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Abstract—Architectural Description (AD) is the backbone 

that facilitates the implementation and validation of robotic 

systems. In general, current high-level ADs reflect great variation 

and lead to various difficulties, including mixing ADs with 

implementation issues. They lack the qualities of being systematic 

and coherent, as well as lacking technical-related forms (e.g., 

icons of faces, computer screens). Additionally, a variety of 

languages exist for eliciting requirements, such as object-oriented 

analysis methods susceptible to inconsistency (e.g., those using 

multiple diagrams in UML and SysML). In this paper, we orient 

our research toward a more generic conceptualization of ADs in 

robotics. We apply a new modeling methodology, namely the 

Thinging Machine (TM), to describe the architecture in robotic 

systems. The focus of such an application is on high-level 

specification, which is one important aspect for realizing the 

design and implementation in such systems. TM modeling can be 

utilized in documentation and communication and as the first 

step in the system’s design phase. Accordingly, sample robot 

architectures are re-expressed in terms of TM, thus developing 

(1) a static model that captures the robot’s atemporal aspects, 

(2) a dynamic model that identifies states, and (3) a behavioral 

model that specifies the chronology of events in the system. This 

result shows a viable approach in robot modeling that determines 

a robot system’s behavior through its static description. 

Keywords—Conceptual model; robot architectural 

specification; robot behavior; static diagram; dynamism 

I. INTRODUCTION 

Robotic systems are multifaceted and challenging. Thus, 
the robotic systems must interact with a dynamic environment 
to be reactive and flexible to unexpected changes. Such 
challenges require good frameworks and models that embody 
well-defined concepts to effectively manage this complexity. 
The use of a well-conceived architectural description (AD) 
can often help to manage that complexity [1]. An AD is a 
representation of a system, its structure, and associated 
behaviors, such as the AD languages UML and SysML [2]. 

An architectural model is the backbone that facilitates the 
description, implementation, and validation of robotic systems 
[3]. It is important for communication among stakeholders to 
provide a common language in which different concerns can 
be expressed, negotiated, and resolved at a level that is 
manageable even for complex systems [4]. Additionally, the 
architecture helps with recognizing constraints, dictating 
organizational structures, enabling a system‘s quality 
attributes, managing changes, and providing the basis for 
training [4]. 

This paper applies a new modeling methodology, the 
thinging machine (TM), for architecting robotic systems. The 

focus of such an application is on a high-level AD, which is 
one important aspect of designing and implementing a robotic 
system [4]. The AD can be utilized in documentation and 
communication and as the first step in the system‘s design. 

II. RELATED WORKS 

Robot architecture is a subtopic of system architecture. 
Robot architecture is hardly recognized as an independent 
subject. For example, a search on ―robot architecture‖ on 
Wikipedia produces the response, ―The page ‗Robot 
architecture‘ does not exist‖; instead, several pages are given, 
such as ―autonomous robot architecture‖ and 
―subsumption architecture.‖ 

We outline here some of the many sources in the rich field 
of system architecture, starting with the types of structures in 
this field. England [2] lists 28 sample architectural domains, 
including conceptual architecture, computer (hardware) 
architecture, software architecture, communication 
architecture, technical architecture, and reference architecture. 
Architecture-related standards have been adopted to address 
lifecycle processes, activities, and tasks, such as the IEEE 
Standard Ontology for Robotics and Automation, IEEE/RS, 
INCOSE UK‘s Practice of System Architecture (2014), and 
ISO/PAS 19450:2015 Automation Systems and Integration—
Object-Process Methodology. A survey reported a list of 120+ 
AD languages, which are detailed in [2]. Because of space 
limitations, we focus on four representative samples of robot 
ADs. 

An architecture comprises the high-level schema that show 
a system‘s overall structure [4]. The term refers to 
―determining the needs of the user of a structure and then 
designing to meet those needs as effectively as possible within 
economic and technological constraints… The emphasis in 
architecture is upon the needs of the user, whereas in 
engineering the emphasis is upon the needs of the fabricator‖ 
[5]. The term architecture is used here to describe the 
conceptual structure and functional behavior, as distinct from 
the organization of the logical design and the physical 
implementation [6]. 

