
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

258 | P a g e

www.ijacsa.thesai.org

High-Level Description of Robot Architecture

Sabah Al-Fedaghi
1
, Manar AlSaraf

 2

Computer Engineering Department

Kuwait University

Kuwait

Abstract—Architectural Description (AD) is the backbone

that facilitates the implementation and validation of robotic

systems. In general, current high-level ADs reflect great variation

and lead to various difficulties, including mixing ADs with

implementation issues. They lack the qualities of being systematic

and coherent, as well as lacking technical-related forms (e.g.,

icons of faces, computer screens). Additionally, a variety of

languages exist for eliciting requirements, such as object-oriented

analysis methods susceptible to inconsistency (e.g., those using

multiple diagrams in UML and SysML). In this paper, we orient

our research toward a more generic conceptualization of ADs in

robotics. We apply a new modeling methodology, namely the

Thinging Machine (TM), to describe the architecture in robotic

systems. The focus of such an application is on high-level

specification, which is one important aspect for realizing the

design and implementation in such systems. TM modeling can be

utilized in documentation and communication and as the first

step in the system’s design phase. Accordingly, sample robot

architectures are re-expressed in terms of TM, thus developing

(1) a static model that captures the robot’s atemporal aspects,

(2) a dynamic model that identifies states, and (3) a behavioral

model that specifies the chronology of events in the system. This

result shows a viable approach in robot modeling that determines

a robot system’s behavior through its static description.

Keywords—Conceptual model; robot architectural

specification; robot behavior; static diagram; dynamism

I. INTRODUCTION

Robotic systems are multifaceted and challenging. Thus,
the robotic systems must interact with a dynamic environment
to be reactive and flexible to unexpected changes. Such
challenges require good frameworks and models that embody
well-defined concepts to effectively manage this complexity.
The use of a well-conceived architectural description (AD)
can often help to manage that complexity [1]. An AD is a
representation of a system, its structure, and associated
behaviors, such as the AD languages UML and SysML [2].

An architectural model is the backbone that facilitates the
description, implementation, and validation of robotic systems
[3]. It is important for communication among stakeholders to
provide a common language in which different concerns can
be expressed, negotiated, and resolved at a level that is
manageable even for complex systems [4]. Additionally, the
architecture helps with recognizing constraints, dictating
organizational structures, enabling a system‘s quality
attributes, managing changes, and providing the basis for
training [4].

This paper applies a new modeling methodology, the
thinging machine (TM), for architecting robotic systems. The

focus of such an application is on a high-level AD, which is
one important aspect of designing and implementing a robotic
system [4]. The AD can be utilized in documentation and
communication and as the first step in the system‘s design.

II. RELATED WORKS

Robot architecture is a subtopic of system architecture.
Robot architecture is hardly recognized as an independent
subject. For example, a search on ―robot architecture‖ on
Wikipedia produces the response, ―The page ‗Robot
architecture‘ does not exist‖; instead, several pages are given,
such as ―autonomous robot architecture‖ and
―subsumption architecture.‖

We outline here some of the many sources in the rich field
of system architecture, starting with the types of structures in
this field. England [2] lists 28 sample architectural domains,
including conceptual architecture, computer (hardware)
architecture, software architecture, communication
architecture, technical architecture, and reference architecture.
Architecture-related standards have been adopted to address
lifecycle processes, activities, and tasks, such as the IEEE
Standard Ontology for Robotics and Automation, IEEE/RS,
INCOSE UK‘s Practice of System Architecture (2014), and
ISO/PAS 19450:2015 Automation Systems and Integration—
Object-Process Methodology. A survey reported a list of 120+
AD languages, which are detailed in [2]. Because of space
limitations, we focus on four representative samples of robot
ADs.

An architecture comprises the high-level schema that show
a system‘s overall structure [4]. The term refers to
―determining the needs of the user of a structure and then
designing to meet those needs as effectively as possible within
economic and technological constraints… The emphasis in
architecture is upon the needs of the user, whereas in
engineering the emphasis is upon the needs of the fabricator‖
[5]. The term architecture is used here to describe the
conceptual structure and functional behavior, as distinct from
the organization of the logical design and the physical
implementation [6].

The Software Engineering Institute defines software
architecture as a system‘s structure, which includes system
elements, their externally visible interfaces, and the
relationships among them in the system [4]. Software
architecture deals with an abstraction of a system, by defining
how elements interact within this abstraction but not how
individual elements are implemented [7]. According to Bass,
Clements, and Kazman [4], there is ―little difference‖ between
software architecture and system architecture. The

https://en.wikipedia.org/w/index.php?title=Robot_architecture&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Robot_architecture&action=edit&redlink=1
https://en.wikipedia.org/wiki/Subsumption_architecture

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

259 | P a g e

www.ijacsa.thesai.org

architectural view is abstract, distilling implementation details
and concentrating on the system elements‘ behavior and
interactions [4]. Architecture prescribes a system‘s structure
by accommodating combinations of both physical structure
and functionality (utility) [2].

