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Abstract—This paper presents a hybrid approach for single 

channel speech enhancement using deep neural network (DNN) 

and harmonic regeneration noise reduction (HRNR). The DNN 

was used as a supervised algorithm to predict new target mask 

such as constrained Wiener Filter (cWF) target mask from noisy 

mixture signal that was transformed into gammatone filter bank 

features. Meanwhile, HRNR algorithm was applied in the post-

filtering strategy to eliminate residual noise. The DNN algorithm 

is an emerging supervised speech enhancement to overcome 

heavy nonstationary noise and low signal-to-noise ratio (SNR) 

issues. To validate the proposed algorithm with new target mask, 

600 Malay utterances combining male and female speakers were 

used in a training session while 120 Malay utterances were used 

in a prediction session. The short time objective intelligibility 

(STOI) and perceptual evaluation of speech quality (PESQ) 

scores were calculated as the performance metrics. In this work, 

the proposed target mask outperformed other baseline target 

masks. Thus, PESQ and STOI scores for the hybrid speech 

enhancement algorithm is 1.17 and 0.79, respectively, at - 5 dB 

babble noise SNR. 
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I. INTRODUCTION 

Over the past few decades, automatic speech recognition 
(ASR) has gained a surge of interest among researchers in the 
speech processing research area. This is because ASR is widely 
used in mobile device applications, especially for navigation 
purposes. It allows human to talk to a computer, which 
responds to the given command. Basically, to capture human 
speech signals, a single microphone is practical enough to be 
used as an input device for speech data acquisition. Meanwhile, 
computer acts as a system to process the captured speech signal 
to realize human computer interaction (HCI) by applying 
mathematical algorithms and signal processing techniques. 
However, as the captured speech signals are in mobile remote 
condition [1], the speech signals could be easily contaminated 
by background noises, which may lead to complex 
computation and further processes. Thus, speech recognition 
may yield low speech recognition accuracy especially at low 
signal-to-noise ratio (SNR) and nonstationary noise, which the 
quality and intelligibility of speech are affected [2]. Thus, past 
studies proposed the Deep Neural Network (DNN)-based mask 
estimation approach to guarantee high intelligibility and quality 
of speech signal [3-9]. 

The first DNN-based mask estimation approach was 
pioneered by Wang, who demonstrated a DNN with promising 
results, owns good scalability and flexibility compared to other 
machine learning techniques [10], especially at high SNR. As 
mentioned in a study [4], DNN outperformed SVM algorithm 
during speech separation from noisy background as cited by 
[11]. The DNN algorithm became a great attention among 
researchers and most of them were interested to extend their 
work to improve in terms of features, target masks, and 
learning network [7, 12-15]. But when the mixture signal is at 
low SNR [10], the estimation between speech and noise signal 
is very challenging due to overlapping events. Excessive 
estimation of noise will cause speech distortion. Otherwise, 
when noise signal is underestimated, residual noise could be 
introduced after speech reconstruction [16]. For the first time, 
this study aims to propose a new target mask that could control 
speech distortion and noise distortion by using constrained 
Wiener Filter (cWF) in gammatone representation as the target 
mask for DNN algorithm with longer duration of speech 
utterance. The harmonic regeneration noise reduction (HRNR) 
was applied to reduce residual noise and generate new speech 
harmonic after the speech reconstruction. 

This paper is organized as follows: Section II discusses the 
related works; Section III describes the methodology of 
research work; Section IV presents the experimental results 
and compares the results with the baseline approach and 
Section V summarizes the findings and proposes 
recommendations for improvement. 