The Software Engineering Institute defines software 
architecture as a system‘s structure, which includes system 
elements, their externally visible interfaces, and the 
relationships among them in the system [4]. Software 
architecture deals with an abstraction of a system, by defining 
how elements interact within this abstraction but not how 
individual elements are implemented [7]. According to Bass, 
Clements, and Kazman [4], there is ―little difference‖ between 
software architecture and system architecture. The 

https://en.wikipedia.org/w/index.php?title=Robot_architecture&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Robot_architecture&action=edit&redlink=1
https://en.wikipedia.org/wiki/Subsumption_architecture
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architectural view is abstract, distilling implementation details 
and concentrating on the system elements‘ behavior and 
interactions [4]. Architecture prescribes a system‘s structure 
by accommodating combinations of both physical structure 
and functionality (utility) [2]. 

Coste-Maniere and Simmons [3] assert that the 
―architectural structure refers to how a system is divided into 
subsystems, and how those subsystems interact. This is often 
represented by the traditional ‗boxes and arrows‘ diagrams.‖ If 
there is no system architecture, the project should not proceed 
to full-scale system development [8]. According to Coste-
Maniere and Simmons [3], a robot system often uses several 
architecture styles together, so it is sometimes difficult to 
determine exactly what architecture is used—to describe the 
robot‘s system—because the architecture and the 
implementation are often intimately tied together. Coste-
Maniere and Simmons [3] continue, ―This is unfortunate, as a 
well-conceived architecture can have many advantages in the 
specification, execution, and validation of robot systems.‖ 

To exemplify the types of robot AD, we show four 
representative cases. The purpose is not to give fair accounts 
of them, but to show the types of diagrams used for those 
cases for contrast with the TM diagrams developed later in the 
paper. 

Loza-Matovelle, Verdugo, Zalama, and Gómez-García-
Bermejo [9] developed a system that combines robots with a 
network of sensors and actuators, as illustrated in Fig. 1. 
Different devices are represented by heterogeneous icons such 
as a device, a face, a hand, and a telephone. Servers in the 
system are represented as circles or rounded rectangles. 
Snoswell et al. [10] presented a robot system architecture 
(Fig. 2) for a manipulator that grasps and completes tasks. The 
system is distributed across multiple computers. They tested 
this system architecture using the so-called MOVO mobile 
manipulation platform from Kinova Robotics. 

As shown in Fig. 3, PatentSwarm [11] (in an invention) 
incorporates state machines into the robot AD. Note that these 
high-level ADs are static depictions that do not incorporate 
dynamic features or facilitate movement to the next level of 
development (i.e., design). This is an important point to 
consider when contrasting them with the proposed TM 
modeling. 

The fourth type of AD lacks a holistic view of the robot 
system. According to Bass, Clements, and Kazman [4], 
architectural structures can be divided into three groups: 
module structures, component-and-connector structures, and 
allocation structures. Module-based structures include 
decomposition and use layers and classes or generalization. 
Component-and-connector structures include processes, 
concurrency, and the client–server structure. Finally, 
allocation structures include allocation and deployment. Bass, 
Clements, and Kazman [4] used many diagrams, such as UML 
diagrams, to describe different aspects of architecture. Fig. 4 
shows a sample of these diagrams, called data flow 
architectural views. 

 

Fig. 1. Sample AD that Combines Robots with a Network of Sensors and 

Actuators (Adapted from [9]). 

 

Fig. 2. Architecture for a Distributed Robot-Planning System (Adapted from 

[10]. 

 

Fig. 3. A Schematic Illustration of an Embodiment of the Robot Control 

Architecture (Partially from [11]). 

 

Fig. 4. Data Flow Architectural view (Partially from [4]). 
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III. RESEARCH PROBLEM AND PROPOSED SOLUTION 

The samples presented in the previous section demonstrate 
the need for an AD that reduces ambiguity and 
misunderstandings (e.g., via consistent model usage), manages 
complexity (e.g., via abstraction, with only the salient features 
presented), and affords assurance (i.e., correct interpretation) 
[2]. Bass, Clements, and Kazman‘s [4] representation of AD 
systems can be criticized as over-described when using a 
version of Occam‘s razor indicating that things should not be 
multiplied without necessity. In general, current architecture 
specifications might vary and lead to various difficulties, 
including mixing architectural specifications with 
implementation issues. Such descriptions lack the qualities of 
being systemic and coherent, as well as technical-related 
forms (vs. drawings of physical layouts and structural 
compositions in housing). Many system architectures use 
icons (e.g., faces, hands, computer screens) without a 
reasonable level of detail. Additionally, a variety of languages 
exist for eliciting requirements (e.g., object-oriented analyses 
use scenarios or ―use cases‖ to embody requirements) and 
finite-state-machine models [4] that are susceptible to 
inconsistency (e.g., multiplicity of diagrams in UML and 
SysML). From the modeling point of view, such 
representations mix static modeling with dynamism that 
incorporates time. The difference between staticity and 
dynamism will become clearer when we discuss our method 
of modeling robot architecture. 