Coste-Maniere and Simmons [3] assert that the
―architectural structure refers to how a system is divided into
subsystems, and how those subsystems interact. This is often
represented by the traditional ‗boxes and arrows‘ diagrams.‖ If
there is no system architecture, the project should not proceed
to full-scale system development [8]. According to Coste-
Maniere and Simmons [3], a robot system often uses several
architecture styles together, so it is sometimes difficult to
determine exactly what architecture is used—to describe the
robot‘s system—because the architecture and the
implementation are often intimately tied together. Coste-
Maniere and Simmons [3] continue, ―This is unfortunate, as a
well-conceived architecture can have many advantages in the
specification, execution, and validation of robot systems.‖

To exemplify the types of robot AD, we show four
representative cases. The purpose is not to give fair accounts
of them, but to show the types of diagrams used for those
cases for contrast with the TM diagrams developed later in the
paper.

Loza-Matovelle, Verdugo, Zalama, and Gómez-García-
Bermejo [9] developed a system that combines robots with a
network of sensors and actuators, as illustrated in Fig. 1.
Different devices are represented by heterogeneous icons such
as a device, a face, a hand, and a telephone. Servers in the
system are represented as circles or rounded rectangles.
Snoswell et al. [10] presented a robot system architecture
(Fig. 2) for a manipulator that grasps and completes tasks. The
system is distributed across multiple computers. They tested
this system architecture using the so-called MOVO mobile
manipulation platform from Kinova Robotics.

As shown in Fig. 3, PatentSwarm [11] (in an invention)
incorporates state machines into the robot AD. Note that these
high-level ADs are static depictions that do not incorporate
dynamic features or facilitate movement to the next level of
development (i.e., design). This is an important point to
consider when contrasting them with the proposed TM
modeling.

The fourth type of AD lacks a holistic view of the robot
system. According to Bass, Clements, and Kazman [4],
architectural structures can be divided into three groups:
module structures, component-and-connector structures, and
allocation structures. Module-based structures include
decomposition and use layers and classes or generalization.
Component-and-connector structures include processes,
concurrency, and the client–server structure. Finally,
allocation structures include allocation and deployment. Bass,
Clements, and Kazman [4] used many diagrams, such as UML
diagrams, to describe different aspects of architecture. Fig. 4
shows a sample of these diagrams, called data flow
architectural views.

Fig. 1. Sample AD that Combines Robots with a Network of Sensors and

Actuators (Adapted from [9]).

Fig. 2. Architecture for a Distributed Robot-Planning System (Adapted from

[10].

Fig. 3. A Schematic Illustration of an Embodiment of the Robot Control

Architecture (Partially from [11]).

Fig. 4. Data Flow Architectural view (Partially from [4]).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

260 | P a g e

www.ijacsa.thesai.org

III. RESEARCH PROBLEM AND PROPOSED SOLUTION

The samples presented in the previous section demonstrate
the need for an AD that reduces ambiguity and
misunderstandings (e.g., via consistent model usage), manages
complexity (e.g., via abstraction, with only the salient features
presented), and affords assurance (i.e., correct interpretation)
[2]. Bass, Clements, and Kazman‘s [4] representation of AD
systems can be criticized as over-described when using a
version of Occam‘s razor indicating that things should not be
multiplied without necessity. In general, current architecture
specifications might vary and lead to various difficulties,
including mixing architectural specifications with
implementation issues. Such descriptions lack the qualities of
being systemic and coherent, as well as technical-related
forms (vs. drawings of physical layouts and structural
compositions in housing). Many system architectures use
icons (e.g., faces, hands, computer screens) without a
reasonable level of detail. Additionally, a variety of languages
exist for eliciting requirements (e.g., object-oriented analyses
use scenarios or ―use cases‖ to embody requirements) and
finite-state-machine models [4] that are susceptible to
inconsistency (e.g., multiplicity of diagrams in UML and
SysML). From the modeling point of view, such
representations mix static modeling with dynamism that
incorporates time. The difference between staticity and
dynamism will become clearer when we discuss our method
of modeling robot architecture.

On the other hand, for a robot architecture to be effective
as the backbone of a project‘s design, the architecture‘s
documentation should be informative, unambiguous, and
readable by many people with various backgrounds [4]. We
will show that our TM AD (called the static model, denoted by
S) can be specified by a single ontological element called the
thimac (things/machines). S is decomposed to produce sub-
diagrams that can be converted to events by infusing a time
element into the model. The events‘ chronology models the
system‘s behavior.

Before applying TM to robot architecture specification, the
next section provides a summary review of TMs. TM
modeling is a promising modeling approach that has been
applied in diverse areas such as designing unmanned aerial
vehicles [12], documenting computer networks [13], modeling
network architectures [14], modeling advanced persistent
threats [15], modeling an IP phone communication system
[16], and programming [17]. The TM model can also be used
to model service-oriented systems [18], business systems [19],
a tendering system [20], a robot‘s architectural structure [21],
the VLSI engineering process [22], physical security [23], the
privacy of the processing cycle for bank checks [24], a small
company process [25], wastewater treatment controls [26],
asset-management systems [27], IT processes using Microsoft
Orchestrator [28], digital circuits [29], and automobile
tracking systems [30].

IV. THINGING MACHINE MODELING

According to the IEEE-RAS (Robotics and Autonomous
Systems) working group on ontologies for robotics and
automation, with the growing complexity of behaviors that
robots are expected to perform, the need for well-defined

knowledge representation is becoming more evident [31]. In
this context, ontologies are defined as ―[consisting of] a
formal conceptualization of the knowledge representation and
[providing] the definitions of the concepts and relations
capturing the knowledge of a domain in an interoperable way‖
[32]. Examples of such ontologies include those of Cheng et
al. [33]: device (e.g., concepts such as that of a machine),
process (e.g., operations performed by technical equipment),
parametric (e.g., quality of service), and product ontologies
(e.g., product information). Engel, Greiner, and Seifert [34]
proposed ontologies for batch process plants that include
operations, architectures, and general system characteristics
and relations.

