorithm 1: SKC training phase 

Input: training set                  
 

Output:                   

1- Initialize the probability according to the class labels such 

that       if    belongs to class  , and 0 otherwise. 

2- Initialize   
   

 to 1.  

3- Set   to     . 

Repeat  

1- Compute    
   

 using (49) 

2- Compute   
    

using (51) 

3- Compute    
   

 using (56)  

Until ‖  
    

   ‖            

Compute    using (64). 

The set of Gaussian parameters                defines the 

model with respect to each class  . 

Using the learned models from the training set, we classify 
the unlabeled data point    using 

     (  )                        (65) 

where 

         .
‖     ‖

 

  
 /           (66) 

The latter equation (66) represents the distance between 
the test data point    and the center    as defined in (48). Note 

that the parameters          were learned during the training 
phase. The proposed SKC testing algorithm is detailed below: 

Algorithm 2: SKC testing phase 

Input:                  , an unknown observation    

Output:                (  ) 

1- Compute       using (66)  

2- Predict the                (  ) using (65)  

IV. EXPERIMENTS 

In order to assess the performance of the proposed 
approach, we conducted several experiments using both 
synthetic and real datasets. The synthetic datasets are 2-D 
datasets generated to represent different geometric 
characteristics. They were used to illustrate visually how the 
proposed classifier categorizes them. Moreover, they were 
intended to analyze and interpret the learned Gaussian 
parameters. Besides, the proposed approach was evaluated 
using real benchmark datasets. Specifically, 10 data sets from 
the UCI repository [46] were used to analyze the performance 
of the proposed approach. Namely, these datasets are: 
Handwritten Digits [36], Mammographic Mass [37], E.coli 
[38], and Haberman's Survival [39], Frogs MFCCs [40], 
Blood Transfusion Service Center [41], HCC Survival [42], 
Adolescent Autistic Spectrum Disorder Screening [43], Libras 
Movement [44], and Seeds of wheat [45] data sets. Table I 
summarizes the considered real datasets. 

A. Experiments using Synthetic Datasets 

In order to show that SKC succeeds to learn the optimal 
Gaussian parameters for each class, and simultaneously 
classifies accurately the data instances. Therefore, we set the 
fuzzifier m to 2, and the maximum number of iterations to 
100. Then, we run SKC on the synthetic 2-D datasets in Fig. 3. 
As it can be seen, the datasets include 3 classes with the same 
intrinsic characteristics. However, class 1 and class 2 exhibit 
low inter-class distances, while they show large inter-class 
distances with class 3. SKC classifies correctly data set 1 as 
shown in Fig. 3(b). It learns two similar Gaussian parameters 
for class 1 and class 2 (   = 0.0002 and    = 0.0001), and a 
larger Gaussian parameter (   = 0.0050) for class 3. Indeed, 
   is not too large so that points from class 2 get assigned to 
class 1. Similarly,    is not too large so that points from class 
1 are not labeled as class 2. On the other hand,    is relatively 
larger because its intra-class distances are larger. 
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TABLE I. CHARACTERISTICS OF THE 10 REAL DATASETS 

Name 
No of 

elements 

Feature 

size 

No of 

categories 
Categories 

Handwritten 

Digits [36] 
7494 17 10 

Digit numbers 

from 0 to 9 

Mammographic 

Mass [37] 
961 6 2 

Benign 

malignant 

E.coli [38] 336 8 8 
Protein localization 

sites 

Haberman's 
Survival [39] 

306 4 2 
5 years 
< 5 years 

Frogs MFCCs 
[40] 

7195 22 4 

Bufonidae 

Dendrobatida 
Hylidae 

Leptodactylida 

Blood 

Transfusion 

Service Center 

[41] 

748 5 2 
Donating 

Not donating 

HCC Survival 

[42] 
165 50 2 

Survives 

Dies 

Adolescent 
Autistic 

Spectrum 

Disorder 
Screening [43] 

104 64 2 
ASD 
Not ASD 

Libras 
Movement [44] 

135 91 15 
Hand movement 
types 

Seeds of wheat 
[45] 

210 8 3 

Kama, 

Rosa 

Canadian 

   
          (a)             (b) 

Fig. 3. Classifying Synthetic Dataset using SKC. (a) The Synthetic Dataset, 

(b) The Classification Result Obtained using SKC. The Learned Gaussian 

Parameters are:    = 0.0002,    = 0.0001 and    = 0.005. 