On the other hand, for a robot architecture to be effective 
as the backbone of a project‘s design, the architecture‘s 
documentation should be informative, unambiguous, and 
readable by many people with various backgrounds [4]. We 
will show that our TM AD (called the static model, denoted by 
S) can be specified by a single ontological element called the 
thimac (things/machines). S is decomposed to produce sub-
diagrams that can be converted to events by infusing a time 
element into the model. The events‘ chronology models the 
system‘s behavior. 

Before applying TM to robot architecture specification, the 
next section provides a summary review of TMs. TM 
modeling is a promising modeling approach that has been 
applied in diverse areas such as designing unmanned aerial 
vehicles [12], documenting computer networks [13], modeling 
network architectures [14], modeling advanced persistent 
threats [15], modeling an IP phone communication system 
[16], and programming [17]. The TM model can also be used 
to model service-oriented systems [18], business systems [19], 
a tendering system [20], a robot‘s architectural structure [21], 
the VLSI engineering process [22], physical security [23], the 
privacy of the processing cycle for bank checks [24], a small 
company process [25], wastewater treatment controls [26], 
asset-management systems [27], IT processes using Microsoft 
Orchestrator [28], digital circuits [29], and automobile 
tracking systems [30]. 

IV. THINGING MACHINE MODELING 

According to the IEEE-RAS (Robotics and Autonomous 
Systems) working group on ontologies for robotics and 
automation, with the growing complexity of behaviors that 
robots are expected to perform, the need for well-defined 

knowledge representation is becoming more evident [31]. In 
this context, ontologies are defined as ―[consisting of] a 
formal conceptualization of the knowledge representation and 
[providing] the definitions of the concepts and relations 
capturing the knowledge of a domain in an interoperable way‖ 
[32]. Examples of such ontologies include those of Cheng et 
al. [33]: device (e.g., concepts such as that of a machine), 
process (e.g., operations performed by technical equipment), 
parametric (e.g., quality of service), and product ontologies 
(e.g., product information). Engel, Greiner, and Seifert [34] 
proposed ontologies for batch process plants that include 
operations, architectures, and general system characteristics 
and relations. 

In this paper, we orient our research toward a more generic 
conceptualization of ontologies‘ role in robotics. An ontology 
is a crucial mechanism with which to model a robot system 
and its activities. A model refers to a conceptual description of 
a robot system and its processes. Developing such a model 
restrains and guides the robot system‘s design, development, 
and use. The issue, in this context, is a cross-area study 
between modeling and ontology in robotics. This paper 
provides a broad ontological foundation for conceptual 
modeling in the robotics domain by suggesting a practical 
ontology in terms of the notion of TMs. TM modeling uses a 
one-category ontology called a thimac in contrast to objects, 
attributes, and relations in the object-oriented paradigm. In 
philosophy, tropes are a well-known one-category ontology. 
According to Cheng et al. [32], ―One-category ontologies are 
deeply appealing, because their ontological simplicity gives 
them an unmatched elegance and sparseness.‖ 

Let a thimac be denoted by ∆; then, ∆ = (M. T), where ∆ 
has a dual mode of being: a machine denoted as M and a thing 
denoted by T. Fig. 5 shows a general form of TM modeling 
machines, and Fig. 6 is a simplification of Fig. 5. M includes 
generic actions described as follows. A sample of the two 
sides of a thimac will be given later. 

The actions (also called stages) in M (Fig. 5) can be 
described as follows: 

 Arrival: A thing reaches a new machine. 

 Acceptance: A thing is allowed to enter the machine. If 
arriving things are always accepted, then arrival and 
acceptance can be combined into a ―receiving‖ stage. 
For simplicity, we will assume that a receiving stage 
exists. 

 Processing (alteration): A thing undergoes 
modifications without creating a new thing. 

 Release: A thing is marked as ready to be transferred 
outside of the machine. 

 Transference: A thing is input or output outside of or 
within the machine. 

 Creation: A new thing is born (created) within a 
machine. Creation can designate bringing into existence 
(e.g., ∃ in logic) in the system because what exists is 
what is found. Creation in M indicates ―there is‖ in the 
system, but not at any particular time. 
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Fig. 5. The Thinging Machine, M. 

 

Fig. 6. Simplification of Machine, M. 

