
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

268 | P a g e

www.ijacsa.thesai.org

Enhancing Acceptance Test Driven Development

Model with Combinatorial Logic

Subhash Tatale
1

Research Scholar, Dept. of CSE

Koneru Lakshmaiah Education Foundation

Vaddeswaram Vijayawada, India

Dr. V. Chandra Prakash
2

Professor, Dept. of CSE

Koneru Lakshmaiah Education Foundation

Vaddeswaram Vijayawada, India

Abstract—In the Software Development Life Cycle, modelling

plays a most significant role in designing and developing software

efficiently. Acceptance Test-Driven Development (ATDD) is a

powerful agile software development model where a customer

provides user acceptance test suits as a part of Software

Requirements Specifications. A design has to develop a system so

that User Acceptance Tests will be successful. In some systems,

the Combinatorial Logic and Combinatorial Testing play a very

crucial role. The authors have proposed a novel approach to

enhance the existing Acceptance Test Driven Development model

to Combinatorial Logic Oriented-ATDD model by incorporating

combinatorial logic. Refinement with respect to combinatorial

logic needs to be incorporated in all the stages of Software

Development Life Cycle, i.e. starting from Software Requirement

Specifications to User Acceptance Tests. This comprehensive

approach derives the acceptance tests from user requirements

effectively and efficiently. In this paper, the existing Indian

Railway Reservation System is considered as a case study, and it

was fully implemented as per proposed Combinatorial Logic

Oriented-ATDD model.

Keywords—Software requirements specification; software

development life cycle; acceptance test driven development;

combinatorial logic; combinatorial testing; user acceptance tests;

railway reservation system

I. INTRODUCTION

This Nowadays, software systems are becoming
increasingly complex. It is more challenging to verify the
correctness of complex software requirements specification
[1]. Formal verification approaches are highly sensitive to the
software's complexity and might require costly resources,
namely tools and human resources. During functional testing,
many errors can be captured. It is not very easy to validate
software requirements specification from a potentially huge
set of parameters, values, or conditions of the system [2][3].

In the systems such as reservation system, college
admission system, concession management system, etc.
combinations of a set of parameters, values, or conditions are
present. Combinatorial logic plays a considerable role in such
type of systems. For example, in the current railway
reservation system, a passenger avail only one type of
concession at a time. A passenger can avail multiple
concessions at a time by applying combinatorial logic on a set
of concession categories and types. Suppose a passenger who
wants to avail concession is a senior citizen and physically
handicapped, then the passenger can get more percentage of

concession than percentage of concession offered in single
concession using pairwise combinatorial logic. If a passenger
is a senior citizen, cancer patient, and physically handicapped,
then the passenger can get more percentage of concession than
percentage of concession offered in pairwise concession using
3-way combinatorial logic. In addition to standard testing
techniques, combinatorial testing is also very much essential
to test this combinatorial logic to ensure the reliability of such
systems.

The combinatorial logic is applied to various systems and
performed combinatorial testing to ensure the reliability of
those systems. The researchers claimed that 67% of the faults
were triggered by only a single parameter value, 93% by 2-
way combinations, and 98% by 3-way combinations of a
complex application. For some applications, 100% faults were
detected with 4 to 6- way interactions [4].

The authors made a survey to find out a model among the
classical process models viz. waterfall, spiral, incremental,
etc., and agile process models viz. extreme programming,
scrum, etc., that is most suitable to represent combinatorial
logic. The authors found that Test Driven Development
(TDD) and Acceptance Test Driven Development (ATDD) are
more suitable to represent combinatorial logic.

There are many systems where combinatorial logic is
found as a must and hence there is need to put focus on how to
incorporate combinatorial logic in all the stages of Software
Development Life Cycle (SDLC) in a better way.
Combinatorial logic can be incorporated into all the stages of
SDLC. Out of earlier mentioned process models, the authors
identified that the TDD and ATDD models are suitable to
represent the combinatorial logic. In this section, concepts
related to combinatorial testing and the ATDD model are
discussed.

A. Combinatorial Testing

Combinatorial Testing (CT) is a specification based
technique. It provides a systematic way to select combinations
of program inputs or parameters for testing. It is a useful
testing technique to test hardware or software system which
identifies failures based on input or output combinations of
parameters. Over the years, this technique has been applied to
test system configurations, web forms, protocols, graphical
user interfaces, and software product lines [5]. The possible n-
way (n=2, 3, 4, 5, 6, or more) combinatorial interactions

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

269 | P a g e

www.ijacsa.thesai.org

among the input variables can be detected by testers using the
combinatorial testing technique [6].