In this paper, we orient our research toward a more generic
conceptualization of ontologies‘ role in robotics. An ontology
is a crucial mechanism with which to model a robot system
and its activities. A model refers to a conceptual description of
a robot system and its processes. Developing such a model
restrains and guides the robot system‘s design, development,
and use. The issue, in this context, is a cross-area study
between modeling and ontology in robotics. This paper
provides a broad ontological foundation for conceptual
modeling in the robotics domain by suggesting a practical
ontology in terms of the notion of TMs. TM modeling uses a
one-category ontology called a thimac in contrast to objects,
attributes, and relations in the object-oriented paradigm. In
philosophy, tropes are a well-known one-category ontology.
According to Cheng et al. [32], ―One-category ontologies are
deeply appealing, because their ontological simplicity gives
them an unmatched elegance and sparseness.‖

Let a thimac be denoted by ∆; then, ∆ = (M. T), where ∆
has a dual mode of being: a machine denoted as M and a thing
denoted by T. Fig. 5 shows a general form of TM modeling
machines, and Fig. 6 is a simplification of Fig. 5. M includes
generic actions described as follows. A sample of the two
sides of a thimac will be given later.

The actions (also called stages) in M (Fig. 5) can be
described as follows:

 Arrival: A thing reaches a new machine.

 Acceptance: A thing is allowed to enter the machine. If
arriving things are always accepted, then arrival and
acceptance can be combined into a ―receiving‖ stage.
For simplicity, we will assume that a receiving stage
exists.

 Processing (alteration): A thing undergoes
modifications without creating a new thing.

 Release: A thing is marked as ready to be transferred
outside of the machine.

 Transference: A thing is input or output outside of or
within the machine.

 Creation: A new thing is born (created) within a
machine. Creation can designate bringing into existence
(e.g., ∃ in logic) in the system because what exists is
what is found. Creation in M indicates ―there is‖ in the
system, but not at any particular time.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

261 | P a g e

www.ijacsa.thesai.org

Fig. 5. The Thinging Machine, M.

Fig. 6. Simplification of Machine, M.

The TM model also includes the notion of triggering,
which connects two sub-diagrams between which there is no
flow. Triggering is represented by dashed arrows in the TM
diagram.

To informally justify the five TM actions, consider a
robot‘s actions. The robot interacts with the environment
either through inputting or outputting. Through its interface
(transfer), it receives things (e.g., data or actions) and outputs
(transfers) things (e.g., data or sound). Some of these output
things might be ―stocked‖ (released), waiting until the right
time for output. Accordingly, the transfer, receive, and release
actions are all types of interactions with the outside, which are
usually referred to as sending data, receiving actions (e.g.,
physical hits), outputting movement (e.g., walking to a certain
position), etc. Additionally, the robot might process incoming
things such as converting a signal to data, analyzing a scene,
inspecting a sound, and so on. It also could create (generate,
produce) things such as a sound, movement, or plan. All
activities can be specified in terms of the five actions—create,
process, release, transfer, and receive—or a subset of these
actions.

V. EXAMPLE: A WINDOW-OPENING ROBOT

Cassinis [35] developed a robot that, when given the goal
―open the window,‖ could perform the following sequence of
steps: (1) locate the window, (2) reach near the window,
(3) locate the handle, (4) reach the handle, (5) turn the handle,
and (6) pull the handle.

A. The Static TM Model

Fig. 7 shows the TM model S of this window-opening
task. We assume that the window‘s location is communicated
by a sensor and that the handle position is recognized through
a camera on the robot.

Upon being activated to open a window, the robot receives
data about the window‘s location (circle 1 in the figure) and
processes the data (2) to trigger (3) the window position‘s
generation (4). The window position and robot‘s current
position (5) both flow (6 and 7) to be processed (8), triggering
(9) the creation of a description of the path to reach the
window (10). This path flows (11) to the wheel control (12),
where the path data are processed (13) to generate movement

(14) toward the window. Upon reaching the window (15), two
triggering actions occur

 The robot‘s new location replaces its current location
(16 and 17).

 The camera is turned on to search for the handle (18
and 19).

Upon collecting the data about the handle (20), the handle
position is recognized and processed (21). Such a process
triggers the creation (22) of the required trajectory to reach the
handle (23), which flows (24) to the handle (25). There, the
trajectory is processed (26) to trigger the handle‘s movement
(27) to perform the following:

 Turning the handle (28) and

 Pulling it (29).

Note that TMs are applied uniformly for all types of
things: data, processes, wheels, handles, camera, movement,
pulling, and turning. Every machine is constructed from the
create, process, release, transfer, and receive actions, or from a
subset of these actions. Model S is richer than the so-called
ADs; however, if we are interested in the system in terms of
its components and their relations, then these can be extracted
from S by eliminating the actions, as shown in Fig. 8. Every
component in Fig. 8 is a thimac. To illustrate the notion of
thimac, Fig. 9 shows the window-opening robot as a thimac. It
is a machine and a thing simultaneously. For example, as a
thing, it can include its physical attributes, manufacturer, etc.,
as in the case of a class‘s attributes in the object-oriented
model. In addition, as a thing, it can be shipped, cleaned, etc.