The TM model also includes the notion of triggering, 
which connects two sub-diagrams between which there is no 
flow. Triggering is represented by dashed arrows in the TM 
diagram. 

To informally justify the five TM actions, consider a 
robot‘s actions. The robot interacts with the environment 
either through inputting or outputting. Through its interface 
(transfer), it receives things (e.g., data or actions) and outputs 
(transfers) things (e.g., data or sound). Some of these output 
things might be ―stocked‖ (released), waiting until the right 
time for output. Accordingly, the transfer, receive, and release 
actions are all types of interactions with the outside, which are 
usually referred to as sending data, receiving actions (e.g., 
physical hits), outputting movement (e.g., walking to a certain 
position), etc. Additionally, the robot might process incoming 
things such as converting a signal to data, analyzing a scene, 
inspecting a sound, and so on. It also could create (generate, 
produce) things such as a sound, movement, or plan. All 
activities can be specified in terms of the five actions—create, 
process, release, transfer, and receive—or a subset of these 
actions. 

V. EXAMPLE: A WINDOW-OPENING ROBOT 

Cassinis [35] developed a robot that, when given the goal 
―open the window,‖ could perform the following sequence of 
steps: (1) locate the window, (2) reach near the window, 
(3) locate the handle, (4) reach the handle, (5) turn the handle, 
and (6) pull the handle. 

A. The Static TM Model 

Fig. 7 shows the TM model S of this window-opening 
task. We assume that the window‘s location is communicated 
by a sensor and that the handle position is recognized through 
a camera on the robot. 

Upon being activated to open a window, the robot receives 
data about the window‘s location (circle 1 in the figure) and 
processes the data (2) to trigger (3) the window position‘s 
generation (4). The window position and robot‘s current 
position (5) both flow (6 and 7) to be processed (8), triggering 
(9) the creation of a description of the path to reach the 
window (10). This path flows (11) to the wheel control (12), 
where the path data are processed (13) to generate movement 

(14) toward the window. Upon reaching the window (15), two 
triggering actions occur 

 The robot‘s new location replaces its current location 
(16 and 17). 

 The camera is turned on to search for the handle (18 
and 19). 

Upon collecting the data about the handle (20), the handle 
position is recognized and processed (21). Such a process 
triggers the creation (22) of the required trajectory to reach the 
handle (23), which flows (24) to the handle (25). There, the 
trajectory is processed (26) to trigger the handle‘s movement 
(27) to perform the following: 

 Turning the handle (28) and 

 Pulling it (29). 

Note that TMs are applied uniformly for all types of 
things: data, processes, wheels, handles, camera, movement, 
pulling, and turning. Every machine is constructed from the 
create, process, release, transfer, and receive actions, or from a 
subset of these actions. Model S is richer than the so-called 
ADs; however, if we are interested in the system in terms of 
its components and their relations, then these can be extracted 
from S by eliminating the actions, as shown in Fig. 8. Every 
component in Fig. 8 is a thimac. To illustrate the notion of 
thimac, Fig. 9 shows the window-opening robot as a thimac. It 
is a machine and a thing simultaneously. For example, as a 
thing, it can include its physical attributes, manufacturer, etc., 
as in the case of a class‘s attributes in the object-oriented 
model. In addition, as a thing, it can be shipped, cleaned, etc. 

 

Fig. 7. Static TM Model, S. 
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Fig. 8. The Window-Opening Robot as Components and their Relationships. 

 

Fig. 9. The Window-Opening Robot as a Thimac. 

Alternatively, if we want to go in the opposite direction 
into the model‘s fine details, we can apply the same TM 
machine to the subthimacs. Suppose that we add an obstacle in 
the path to the window. Fig. 10 shows the needed 
modifications to the original model S (Fig. 7). 

The modification starts in the wheels machine, where the 
original path to the window (circle 1) reaches the wheels‘ 
controller to be processed (2), triggering a movement (3) to 
reach the window (4). Suppose the movement instead meets 
an obstacle (5), which triggers (6) a warning. The warning 
flows (7) to a control module, which processes it (8) to trigger, 
(a) activating a camera on the robot (9) and (b) saving the 
current path in storage (10 and 11) to continue later after 
overcoming the obstacle. 

The camera data (12) are analyzed (13) to trigger the 
creation of a new path (14). The new path flows to the wheels 
system (15), where it is processed to create movement. After 
the obstacle is overcome (16), the path to the window is 
restored (17). 