1) Pairwise testing: Pairwise testing technique is the most

commonly used combinatorial testing. It is a useful testing

technique which involves all possible discrete combinations of

each pair of input parameters of the system. Pairwise testing

can be performed much faster than exhaustive testing that tests

all combinations of all input parameters. The majority of

software faults are triggered by a single input parameter or a

combination of two input parameters. Pairwise testing requires

that each pair of input parameter values should be represented

at least by one test case. Let us consider software that takes

three input parameters say x, y, z. If each parameter has four

different values, then there will be 64 different pairs; {(x1, y1)

(x1, y2) ……(y4, z4)}. A test case (x1, y3, z2), for example,

represents three of these 64 pairs: (x1, y3), (x1, z2), (y3, z2).

The pairwise testing method is highly useful for cases with a

limited number of parameters with multiple possible values to

reduce the test suite size and detect about 70% to more than

90% of software faults [7].

2) n-way testing: Some faults are triggered only by a

combination of 3, 4, or more parameter values. These

combinations cannot be detected by the pairwise testing.

There is a need to test 3-way and 4-way combinations of

parameter values for those cases. The study showed that

across a variety of domains, all faults are detected by a

maximum of 4-way to 6-way interactions. The fault detection

rate increases rapidly with interaction strength (n-way

combinations).

B. Acceptance Test Driven Development

Acceptance Test-Driven Development (ATDD) [8]
supports collaboration among the customers, developers, and
testers to ensure that acceptance tests exist before writing any
code. The acceptance tests are written from the perspective of
the end-user. In the ATDD model, acceptance tests are written
before developers start coding. The ATDD model has been
used from time to time by considering the following goals [9].

1) ATDD is a specification and not validation. It is one

way of thinking through the software requirements

specifications followed by user acceptance tests before writing

the functional code.

2) ATDD is simply a programming technique to write a

clean code that works effectively.

3) ATDD is not testing software, but it stands as an aid to

the programmer and customer during the development process

to establish unambiguous requirements.

There is a scope for research to apply the ATDD model to
the applications where requirements are specified using the
combinatorial logic. This paper is organized as follows.
Section 2 reviews the related work on combinatorial testing
and the ATDD model. Section 3 discusses the classical and
combinatorial logic oriented -ATDD model. In section 4,
Railway Reservation System based on combinatorial logic
oriented-ATDD model is presented. Section 5 reports

experimental results. Section 6 concludes this paper and
provides the guidelines of the future work.

II. RELATED WORK

Several researchers have attempted to pursue research in
the field of combinatorial testing technique and ATDD model.
In this section, related work on combinatorial testing and the
ATDD model has been discussed.

A. Combinatorial Testing

The combinatorial testing technique used to generate tests
that cover pairwise or n-way combinations of parameters of
the system by implementing the AETG system. The AETG
system [10] is in a variety of applications for the unit, system,
and interoperability testing. Automated Combinatorial Testing
for Software Tool (ACTS) developed to apply high-strength
combinatorial testing to detect intangible failures that occur
when multiple components interact with each other. ACTS
tool uses IPOG, IPOG-F, IPOG-F2, IPOG-D, and Base Choice
algorithms for test case generation [11-13]. The fault
localization approach [14] is used that can help programmers
in locating faults with less manual interference. The available
algorithms/tools of combinatorial testing are categorized based
on different comparison criteria [15], including the test suite
generation technique, combination criteria, mixed covering
array, the strength of coverage, and the support for constraints
between parameters.

The different search algorithms like the Genetic
Algorithm, Particle Swarm Optimization, Ant Colony
Algorithm, Bee Colony Optimization, and Simulate Annealing
[16-17] are used to test embedded systems using test cases
generated through combinatorial testing techniques. The
combinatorial test cases are derived from the output domain in
systems such as safety-critical embedded systems, which
ensure maximum output combinations tested in detail. These
test cases are derived using a genetic algorithm [18-19] and
adjacent pairwise testing [20]. The various constraint
handling, identification, and maintenance techniques [21] of
combinatorial testing are analyzed. A Neural Network
approach [22] is used to improve combinatorial coverage in
the combinatorial testing approach [23]. A multi-objective
crow search and fruit-fly optimization techniques [24] are
used to optimize combinatorial test cases in constraints
handling environment.

System requirements and corresponding models [25] are
proposed for applying the combinatorial approach to those
requirements. A structured modelling method [26] used to
translate requirements expressed in a general format into an
input parameter model suitable for combination strategies. A
number of Articles [27-39] have been presented for testing
embedded systems using combinatorial methods in the
literature for testing distributed embedded systems.

B. Acceptance Test Driven Development Model

ATDD is the developer-focused model where the entire
team collaborates to define the acceptance criteria of a user
scenario before the actual implementation starts. ATDD model
is implemented using the Given-When-Then format [40] that
uses unit tests to deliver small pieces of functionality

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

270 | P a g e

www.ijacsa.thesai.org

incrementally. A hybrid approach of combining user-centered
agile methodology with ATDD model [41] is proposed in an
efficient manner. It makes the possibility of software
reusability based on the needs of end-users for decreasing
development costs. The various case studies of a Real-Time
Embedded system [42-43] and web applications [44] from
industry are developed using Project-Based Learning [45],
ATDD, and agile development. This helps to detect
unauthorized access and fraud.