Fig. 7. Static TM Model, S.

Receive

Transfer

Accept Arrive

Output Input
Create

Process

Release

 Create

Receive

Transfer

Process

Re
le

as
e

Process

Create

Receive Transfer

Window data from sensor

Path to reach window

Create: On

Current location

of the robot
Create Transfer

Window location

Transfer

Process Release

Process: Reach the window

Robot wheels

Transfer

Receive

Release Release

Transfer Transfer Receive

Receive

Process

Handle data

Transfer Receive

Camera
State

Create

Handle position

Process

Create

Trajectory to handle

Release

 Handle

Transfer

Transfer

Receive
Movement to reach

Process: Reach

the Handle
Process

Transfer

Create

Movement to turn

Process: Turn

the Handle Create

Movement to pull

Process: Pull the

Handle Create

Transfer
Movement

Create

1 4

3 2

5

8

7 6

9 10

11
12

14
13 Process 15

17

16

18

Create

Process

19

20 21
22

23
24

25

26

27 28 29

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

262 | P a g e

www.ijacsa.thesai.org

Fig. 8. The Window-Opening Robot as Components and their Relationships.

Fig. 9. The Window-Opening Robot as a Thimac.

Alternatively, if we want to go in the opposite direction
into the model‘s fine details, we can apply the same TM
machine to the subthimacs. Suppose that we add an obstacle in
the path to the window. Fig. 10 shows the needed
modifications to the original model S (Fig. 7).

The modification starts in the wheels machine, where the
original path to the window (circle 1) reaches the wheels‘
controller to be processed (2), triggering a movement (3) to
reach the window (4). Suppose the movement instead meets
an obstacle (5), which triggers (6) a warning. The warning
flows (7) to a control module, which processes it (8) to trigger,
(a) activating a camera on the robot (9) and (b) saving the
current path in storage (10 and 11) to continue later after
overcoming the obstacle.

The camera data (12) are analyzed (13) to trigger the
creation of a new path (14). The new path flows to the wheels
system (15), where it is processed to create movement. After
the obstacle is overcome (16), the path to the window is
restored (17).

B. The Dynamic Model

S is a machine schema that can be decomposed to generate
a new organizational level (multiplicity) from the
―meaningful‖ parts of S. Model S (Fig. 7) is a static
description that represents a still or resting (no time)
condition. The meaningfulness of a part of S resides in the
isomorphism between the part and the thing it is supposed to
represent (in the modeler‘s conceptual framework).

Decomposition is necessary because the system described by
S is clearly ―activated‖ behaviorally, piece by piece (sub-
diagrams). Fig. 11 shows a selected division of S for the robot
system in 15 static changes. The robot‘s dynamism originates
from conceptually dividing it as a whole and replacing it with
its 15 sub-diagrams, which then become viewed as events by
injecting a time sub-machine into each of them. For example,
the event Replace the old robot location with the current
location is modeled as shown in Fig. 12. The chronology of
events is shown in Fig. 13.

Fig. 10. Adding an Obstacle to the Window-Opening Robot.

 The window opening robot (Thimac)
Machine

Thing

Create Manifest

 Window data from sensor

Path to reach window

On

Current location of

the robot

Window location

Robot wheels

 Handle data

Camera State

 Handle position Trajectory to handle

 Hand Movement to reach Movement to turn Movement to pull

Movement

Sensor

Window

data

 On
Robot wheels

 Handle data

Camera State

Handle position

Trajectory to handle

 Hand
Movement to reach

Movement to turn

Movement to pull

Movement

 Path to reach window

Window data from sensor

Current location of

the robot Window location

1 15

Process: overcome obstacle

Robot wheels

Movement

Create

Original path

Create

Process

Process Create

Process

Receive Transfer

Transfer

Release

Transfer

Receive

Process: Reach an obstacle

Movement

Create

Process

Release Transfer
Storage

Release Transfer

Process: Reach window

Movement

Create

Transfer

Release

Receive

Transfer

Obstacle

Report

Now path to

avoid the

obstacle

Activate

camera

Data from

camera

11

10

16

5

 4

6

3

17

7

9

12

8

13

14

2

Control

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

263 | P a g e

www.ijacsa.thesai.org

Fig. 11. Dividing the Static Model into Parts.

Fig. 12. Event E8.

Fig. 13. The Window-Opening Robot‘s behavior in Terms of the Chronology

of Events.

VI. CASE STUDY

For our study, without loss of generality, we selected one
architectural description for a robot called the NAO robot, the
first autonomous, programmable humanoid robot created by
SoftBank Group. It is an effective programming tool used in
education and research. In addition, companies and health care
centers might use it to welcome, inform, and entertain visitors
[36]. NAO‘s documentation and user guide show how to start
the robot and describe the result of turning the robot ON. In
addition, they describe what happens when someone
approaches the robot [37]. Furthermore, the robot‘s actions
can be created and modified using the Choregraphe software.
Choregraphe is a multiplatform desktop application that
allows users to create animations and dialogues for robots. It
also permits users to monitor and control the robot [36]. In
addition, Fig. 14 and 15 show the general architecture of
interacting with the robot using Choregraphe software and
Microsoft Azure, respectively [38]. Microsoft Azure is a
continuously expanding cloud-computing service that allows
users to build, manage, and deploy applications on a global

network using their preferred tools and frameworks [39]. Our
case study involves combining NAO‘s manual
switching/approaching of the robot with the architecture in
Fig. 14 and 15. The result is demonstrated using a TM model
to obtain an A-to-Z architecture of the robot.