The Gaussian Mixture Models (GMM) based classification 
[16] is the most similar approach to SKC because it learns a 
Gaussian mixture for each class. Therefore, we compare the 
classification results obtained using SKC and to those 
achieved using GMM on various different datasets. 

As shown in Fig. 4(a), the dataset includes has three 
classes where class 1 and 2 have similar size and density while 
class 3 which is larger and less dense. SKC succeeds to learn 
the optimal Gaussian parameters for each class (   = 3.35 10

-

04
,    = 8.07 10

-04
, and    = 9.31 10

-01
), and classifies 

accurately dataset 2 as shown in Figure 4-(b). In fact, the 
classification problem gets easier if the classes have similar 
volume and density. Such performance is attained through the 
Gaussian parameters learned by SKC where a larger    allows 
shrinking class 3 so it is less sparse and has a comparable 
volume to class 1 and class 2. Since class 1 and class 2 have 

comparable intra/inter class distances, similar Gaussian 
parameters are learned by SKC. On the other hand, s reported 
in Fig. 4(c), GMM is not able to classify accurately dataset 2. 

Another synthetic dataset is shown in Fig. 5(a). As one can 
notice, despite the good classification results obtained using 
SKC, some border points are misclassified as reported in Fig. 
5(b). On the other hand, as shown in Fig. 5(c), GMM yields 
poor classification results because it learns larger a Gaussian 
parameter for class 1 compared to class 2 which results in 
similar density and volume for both classes. 

Fig. 6 reports the classification results obtained by SKC 
and GMM using a different synthetic dataset. Although the 
inter-class distances are too small for the border points, SKC 
classifies correctly this dataset as displayed in Fig. 6(b). In 
fact, SKC learns double the value of    for class 1 to shrink it 
more than class 2. This yields a considerable separation 
between both classes. On the other hand, as reported in Figure 
6-(b), GMM misclassifies the border points which degrades 
the overall classification performance. 

Similarly, for the synthetic dataset in Fig. 7, both 
classifiers misclassify some border points from class 2 which 
the inter-class distances with class 1 is lower than the intra-
class distance. In particular, SKC learns similar Gaussian 
parameters for class 1 and class 2, cannot discriminate 
accurately between the border points. Whereas, some of the 
points from class 2 that are misclassified by GMM have 
relatively large inter-class distance with class 1. 

 
       (a)       (b)     (c) 

Fig. 4. Classification Results Obtained using SKC and GMM. (a) The 

Synthetic Dataset, (b) SKC Classification Results with    = 3.35 10-04,    = 

8.07 10-04, and    = 9.31 10-01, and (c) GMM Classification Results. 

 
       (a)       (b)     (c) 

Fig. 5. Classification Results Obtained using SKC and GMM.(a) The 

Synthetic Dataset, (b) SKC Classification Results with    = 7.62 10-02, and 

   = 8.82 10-04, and (c) GMM Classification Results. 
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       (a)       (b)     (c) 

Fig. 6. Classification Results Obtained using SKC and GMM. (a) The 

Synthetic Dataset, (b) SKC Classification Results with    = 5.11 10-03, and 

   = 2.29 10-03, and (c) GMM Classification Results. 

 
       (a)       (b)     (c) 

Fig. 7. Classification Results Obtained using SKC and GMM. (a) The 

Synthetic Dataset, (b) SKC Classification Results with    = 2.45 10-05, and 

   = 3.88 10-05, and (c) GMM Classification Results. 

Based on the comparison of the classification results 
obtained by SKC and GMM using the different synthetic 
datasets, one can claim that the learning of the optimal 
Gaussian parameters using the intra-class and the inter-class 
characteristics of each dataset, makes SKC outperform GMM. 
Besides, in case of large volume variations for the different 
classes, GMM misclassifies a considerable proportion of the 
dataset. In fact, GMM does not include the inter-class distance 
in the learning process of the Gaussian parameters of the large 
classes. This yields the misclassification of some points from 
the other near classes. Moreover, GMM fails to classify the 
border points when the two classes are too close. This can be 
attributed to the fact that it learns the Gaussian parameters 
based on the intra-class distances only. 