B. The Dynamic Model 

S is a machine schema that can be decomposed to generate 
a new organizational level (multiplicity) from the 
―meaningful‖ parts of S. Model S (Fig. 7) is a static 
description that represents a still or resting (no time) 
condition. The meaningfulness of a part of S resides in the 
isomorphism between the part and the thing it is supposed to 
represent (in the modeler‘s conceptual framework). 

Decomposition is necessary because the system described by 
S is clearly ―activated‖ behaviorally, piece by piece (sub-
diagrams). Fig. 11 shows a selected division of S for the robot 
system in 15 static changes. The robot‘s dynamism originates 
from conceptually dividing it as a whole and replacing it with 
its 15 sub-diagrams, which then become viewed as events by 
injecting a time sub-machine into each of them. For example, 
the event Replace the old robot location with the current 
location is modeled as shown in Fig. 12. The chronology of 
events is shown in Fig. 13. 

 

Fig. 10. Adding an Obstacle to the Window-Opening Robot. 
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Fig. 11. Dividing the Static Model into Parts. 

 

Fig. 12. Event E8. 

 

Fig. 13. The Window-Opening Robot‘s behavior in Terms of the Chronology 

of Events. 

VI. CASE STUDY 

For our study, without loss of generality, we selected one 
architectural description for a robot called the NAO robot, the 
first autonomous, programmable humanoid robot created by 
SoftBank Group. It is an effective programming tool used in 
education and research. In addition, companies and health care 
centers might use it to welcome, inform, and entertain visitors 
[36]. NAO‘s documentation and user guide show how to start 
the robot and describe the result of turning the robot ON. In 
addition, they describe what happens when someone 
approaches the robot [37]. Furthermore, the robot‘s actions 
can be created and modified using the Choregraphe software. 
Choregraphe is a multiplatform desktop application that 
allows users to create animations and dialogues for robots. It 
also permits users to monitor and control the robot [36]. In 
addition, Fig. 14 and 15 show the general architecture of 
interacting with the robot using Choregraphe software and 
Microsoft Azure, respectively [38]. Microsoft Azure is a 
continuously expanding cloud-computing service that allows 
users to build, manage, and deploy applications on a global 

network using their preferred tools and frameworks [39]. Our 
case study involves combining NAO‘s manual 
switching/approaching of the robot with the architecture in 
Fig. 14 and 15. The result is demonstrated using a TM model 
to obtain an A-to-Z architecture of the robot. 

The basic description of a user interacting with the robot is 
described below [38]: 

1) Check the Internet connection. 

2) Notify the users if NAO is in online mode. 

3) Start speech recognition; by default, NAO will record a 

sound file when speech is detected. 

4) The file path of the recorded sound clip will be sent to 

the Bing Speech API to extract text. 

5) The text will then be sent to Azure Function to process 

the response. 

6) In Azure Function, first, we will analyze the sentiment 

of the input, which will trigger a negative response (e.g., 

―Please don‘t scold me‖) when it detects that the users are 

upset. 

7) If not, it will call QnA Maker API to obtain a response. 

8) If an answer is found, then Azure Function will output 

the response. Otherwise, it will be recorded in Table Storage 

for admin to update. 

9) Both the input and output are archived in Table Storage 

for validation. 

10) Keywords in the responses from Azure Function will 

trigger specific movements. 

11) Repeat step 3. 

12) At any point in time, if the head is tapped, it will stop 

the conversation [38]. 

 

Fig. 14. An Overall Architecture of NAO Robot using Choregraphe (Partially 

from [38]). 

 

Fig. 15. An Overall Architecture using Azure (Partially from [38]). 
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A. TM Static Model 

The robot consists of four parts: the sensors, the controller, 
the microphone, and the physical parts of the robot (head and 
body). 

 Through the sensors, the user generates a signal (circle 
1) that flows (2) to the robot to trigger the robot‘s state 
to be ON (3). Switching the robot ON triggers two 
actions: The LEDs are switched ON (4), and sound is 
created (5). 

 When the LEDs are switched ON, the black-and-white 
light module creates (6) blinking, and a process (7) 
takes its course, changing color from black to white. 

 Continuing at circle (5), a greeting sound is generated 
(8). 

 Approaching the robot: A talking distance (assuming a 
maximum of 1.5 meters) is assumed to be initialized for 
the first time using the robot (9). When the user walks 
within this distance (10), a current distance is created 
(11) by the sensor, and its value flows (12) to the 
controller, where it is processed (13) to trigger (14) 
creation of the navy color (15) on the LEDs. 