II. RELATED WORKS 

Features, target masks and learning network are the three 
important elements in the DNN-based mask estimation 
approach. Previously, several studies on the effect of different 
features in a supervised DNN-based mask estimation were 
done [14, 15]. The findings revealed that gammatone features 
is one of the outperform features. Various speech dataset such 
as IEEE [10, 14, 15, 17] and TIMIT [18] were used to analyze 
the performance, which normally in short duration of speech 
utterance. A study in [10] also compared the training targets in 
DNN algorithm. From the results, the combination of features 
such as mel-frequency cepstral coefficient (MFCC), relative 
spectral transform perceptual linear prediction coefficient 
(RASTA- PLP), amplitude modulation spectrogram (AMS) 
and gammatone filter bank power spectra (GF) outperformed 
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with ideal ratio mask (IRM), which produced the STOI and 
PESQ scores of 0.72 and 1.92, respectively, during - 5dB SNR 
for duration length of 2 s using three hidden layers of DNN 
algorithm [10]. Otherwise, the authors studied the effect of 
different learning networks, which increasing the hidden layers 
by five [12]. 

A similar method of DNN-based mask estimation was done 
in past studies [19-23]. A study in [19] modified the feature 
and proposed adaptive masks in the DNN-based mask 
estimation with four hidden layers and 1024 hidden nodes. As 
a result, average PESQ and STOI scores of 2.12 and 0.78, 
respectively, were obtained at -5dB SNR [19]. Another study 
in [23] used the features fusion technique for the DNN input, 
while the phase-aware and magnitude mask were applied as the 
target mask. Five-layer structures, including one input layer, 
three hidden layers, and one output layer with 2048 rectified 
linear unit (ReLU) neurons were used for the network 
architecture. As a result, the STOI and PESQ scores of 0.74 
and 2.01, respectively, were obtained. Some studies proposed a 
new target mask in the DNN such as less aggressive Wiener 
filtering, phase aware, and complex ratio mask [20-22]. Other 
studies also proposed an alternative approach using post-
filtering techniques such as global variance equalization [17, 
24] after the DNN-based mask estimation and speech 
reconstruction. 

Another study also proposed a combination algorithm 
between the DNN-based approach and statistical-based 
approach to separate speech signals from background noise 
with TIMIT database [18]. The standard sparse non-negative 
matrix factorizations (SNMF) features were extracted from the 
noisy mixture. Five layers which consist of input layer, three 
hidden layers and one output layer were used. Then, 1024 
number of neurons per layer and ReLU activation were applied 
in the network architecture. The SNMF-DNN with ideal ratio 
mask (IRM) target produced promising results compared to 
ideal binary mask (IBM) target. Even though the proposed 
approach outperformed, it suffered from features complexity. 
While another study in [5] investigated the generalization of 
DNN based mask estimation  and contribution to modify a 
DNN model with permutation invariant training by [25]. This 
approach is time consuming and complex. 

III. RESEARCH METHODOLOGY 

Fig. 1 shows the DNN-based mask estimation framework 
in this study. The framework was proposed to overcome 
background noise issue. Firstly, the clean speech and noise 
signal were resampled simultaneously at fixed sampling 
frequency of 16 kHz, amplified, normalized and scaled with 
the equal length of data to generate the mixture noisy speech 
signal in the data preparation stage. The clean and noise speech 
signals were converted into a time-frequency domain, to be 
used in the target mask stage. Prior to the mixture signal 
processing to be parameterized in the time-frequency domain 
or known as spectrogram, the mixture signal was transformed 
into gammatone filter bank power spectra (GF) in the feature 
engineering stage. The parameterized mixture signal was used 
as the input features of DNN algorithm. The target output was 
predicted from the input features using the DNN algorithm. 
Specifically, cWF was used as the target mask in the 

gammatone time-frequency domain representation. Each frame 
of the proposed mask spectrogram corresponding to speech or 
noise for every audio samples was learnt by the DNN. The 
overall system involved similar process in the training and test 
sessions, excluding the post-filtering process. Lastly, a post-
filtering strategy using HRNR was applied to overcome the 
residual noise issue after the speech synthesis process. The 
speech synthesis was done to reconstruct speech signals in time 
domain from the time-frequency domain using an inverse 
gammatone. 