B. Experiments using Real Dataset 

In this section, we report the classification results of the 
benchmark datasets from the UCI repository [46]. The 
classification task was conducted using the proposed SKC, the 
Gaussian Mixture Model classifier (GMM) [16], the K-nearest 
Neighbour classifier (KNN) [47], the kernel Support Vector 
machine (SVM) with Gaussian kernel [18], and the Naïve 
Bayes approach [19]. Note that for KNN we set three different 
values of K (K=1, K=3, and K=5). For the Gaussian kernel 
SVM we varied the Gaussian parameter by setting 6 different 
values (10

-5
, 10

-4
, 10

-3
, 10

-2
, 10

-1
, and 1). For SKC, we set the 

fuzzifier m to 2, and the maximum number of iterations to 
100. 

We adopted a 10-folds cross validation approach, along 
with the accuracy, the sensitivity, and the specificity as 
performance measures to report the classification 
performance. Thus, Tables II and III show the average scores 
over the 10 training iterations. Moreover, a t-test was 
conducted to evaluate the statistical significance of the 
obtained results. In Tables II and III, the best results are 
shown in red. On the other hand, the green color represents the 
results that are not significantly different according to the t-
test. As it can be seen, SKC overtakes all classifiers on 
Handwritten Digits [36] and Mammographic Mass [37] 
datasets. Moreover, it yields the best performances on the 
remaining 7 data sets. 

Similarly, SKC outperforms KNN [47] on Handwritten 
Digits [46] and Mammographic Mass [47] data sets. However, 
it yields the same performance attainment on the other 
datasets. Even though KNN does not use the Gaussian kernel, 
it uses the local characteristics of the data by labelling the 
unknown instances based on their neighbouring points in the 
training set. Moreover, it requires a prior setting of the number 
of neighbours (K). 

TABLE II. PERFORMANCES MEASURES OBTAINED USING THE DIFFERENT 

CLASSIFIERS ON HANDWRITTEN DIGITS, MAMMOGRAPHIC MASS, E.COLI, 
AND HABERMAN'S SURVIVAL, AND FROGS MFCCS DATASETS 

  
Accuracy Sensitivity Specificity t-test 

Handwritt

en Digits 

SKC 0.84 0.91 0.99 
 

GMM 0.47 0.45 0.99 1 

KNN  0.78 0.78 1 1 

SVM 0.16 0.17 0.89 1 

NB 0.83 0.83 0.98 1 

Mammogr

aphic 

Mass 

SKC 0.78 0.79 0.85 
 

GMM 0.76 0.73 0.8 1 

KNN  0.77 0.77 0.77 1 

SVM 0.53 0.56 0.48 1 

NB 0.76 0.71 0.73 1 

E.coli  

SKC 0.82 0.94 0.98 
 

GMM 0.55 0.63 0.94 0 

KNN  0.72 0.83 0.95 1 

SVM 0.7 0.89 0.95 1 

NB 0.75 0.87 0.95 1 

Haberman

's Survival 

SKC 0.71 0.77 0.77 
 

GMM 0.49 0.38 0.54 1 

KNN  0.61 0.65 0.51 1 

SVM 0.62 0.75 0.26 1 

NB 0.62 0.69 0.42 0 

Frogs 

MFCCs 

SKC 0.76 0.96 1 
 

GMM 0.4 0.48 1 1 

KNN  0.69 0.77 1 0 

SVM 0.23 0.88 1 1 

NB 0.72 0.8 1 1 
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TABLE III. PERFORMANCES MEASURES OBTAINED USING THE DIFFERENT 