 Interacting with the robot: Once the user speaks (16—
bottom-left corner of the figure), this act is detected 
(17) by the sensors and processed (18) to create (19) 
digital data from the analog sound. The digital data flow 
to the controller, where the data are processed to be 
recorded (20) and stored (21). Later, the stored data are 
retrieved and extracted as text (22) to create (23) sound 
clips. The sound clip is processed (24) to create 
(identify) its function (as a question or order). 

 If the function is a question (25), it flows to be 
processed (26) such that: 

- The question is compared with the questions stored in 

the database. 

(i)  If the question is found, the answer is retrieved 

(27) and flows to the microphone (28) to be 

processed (29). Accordingly, the corresponding 

speech is created (30). 

(ii) Otherwise, the question is stored in a database for 

validation (31). 

 If the function is an order (32), the order flows to the 
physical head and body (33) to be processed (34). 
Based on the type of order, a physical action is 
performed as follows: 

I. Head shaking (35), 

II. Wiping forehead (36), or 

III. Pointing (37) in a certain direction. 

 Interruption: At any moment, the user can tap the 
robot‘s head (38—bottom left), which generates a 
signal (39) from the tactile head sensors that flows (40) 
to the microphone. The signal is processed (41) to 
trigger stopping of the speech (42). 

Fig. 16 shows the TM model of the NAO robot‘s 
architecture. 

B. The Dynamic Model 

The decomposition of the S model forms the foundation 
upon which to understand events. The resulting parts of S 
should be sufficiently ―meaningful.‖ The meaningfulness of a 
part of S resides in the isomorphism between the part and the 
thing it is supposed to represent (in the modeler‘s conceptual 
framework). For example, ―release‖ by itself as a sub-diagram 
does not seem to have this meaningfulness, but ―release, 
transfer, transfer, and receive‖ is an ideal whole/part because 
it corresponds to the familiar notion of ―moving from to‖ The 
resulting TM states (parts of S) are altered by inducing time 
(the time subthimac) to be transformed into events. 

To construct the dynamic model, we identify the following 

events (see Fig. 17): 

Event 1 (E1): The user presses the start button and creates a 

signal through the sensors. 

Event 2 (E2): The signal triggers the robot to be switched ON, 

which causes (i) the LEDs to blink, (ii) a greeting sound, and 

(iii) initialization of the talking distance. 

Event 3 (E3): The user approaches the robot within 1.5 m, 

which triggers creation of the current approaching distance. 

Event 4 (E4): The current distance flows to the controller. 

Event 5 (E5): The controller processes the current distance, 

and the LED light changes to navy. 

Event 6 (E6): The user speaks, which is received by the sensor. 

Event 7 (E7): The analog sound is processed and converted to 

digital data. 

Event 8 (E8): The digital data are released to the controller, 

where the data are stored. 

Event 9 (E9): The digital data are retrieved and extracted as 

text, then processed to create sound clips. 

Event 10 (E10): The sound clips are processed to trigger 

creation (identification) of the function. 

Event 11 (E11): The function is processed to distinguish a 

question from an order. 

Event 12 (E12): The function is a question, which is sent to the 

Q&A module. 

Event 13 (E13): The answer to the question is sent to the 

microphone. 

Event 14 (E14): The answer cannot be found; hence, it is 

stored. 

Event 15 (E15): The function is an order; hence, it is sent to the 

control of the physical body and head. 

Event 16 (E16): The order is processed. 

Event 17 (E17): The order is for the robot to shake its head. 

Event 18 (E18): The order is for the robot to wipe its forehead. 

Event 19 (E19): The order is for the robot to point. 
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Event 20 (E20): The user taps the robot‘s head, creating a 

signal that is received by the microphone, thus stopping the 

sound. 

Lastly, the robot‘s behavior can be specified by the 

chronology of events shown in Fig. 18. 

 

Fig. 16. TM Model of the NAO Robot‘s Architecture. 
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Fig. 17. The Selected Events. 

 

Fig. 18. The General Architecture of Interacting with the Robot (from [38]). 

VII. CONCLUSION 

This paper contributes to establishing a broad foundation 
for describing a high-level specification of robot systems. This 
involved developing the system, from static modeling to 
identifying the system‘s behavior. Our approach to present the 
benefits of such an approach was to contrast current 
architectural descriptions (Fig. 1 to 4, 14 and 15) with static 
and dynamic TM modeling to obtain a more detailed structure 
of the robot‘s processes, which is important to complete the 
designing and implementing phases of any robot structure. 
Further research will apply TM modeling to different aspects 
in robotics. 
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