A. Data Preparation 

MASS corpus dataset was used as the clean speech signal 
with sampling frequency of 22050 Hz [26]. Meanwhile, babble 
noise was used for background noise with the sampling 
frequency of 8000 Hz. The noise was artificially combined 
with the clean signal to produce mixture signal with different 
signal to noise ratio (SNR) of - 10 and - 5 dB. The mixture 
signal is as shown in Equation (1) below: 
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Fig. 1. Research Workflow. 
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where α is assumed as the gain for scale noise energy signal 
at different required SNR value as in Equation (2): 

  √
∑  ( )

∑  ( )   
                   (2) 

Then, 600 utterance samples were used for data training, 
while the remaining 120 samples were used for evaluation 
performance. 

B. Feature Engineering 

Gammatone filter bank power spectra (GF) was used 
because it can produce nonuniform time-frequency resolutions 
between the high and low frequency regions [27]. The 64-D 
GF vector was extracted by using 64 channels gammatone 
filter bank to produce an array of filtered responses with 
frequency range between 50 and 8000 Hz and loudness gain 
adjustment. A gammatone filter impulse response is simply 
defined in time-domain as the product of a gamma distribution 
and tone. Thus, the gammatone function can be defined as in 
Equation 3 [28]. 

 ( )                (       ),           (3) 

where   is the gain value based on loudness theory,     is 
the time onset, exponent function in negative term defines 

bandwidth, decay rate,  
 

 is the characteristic frequency in 

equivalent rectangular bandwidth (ERB), and φ is the initial 
phase. Typically,   is 1.019 ERB. The ERB of the filter is 
given in the Equation (4) [28]: 

        (
      

    
  )             (4) 

C. Deep Neural Network (DNN) 

The features were trained in a DNN architecture as shown 
in Fig. 2. The input and output nodes are represented by the 
blue colour with 640 input nodes and 64 output nodes. 
Meanwhile, the hidden nodes of four layers are represented by 
the orange colour. Next, the black arrow represents the forward 
network while the blue arrow represents the backpropagation 
network. 4 hidden layers DNN with ReLU hidden and output 
activation function were applied. Specifically, 430 hidden 
nodes in each hidden layer with adaptive gradient descent 
(AGD) and 64 output nodes were applied. Other hyper 
parameters of DNN to train the networks include 0.2 of 
dropout rate for backpropagation algorithm, 20 training epoch 
numbers, 0.5 of initial momentum rate, 0.9 of final momentum 
rate and loss function of mean squared error. 

D. Target Mask 

The cWF was proposed as the training target in DNN 
algorithm to control individual noise and speech distortion. The 
cWF and IBM target output masks were obtained by using 64 
channels of gammatone filter bank, with 20-ms analysis 
window and 10-ms overlap. The equation of cWF is as follows 
[29]: 

   ̂( )  
 

  √
  ( )

  ( )

             (5) 

Next, the proposed target was evaluated and compared with 
other two target outputs such as ideal binary mask (IBM) and 

gammatone filter bank power spectrum of clean speech (GF-
POW). The IBM is typically represented in the time-frequency 
domain. It is constructed from premixed signals between noise 
signal and speech signal based on the perceptual principles of 
auditory scene analysis [14]. The IBM is usually computed 
from a true signal-to-noise ratio (SNR) through thresholding 
with local SNR criterion (LC) as shown in Equation (6): 

   (   )  {
        (   )    
           

           (6) 

E. Post-Filtering Strategy 

The HRNR technique is used to preserve the harmonics and 
to avoid speech distortion [30]. By applying the algorithm, the 
distorted speech signal could be processed by creating a fully 
harmonic signal where all the missing harmonics are 
regenerated. Then, the synthesized speech signal was used to 
compute a spectral gain and preserve the speech harmonics as 
shown in Equation (7) [30]: 

     (   )  
  ̂     

    (   )

    ̂     
    (   )

            (7) 

Finally, the resulting speech spectrum was estimated using 
Equation (8) [30]. 