The basic description of a user interacting with the robot is
described below [38]:

1) Check the Internet connection.

2) Notify the users if NAO is in online mode.

3) Start speech recognition; by default, NAO will record a

sound file when speech is detected.

4) The file path of the recorded sound clip will be sent to

the Bing Speech API to extract text.

5) The text will then be sent to Azure Function to process

the response.

6) In Azure Function, first, we will analyze the sentiment

of the input, which will trigger a negative response (e.g.,

―Please don‘t scold me‖) when it detects that the users are

upset.

7) If not, it will call QnA Maker API to obtain a response.

8) If an answer is found, then Azure Function will output

the response. Otherwise, it will be recorded in Table Storage

for admin to update.

9) Both the input and output are archived in Table Storage

for validation.

10) Keywords in the responses from Azure Function will

trigger specific movements.

11) Repeat step 3.

12) At any point in time, if the head is tapped, it will stop

the conversation [38].

Fig. 14. An Overall Architecture of NAO Robot using Choregraphe (Partially

from [38]).

Fig. 15. An Overall Architecture using Azure (Partially from [38]).

Process: Reach

the Handle
Process Create

Process: Turn

the Handle Create

Process: Pull the

Handle Create

Process

Create

Receive Transfer

Window data from sensor

Path to reach window

Create: On

Current location

Create Transfer

Window location

Transfer

Process Release

Process: Reach the window

Robot wheels

Transfer

Receive

Release Release

Transfer Transfer Receive

Receive

Process

Handle data

Transfer Receive

Camera
State

Create

Handle location

Release Transfer

Create

Trajectory to handle

Release

Handle

Transfer

Transfer

Receive
Movement to reach

Transfer

Movement to turn Movement to pull

Transfer
Movement

Create

Create

Process

E1

E2

E9

E8

E7
E6

E5
E4

E3

E15 E14 E13

E12
E11 E10

 Window location

Release

Transfer

Event E8

Current location Transfer Receive

Region

Receive Transfer Transfer Create: takes its course

Time

Release

E1 E2 E3 E5 E6 E7 E9 E10 E11 E12 E13

E4 E8

E15 E14

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

264 | P a g e

www.ijacsa.thesai.org

A. TM Static Model

The robot consists of four parts: the sensors, the controller,
the microphone, and the physical parts of the robot (head and
body).

 Through the sensors, the user generates a signal (circle
1) that flows (2) to the robot to trigger the robot‘s state
to be ON (3). Switching the robot ON triggers two
actions: The LEDs are switched ON (4), and sound is
created (5).

 When the LEDs are switched ON, the black-and-white
light module creates (6) blinking, and a process (7)
takes its course, changing color from black to white.

 Continuing at circle (5), a greeting sound is generated
(8).

 Approaching the robot: A talking distance (assuming a
maximum of 1.5 meters) is assumed to be initialized for
the first time using the robot (9). When the user walks
within this distance (10), a current distance is created
(11) by the sensor, and its value flows (12) to the
controller, where it is processed (13) to trigger (14)
creation of the navy color (15) on the LEDs.

 Interacting with the robot: Once the user speaks (16—
bottom-left corner of the figure), this act is detected
(17) by the sensors and processed (18) to create (19)
digital data from the analog sound. The digital data flow
to the controller, where the data are processed to be
recorded (20) and stored (21). Later, the stored data are
retrieved and extracted as text (22) to create (23) sound
clips. The sound clip is processed (24) to create
(identify) its function (as a question or order).

 If the function is a question (25), it flows to be
processed (26) such that:

- The question is compared with the questions stored in

the database.

(i) If the question is found, the answer is retrieved

(27) and flows to the microphone (28) to be

processed (29). Accordingly, the corresponding

speech is created (30).

(ii) Otherwise, the question is stored in a database for

validation (31).

 If the function is an order (32), the order flows to the
physical head and body (33) to be processed (34).
Based on the type of order, a physical action is
performed as follows:

I. Head shaking (35),

II. Wiping forehead (36), or

III. Pointing (37) in a certain direction.

 Interruption: At any moment, the user can tap the
robot‘s head (38—bottom left), which generates a
signal (39) from the tactile head sensors that flows (40)
to the microphone. The signal is processed (41) to
trigger stopping of the speech (42).

Fig. 16 shows the TM model of the NAO robot‘s
architecture.

B. The Dynamic Model

The decomposition of the S model forms the foundation
upon which to understand events. The resulting parts of S
should be sufficiently ―meaningful.‖ The meaningfulness of a
part of S resides in the isomorphism between the part and the
thing it is supposed to represent (in the modeler‘s conceptual
framework). For example, ―release‖ by itself as a sub-diagram
does not seem to have this meaningfulness, but ―release,
transfer, transfer, and receive‖ is an ideal whole/part because
it corresponds to the familiar notion of ―moving from to‖ The
resulting TM states (parts of S) are altered by inducing time
(the time subthimac) to be transformed into events.

To construct the dynamic model, we identify the following

events (see Fig. 17):

Event 1 (E1): The user presses the start button and creates a

signal through the sensors.