CLASSIFIERS ONBLOOD TRANSFUSION SERVICE CENTER, HCC SURVIVAL, 
ADOLESCENT AUTISTIC SPECTRUM DISORDER SCREENING, LIBRAS 

MOVEMENT, AND SEEDS OF WHEAT DATASETS 

  
Accuracy Sensitivity Specificity t-test 

Blood 

Transfusio

n 

Service 

Center 

SKC 0.68 0.75 0.72 
 

GMM 0.46 0.38 0.71 1 

KNN  0.53 0.51 0.6 0 

SVM 0.64 0.74 0.34 1 

NB 0.66 0.73 0.43 0 

HCC 

Survival  

SKC 0.58 0.48 0.65 
 

GMM 0.49 0.6 0.43 1 

KNN  0.52 0.53 0.51 0 

SVM 0.58 0.23 0.55 1 

NB 0.55 0.44 0.62 0 

Adolescen

t Autistic 

Spectrum 

Disorder 

Screening 

SKC 0.99 0.98 1 
 

GMM 0.81 0.67 0.9 0 

KNN  0.85 0.74 0.92 0 

SVM 0.64 0.53 0.7 1 

NB 0.9 0.8 0.96 1 

Libras 

Movement   

SKC 0.72 0.78 1 
 

GMM 0.41 0.39 0.98 1 

KNN  0.62 0.64 0.99 0 

SVM 0.18 0.43 0.96 0 

NB 0.67 0.67 0.99 0 

Seeds of 

wheat  

SKC 0.9 0.86 0.93 
 

GMM 0.89 0.85 0.91 0 

KNN  0.9 0.84 0.92 0 

SVM 0.9 0.89 0.99 0 

NB 0.89 0.83 0.93 0 

In addition SKC yields the same results as SVM [18] on 
HCC survival [42] and Seeds of wheat [45], while it beats 
SVM [18] on the remaining datasets. In fact, although Kernel 
SVM [18] relies on the inter-class distances through the 
learning the optimal hyperplanes that guarantee the best inter-
class margin, it uses one global sigma for all the data in the 
original features space. In other words, it assumes that all 
classes follow the same distributions. 

Also, one can see that SKC attains similar results as NB 
[19] on Haberman’s survival [39], Blood Transfusion Service 
Center [41], HCC survival [42], Libras movement and Seeds 
of wheat [45]. On the other hand, it outperforms NB [19] on 
the remaining 5 datasets. This results can be attributed to the 
fact that NB [19] learns a sigma for each feature with respect 
to each class. Therefore, if the features are not independent it 
fails to discover the correct structure of the data. Moreover, 
NB doesn’t take into consideration the inter-class distances. 

SKC yields similar performance to GMM [16] on E.coli 
[38], Adolescent Autistic Spectrum Disorder Screening [43], 
and Seeds of wheat [45] data sets. It overtakes GMM [16] on 

the 7 other data sets. Even though, GMM learns a Gaussian 
parameter with respect to each feature and the corresponding 
covariance matrix, it does not take into consideration the inter-
class dissimilarities. Therefore, the Gaussians parameters are 
learned based on the intra–class distances only. 

V. CONCLUSIONS 

Despite the researchers’ efforts to address the supervised 
learning challenges, most of the classification algorithms 
exhibit some limitations. The classification task is even more 
acute when the data classes show different distribution 
characteristics. Kernel-based classifiers were introduced to 
overcome this problem through the mapping of the data into a 
new feature space using a specific kernel function. This 
mapping is intended to obtain better separation between the 
data classes and simplify the classification task. Even though 
the Gaussian function proved to yield reasonable classification 
accuracy, its performance depends on the choice of its 
parameters’ values. Moreover, if the data include highly 
variant classes in terms of size, density, and shape, the data 
mapping into a new feature space using one global Gaussian is 
not effective. Typically, the tuning of the Gaussian parameters 
is done though some search strategy that is intended to 
optimize a predefined criterion function. In this paper, we 
proposed a new classification algorithm that learns a Gaussian 
function for each data class. The proposed Support Kernel 
Classification (SKC) is designed to characterize and separate 
the data instances from the different classes. It relies on the 
maximization of the intra-class distances and the minimization 
of the intra-class distances to learn the optimal Gaussian 
parameters. In fact, a novel objective function is optimized to 
model each class using one Gaussian function. The 
experiments conducted using synthetic datasets demonstrated 
the effectiveness of the proposed algorithm. Moreover, the 
results obtained using real datasets proved that the proposed 
classifier outperforms the relevant state of the art approaches. 
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