 ̂(   )   
    

(   ) (   )            (8) 

F. Performance Measure 

Two objective performance measures such as perceptual 
evaluation of speech quality (PESQ) and short-time objective 
intelligibility (STOI) were applied to evaluate the performance 
between enhanced and clean speech signals after the speech 
enhancement process. To measure the quality of enhanced 
speech signal, PESQ is widely used compared to other 
performance metrics which is more useful even though it is 
complicated [16]. The PESQ estimates the enhanced speech 
quality by measuring the distortion difference between the 
clean speech and the enhanced speech signals. The PESQ score 
between 0.5 and 4.5 represents bad quality and good quality, 
respectively [16]. Meanwhile, STOI is widely used to evaluate 
the performance of enhanced speech signal in terms of speech 
intelligibility. It computes the correlation in time-frequency 
domain between the enhanced and clean speech signals without 
speech perception theory by representing higher correlation 
when the value of STOI score is greater than 0.9 [13]. 

 

Fig. 2. DNN Architecture. 
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IV. RESULTS AND DISCUSSION 

Fig. 3 shows the illustration of spectrograms for different 
target masks and reference of clean signal spectrogram. The 
speech utterance activity is represented by the yellow colour. 
The gammatone filter bank power (GF-PW) target mask 
suffered several speech components loss from the speech 
harmonics as shown in Fig. 3(a), which may lead to low 
intelligible compared to Fig. 3(d). Fig. 3(b) shows that Ideal 
binary mask (IBM) mask with GF-PW was better than the GF-
PW, where the background noise that overlapped with speech 
event and some harmonics of speech components were 
removed. Moreover, higher residual noise was also introduced 
in Fig. 3(b). 

Fig. 3(c) shows that the proposed target mask for DNN 
algorithm, cWF with GF-PW did not fully eradicate the 
background noise that overlapped with speech event at the 
band frequency of 0 to 4 kHz. As a result, loss of useful speech 
components from excessive noise elimination could be 
avoided. The STOI and PESQ scores for the three target masks 
in seen noise conditions at – 5 dB babble noise of SNR, are 
illustrated in Fig. 4. Target mask B (IBM + GF-PW) performed 
better with the STOI score of 0.2 higher than that of Target 
mask A (GF-PW) at −5 dB of SNR for babble noise. This is 
because, Target mask B was constructed to retain time–
frequency (T–F) units when the estimated speech is stronger 
than disturbing noise when SNR is greater than local criterion 
(LC) of -5 dB and remove the T–F units when disturbing noise 
is dominant when SNR less than LC. Meanwhile, Target mask 
A applied gammatone filter bank power in clean speech signal 
without prior noise signal information. Next, the proposed 
Target mask C (cWF+GF-PW) also performed better than the 
other two target masks. However, only a small STOI score 
difference was recorded between the highest STOI score for −5 
dB babble noise by Target mask C compared to that of Target 
masks B and A. 

Although Target mask A obtained worse STOI scores than 
either Target mask B or C, the PESQ scores were better than 
those of Target mask B. Hence, the proposed Target mask C 
provided a promising result in PESQ and STOI scores. For 
example, at babble noise condition, Target mask C obtained the 
highest PESQ scores of 1.17 for −5 SNR. Therefore, it shows 
that Target mask B tends to improve speech intelligibility but 
not speech quality, while Target mask A tends to improve 
speech quality but not speech intelligibility. In short, Target 
mask C prediction in DNN-based mask estimation approach 
seems to be especially beneficial on improving speech quality 
and speech intelligibility. Furthermore, the difference in 
performance between the three training targets also reduced 
when the SNR reduced. This is because, noise signal is more 
dominant compared to speech signal that may lead to 
complexity to be predicted. 