Event 2 (E2): The signal triggers the robot to be switched ON,

which causes (i) the LEDs to blink, (ii) a greeting sound, and

(iii) initialization of the talking distance.

Event 3 (E3): The user approaches the robot within 1.5 m,

which triggers creation of the current approaching distance.

Event 4 (E4): The current distance flows to the controller.

Event 5 (E5): The controller processes the current distance,

and the LED light changes to navy.

Event 6 (E6): The user speaks, which is received by the sensor.

Event 7 (E7): The analog sound is processed and converted to

digital data.

Event 8 (E8): The digital data are released to the controller,

where the data are stored.

Event 9 (E9): The digital data are retrieved and extracted as

text, then processed to create sound clips.

Event 10 (E10): The sound clips are processed to trigger

creation (identification) of the function.

Event 11 (E11): The function is processed to distinguish a

question from an order.

Event 12 (E12): The function is a question, which is sent to the

Q&A module.

Event 13 (E13): The answer to the question is sent to the

microphone.

Event 14 (E14): The answer cannot be found; hence, it is

stored.

Event 15 (E15): The function is an order; hence, it is sent to the

control of the physical body and head.

Event 16 (E16): The order is processed.

Event 17 (E17): The order is for the robot to shake its head.

Event 18 (E18): The order is for the robot to wipe its forehead.

Event 19 (E19): The order is for the robot to point.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

265 | P a g e

www.ijacsa.thesai.org

Event 20 (E20): The user taps the robot‘s head, creating a

signal that is received by the microphone, thus stopping the

sound.

Lastly, the robot‘s behavior can be specified by the

chronology of events shown in Fig. 18.

Fig. 16. TM Model of the NAO Robot‘s Architecture.

USER

Signal

ROBOT

Controller

Physical (Head

& body)

 Speech

Sensors

 Create

State

Create

Create ON

 Light

 Navy

B&W

LEDs

Create

Release

Transfer

Receive

Transfer

Process

Process

Create

Create

Process:

Extracting text

Process: blinking

Sound clip

Function

Head

Tapping

Tactile Head

Sensors

R
el

ea
se

Tr
an

sf
er

 Order

R
el

ea
se

Digital

data

C
re

at
e

Create

1
2

4

5

6

12

14 15

16

22

23

24

21

M
ic

ro
p

h
o

n
e

ON

C
re

at
e

R
el

ea
se

Tr
an

sf
er

Pressing

start

button

Signal

C
re

at
e

Greeting

 Process else

If question found

Speech

Receive

Process:

recording Process

Transfer

Q&A

Process

Create Create

Process Process

Wipe

forehead
Head

shake

Point

Create

19

20

35 36 37

38

Comparison

Answer

Transfer

Tr
an

sf
er

R
ec

ei
ve

C
re

at
e

 S

TO
P

Current Distance

Tr
an

sf
er

Tr
an

sf
er

P
ro

ce
ss

Tr
an

sf
er

Tr
an

sf
er

R
ec

ei
ve

R
el

ea
se

C
re

at
e

R
el

ea
se

Tr
an

sf
er

Tr
an

sf
er

R
ec

ei
ve

 11
12

18

25

28

30

31

41

7

R
ec

ei
ve

Transfer

26

Receive

R
el

ea
se

Tr
an

sf
er

Transfer

Receive

 Process

If Head If wipe

Shake forehead If point

33

P
ro

ce
ss

If question else

Process

29

39

34

32

40

42

27

3
8

10

Create

Action

Transfer

Receive

1.5 m from

the Robot

P
ro

ce
ss

Create

Talking

Distance

9

13

Release

Receive

Transfer
17

 Control (movement)

Create

Fig. 16. TM model of the NAO robot‘s architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

266 | P a g e

www.ijacsa.thesai.org

Fig. 17. The Selected Events.

Fig. 18. The General Architecture of Interacting with the Robot (from [38]).

VII. CONCLUSION

This paper contributes to establishing a broad foundation
for describing a high-level specification of robot systems. This
involved developing the system, from static modeling to
identifying the system‘s behavior. Our approach to present the
benefits of such an approach was to contrast current
architectural descriptions (Fig. 1 to 4, 14 and 15) with static
and dynamic TM modeling to obtain a more detailed structure
of the robot‘s processes, which is important to complete the
designing and implementing phases of any robot structure.
Further research will apply TM modeling to different aspects
in robotics.

USER

Signal

ROBOT

Controller

Physical Head

& body

 Speech

Sensors

 Create

State

Create

Create ON

 Light

 Navy

B&W

LEDs

Create

Release

Transfer

Receive

Transfer

Process

Process

Create

Create

Process:

Extracting text

Process: blinking

Sound clip

Function

Head

Tapping

Tactile Head

Sensors

Re
le

as
e

Tr
an

sf
er

 Order

Re
le

as
e

Digital

data

Cr
ea

te

Create

12

M
icr

op
ho

ne

ON

Cr
ea

te

Re
le

as
e

Tr
an

sf
er

Pressing

start

button

Signal

Cr
ea

te

Greeting

 Process else

If question found

Speech

Receive

Process:

recording Process

Transfer

Q&A

Process

Create Create

Process Process

Wipe

forehead
Head

shake

Point

Create

Comparison

Answer

Transfer

Tr
an

sf
er

Re
ce

ive

Cr
ea

te

 S
TO

P

Current Distance

Tr
an

sf
er

Tr
an

sf
er

Pr
oc

es
s

Tr
an

sf
er

Tr
an

sf
er

Re
ce

ive

Re
le

as
e

Cr
ea

te

Re
le

as
e

Tr
an

sf
er

Tr
an

sf
er

Re
ce

ive

Re
ce

ive

Transfer

Receive

Re
le

as
e

Tr
an

sf
er

Transfer

Receive

 Process

If Head If wipe

Shake forehead If point

Pr
oc

es
s

If question else

Process

Create

Action

Transfer

Receive

1.5 m from

the Robot

Pr
oc

es
s

Create

Talking

Distance

Release

Receive

Transfer

 Control (movement)