Fig. 5 shows the spectrogram of enhanced speech with 
different speech enhancement algorithms: DNN algorithm, 
HRNR algorithm, DNN+HRNR algorithm and log-MMSE 
algorithm. The speech utterance was corrupted by babble noise 
at - 5 dB SNR. Among the four spectrograms, the 
DNN+HRNR algorithm in Fig. 5(c) was outperformed, the 
residual noise was reduced considerably without distorting the 

speech signal. Fig. 5(b) and Fig. 5(d) show that some 
harmonics in the enhanced speech signals were eliminated by 
HRNR and Log-MMSE algorithms. Therefore, both algorithms 
are not suitable for noisy speech signals at low SNR values. 
This happened when the fix threshold is applied, it may lead to 
excessive speech distortion and less noise distortion. 

 
   (a) GF-PW.           (b) GF-PW. 

 
  (c) cWF+ GF-PW.      (d) Clean (reference). 

Fig. 3. Illustration of different Target Masks. 

 

Fig. 4. STOI and PESQ Score for different Target Mask at -5 dB Babble 

Noise SNR. 
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(a) DNN .   (b) HRNR. 

      
(c) DNN+HRNR.  (d) Log-MMSE. 

Fig. 5. Spectrogram of Enhanced Speech Signal with different Speech 

Enhancement Algorithms. 

However, to achieve performance like the human speech 
perception after the DNN-based mask estimation remains a 
challenging task because the PESQ value was still below 2.0 
during low SNR due to the introduction of residual noise after 
the speech reconstruction. It is supported by illustration of 
Fig. 6 when measuring the magnitude coherence between 
estimated and clean speech signal using Welch’s overlapped 
averaged periodogram method. The measured magnitude-
squared coherence is a function of frequency with values 
between 0 and 1 by calculating the power spectral density 
correlation between estimated and clean speech signal. The 
values indicate the accuracy of speech signal estimation 
corresponds to clean speech signal at each frequency. It shows 
that higher correlation or cross power spectral density occurs 
after 4 kHz, while lower correlation or cross power spectral 
density occurs before 4 kHz due to the existence of residual 
noise. 

The calculated STOI score of different algorithms at 
different SNR for long recorded speech signal length is shown 
in Fig. 7. The STOI score was slightly increased when the SNR 
value increased for different types of speech enhancement 
algorithms. DNN+HRNR improved the STOI score of DNN- 
based mask estimation approach by 0.01 at - 10 and - 5 dB 
SNR. The lowest STOI score was 0.2 at - 10 dB SNR produced 
by the HRNR algorithm, followed by Log-MMSE algorithm, 
which is 0.35. Fig. 8 shows the calculated PESQ score of 
different algorithms at different SNR for long recorded speech 
signal length. The PESQ score at - 10 and - 5 SNR for 
DNN+HRNR and DNN did not improve significantly. PESQ is 
used to calculate distortion in speech signal. It is determined 

that residual noise is remain issue in speech enhancement 
algorithm due to overlapping between noise and speech signal. 

 

Fig. 6. Magnitude Coherence between Estimated and Clean Speech Signal. 

 

Fig. 7. Comparative STOI Score for different Speech Enhancement 

Algorithms and SNR Value. 

 

Fig. 8. PESQ Score for different Speech Enhancement Algorithms and SNR 

Value. 
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V. CONCLUSION 

In conclusion, a supervised speech enhancement algorithm 
using Deep Neural Network (DNN)-based mask estimation 
approach has developed and analysed accordingly. A hybrid 
algorithm between the DNN-based cWF mask estimation and 
HRNR algorithm has proposed to overcome the heavy non-
stationary noise case and low signal to noise ratio (SNR), 
especially for babble noise at - 5 dB SNR. The proposed mask 
provided promising results in speech intelligibility due to high 
STOI score. Moreover, the proposed target mask outperformed 
other baseline target masks and the hybrid approach has 
compared to the conventional approach. To be more robust, 
network architectures such convolution neural network (CNN) 
and recurrent neural network (RNN) are recommended to be 
designed. 
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