Create

E1
E2

E3 E4
E5

E6

E7

E8
E9

E10

E11

E12

E13

E14

E15
E16

E19 E18
E17

E20
Fig. 17. The selected events

Fig. 18. The general architecture of interacting with the
robot (from [38]).

E16

E2

E7

E1 E3

E4

E5

 E6

E13

E14

E12

E11

E10

E9

E8

E15

E18

E19

Start

E20

On

Speech

Function

Order

Question

Found

Not found
Head shake

Wipe

forehead

Pointing

End

E17

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

267 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] D. Kortenkamp and R. Simmons, ―Robotic systems architectures and
programming,‖ in Springer Handbook of Robotics, B. Siciliano and O.
Khatib, Eds. Berlin, Germany: Springer, 2008, pp. 187–206.

[2] R. England, ―Elements of (system) architecture—an introduction, v1.0,‖
Project: Human Centric Systems Engineering, 2016. DOI:
10.13140/RG.2.2.31541.78566.

[3] E. Coste-Maniere and R. Simmons, ―Architecture, the backbone of
robotic systems,‖ Proceedings of the 2000 IEEE International Conf. on
Robotics & Automation. San Francisco, CA, USA, April 2000, pp. 67–
72.

[4] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
2nd ed. Addison Wesley, 2003.

[5] F. Brooks, ―Architectural philosophy,‖ in Planning a Computer System -
Project Stretch, W. Buchholz, Ed. New York: McGraw-Hill, 1962, pp.
5–16.

[6] G. Amdahl, G. Blaauw, and F. Brooks, ―Architecture of the IBM
System/360,‖ IBM Journal of Research and Development, vol. 8, pp.
87–101, 1964.

[7] M. T. Long, Creating a distributed field robot architecture for multiple
robots. (2004). Ph.D. Thesis, University of San Francisco, San
Francisco, CA, USA, 1 November 2004. https://scholarcommons.usf.
edu/etd/1137.

[8] Workshop on Architectures for Software Systems, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, USA, April 1995.
CMU-CS-TR-95-151.

[9] D. Loza-Matovelle, A. Verdugo, E. Zalama, and J. Gómez-García-
Bermejo, ―An architecture for the integration of robots and sensors for
the care of the elderly in an ambient assisted living environment,‖
Robotics, vol. 8, 2019.

[10] A. J. Snoswell, V. Dewanto, M. Hoerger, J. Song, H. Kurniawati, and S.
P. N. Singh, ―A distributed, any-time robot architecture for robust
manipulation,‖ Australasian Conference on Robotics and Automation,
Lincoln, New Zealand, December 4-6, 2018.

[11] PatentSwarm, Control architecture for multi-robot system US 9 527
211B2, INVENTION Claim. Available online: https://patentswarm.com/
patents/US9527211B2 (accessed July 7, 2020).

[12] S. Al-Fedaghi and J. Al-Fadhli, ―Thinging-oriented modeling of
unmanned aerial vehicles,‖ Int. J. Adv. Comput. Sci. Applic., vol. 11,
pp. 610–619, 2020. DOI: 10.14569/IJACSA.2020.0110575.

[13] S. Al-Fedaghi and B. Behbehani, ―How to document computer
networks,‖ Journal of Computer Science, vol. 16, pp. 423–434, 2020.

[14] S. Al-Fedaghi and D. Al-Qemlas, ―Modeling network architecture: A
cloud case study,‖ IJCSNS, vol. 20, pp. 195–209, 2020.

[15] S. Al-Fedaghi and M. Bayoumi, ―Modeling advanced persistent threats:
A case study of APT38,‖ 14th International Conference for Internet
Technology and Secured Transactions (ICITST-2019), London, UK,
December 9-11, 2019.

[16] S. Al-Fedaghi and G. Aldamkhi, ―Conceptual modeling of an IP phone
communication system: A case study,‖ 18th Annual Wireless
Telecommunications Symposium (WTS 2019), New York City, New
York, USA, April 9-12, 2019.

[17] S. Al-Fedaghi and E. Haidar, ―Programming is diagramming is
programming,‖ J. Software, vol. 14, pp. 410–422, 2019.

[18] S. Al-Fedaghi and M. Al-Otaibi, ―Service-oriented systems as a thinging
machine: A case study of customer relationship management,‖ IEEE
Intern. Conf. on Information and Computer Technologies, University of
Hawaii, Maui College, Hawaii, USA, March 14-17, 2019, pp. 243–254.

[19] S. Al-Fedaghi and M. Makdessi, “Modeling business process and
events,‖ 9th Computer Science On-line Conference, Springer, Applied
Informatics and Cybernetics in Intelligent Systems, April 23-26, 2020,
pp. 83–97. doi.org/10.1007/978-3-030-30329-7_8.

[20] S. Al-Fedaghi and E. Haidar, ―Thinging-based conceptual modeling:
Case study of a tendering system,‖ Journal of Computer Science, vol.
16, pp. 452–466, 2020. DOI: 10.3844/jcssp.2020.452.466.

[21] S. Al-Fedaghi and M. Al-Saraf, “Thinging the robotic architectural
structure,‖ The 3rd Intern. Conf. on Mechatronics, Control and Robotics,
Tokyo, Japan, Feb. 22-24, 2020.

[22] S. Al-Fedaghi and A. Hassouneh, ―Modeling the engineering process as
a thinging machine: A case study of chip manufacturing,‖ The 8th
Computer Science On-line Conference, April 24, 2019. L pp. 67–77.

[23] S. Al-Fedaghi and O. Alsumait, ―Toward a conceptual foundation for
physical security: Case study of an IT department,‖ International Journal
of Safety and Security Engineering, vol. 9, pp. 137–156, 2019.

[24] S. Al-Fedaghi and M. Alsulaimi, ―Privacy thinging applied to the
processing cycle of bank cheques,‖ 3rd International Conference on
System Reliability and Safety, Barcelona, Spain, Nov. 24-26, 2018.

[25] S. Al-Fedaghi and H. Aljenfawi, ―A small company as a thinging
machine,‖ 10th International Conference on Information Management
and Engineering (ICIME 2018), University of Salford, Manchester, UK,
September 22-24, 2018, pp. 27–34. doi.org/10.1145/3285957.3285988.

[26] S. Al-Fedaghi and R. Al-Azmi, ―Control of waste water treatment as a
flow machine: A case study,‖ The 24th IEEE International Conference
on Automation and Computing (ICAC‘18), Newcastle University,
Newcastle upon Tyne, UK, September 6-7, 2018.

[27] S. Al-Fedaghi and N. Al-Huwais, ―Toward modeling information in
asset management: Case study using Maximo, 2018,‖ 4th International
Conf. on Information Management, Oxford, UK, 2018, pp. 117–124.

[28] S. Al-Fedaghi and M. Alsharah, ―Modeling IT processes: A case study
using Microsoft Orchestrator,‖ 2018 International Conference on
Advances in Computing and Communication Engineering (ICACCE),
Paris, France, June 22-23, 2018, pp. 394–401.

[29] S. Al-Fedaghi and A. Esmaeel, ―Modeling digital circuits as machines of
things that flow,‖ 2018 International Conference on Mechatronics
Systems and Control Engineering (ICMSCE 2018), Amsterdam,
Netherlands, February 21-23, 2018.

[30] S. Al-Fedaghi and Y. Atiyah, ―Tracking systems as thinging machine: A
case study of a service company,‖ IJACSA, vol. 9, pp. 110–119, 2018.

[31] C. Schlenoff, E. Prestes, R. Madhavan, P. Goncalves, H. Li, S.
Balakirsky, T. Kramer, and E. Miguelanez, ―An IEEE standard ontology
for robotics and automation,‖ IEEE/RSJ International Conference on
Intelligent Robots and Systems, Vilamoura, Portugal, Oct. 7-12, 2012.

[32] V. R. S. Kumar, A. Khamis, S. Fiorini, J. L. Carbonera, A. O. Alarcos,
M. Habib, P. Goncalves, H. Li, and J. I. Olszewska, ―Ontologies for
industry 4.0.,‖ The Knowledge Engineering Review, vol. 34, e17, 2019.
DOI: 10.1017/S0269888919000109.

[33] H. Cheng, P. Zeng, L. Xue, Z. Shi, P. Wang, and H. Yu, ―Manufacturing
ontology development based on industry 4.0 demonstration production
line,‖ IEEE International Conference on Trustworthy Systems and Their
Applications, Wuhan, China, September 22-23, 2016, pp. 42–47.

[34] G. Engel, T. Greiner, and S. Seifert, ―Ontology-assisted engineering of
cyber-physical production systems in the field of process technology,‖
IEEE Trans. on Industrial Informatics, vol. 14, pp. 2792–2802, 2018.

[35] R. Cassinis, BARCS: A new way of building robots. Laboratorio di
Calcolatori, Dipartimento di Elettronica, Politecnico di Milano, Milan,
Italy, September 1987. Available online: http://www.
cassinis.it/Siti%20ex%20Uni/ARL/docs/papers/05_002.pdf.

[36] X. Lacherade, SoftBank Robotics Europe – SAS (Limited Company).
2020. Available online: https://www.softbankrobotics.com/emea/
index.php/en/nao (accessed on July 10, 2020).

[37] SoftBank Robotics Europe. Aldebaran documentation. 2017. Available
online: http://doc.aldebaran.com/2-1/home_nao.html (accessed on July
10, 2020).

[38] M. T. G. Ying, NaoRobot. November 2017. Available online:
https://github.com/guangying94/NaoRobot#start-of-content (accessed on
July 10, 2020).

[39] Microsoft. Microsoft Azure. 2020. Available online: https://
azure.microsoft.com/en-us/overview/ (accessed on July 10, 2020).

https://arxiv.org/search/cs?searchtype=author&query=Al-Fadhli%2C+J
https://dx.doi.org/10.14569/IJACSA.2020.0110575
https://doi.org/10.1145/3285957.3285988