A combination of ATDD and Model-Based Testing
(MBT) [46] is applied in several real-world projects. This
approach increased test coverage and extended testing to user
scenarios. It is exercised by the existing acceptance tests to
minimize the risks and to reduce the effort involved in
introducing MBT in the projects. The idea of collaborating
Quality Function Deployment (QFD) and ATDD [47] is
proposed. The principles of QFD are applied to capture the
customer requirements and deploy them into functional and
non-functional requirements. These requirements are mapped
into user scenarios, which then became the acceptance tests.
The development is performed based on those acceptance tests
using the ATDD model. Production code is validated later
against the customer requirements instead of the interpretation
of the requirements by the developer team. An AnnoTest
Web/Run tool [48] is used by expert customers to specify
acceptance tests through the reuse of existing requirements
specification.

The development teams have a better understanding of the
software requirements as it mandates the exact behavior in
terms of acceptance criteria using ATDD. The improved
understanding of requirements results in reduced defect
density and hence reduced Cost of Quality. This improvement
also helps in simplifying the need for repetitive or
breakthrough improvement as per changing business
requirements. The ATDD model is an effective way of
developing an application in a continuously evolving
environment [49]. The open-source Quality Assurance of
Complex Event Processing (CEP) Testing System [50] is
introduced for realizing the executable acceptance test-driven
development of complex event processing applications.

III. COMBINATORIAL LOGIC ORIENTED-ATDD

(CLO-ATDD) MODEL

Combinatorial logic plays an essential role in designing
and developing systems like Reservation Systems, Concession
Management System, College Admission System, etc.

As mentioned in section I, the authors found that TDD and
ATDD models are suitable to represent combinatorial logic. In
the TDD model, test cases are written in the same language in
which the features are implemented. If the features are
implemented in Java programming language, then test cases
are written in Java (e.g., JUnit test cases which are written
Java). The TDD model focuses on the implementation of the
features. In the ATDD model, test cases are written in simple
business language. The authors propose that combinatorial
logic can be incorporated in acceptance tests of the ATDD
model. User acceptance tests are written from the user's point
of view. Developers implement the system using these user
acceptance tests. Hence, ATDD is more suitable model than

TDD to incorporate combinatorial logic while framing the
SRS document. The authors propose enhancement in the
existing ATDD model by incorporating combinatorial logic in
all the stages of SDLC. In the next section, classical SDLC
and Combinatorial Logic Oriented-ATDD (CLO-ATDD)
models are explained.

A. Classical SDLC

SDLC defines a methodology for the overall development
process, which improves the quality of software. It consists of
a detailed plan illustrating how to develop, maintain, replace,
and enhance specific software.

The following are the various stages of a classical SDLC.

1) Communication.

2) Planning.

3) Modeling.

4) Construction.

5) Deployment.

Every software process has its limitations, and the SDLC
stands as unexceptional to that. The selection of the
appropriate SDLC model is a very challenging task. Each
model has definite advantages and disadvantages; therefore, it
is essential to assess each one to ensure fitness. Most SDLC
models are designed around a business partner or customer
requirements. It is difficult for business partners and
customers to deliver the detailed requirements specification of
the systems, which is to be developed as per their expectations
within time, cost, and quality. A successful implementation
requires dedicated user involvement to capture the true
essence of the system requirements. If the business partners or
customers are not satisfied with the working
functionality/features, the development team has to modify the
functionality/features. Multiple modifications in software
development cause a potential delay in deliverable
components. If changes are delayed to be implemented in the
process, it increases the total cost of the system while
extending the time to completion. In the next section, the
authors proposed CLO-ATDD model.

B. Proposed CLO-ATDD Model

The proposed CLO-ATDD model is an enhancement of
the existing ATDD model. In CLO-ATDD, user acceptance
tests are prepared in a business language. These tests are
prepared based on the combinatorial logic oriented rules, as
discussed in section 3.2.1. Gherkin syntax [51] is used to
prepare the test cases. It is easy to learn Gherkin syntax which
is specified in a business language. The Gherkin syntax has a
structured format to illustrate the business rules of real-world
applications. The user acceptance tests are prepared using a
well-defined Given-When-Then structure format and a few
keywords. In Gherkin syntax, each feature contains multiple
user scenarios. Each feature starts with a keyword, followed
by a description of the feature. Each test starts with a sequence
of these keywords: Given, When, Then. And and But is used
whenever necessary. The description of these keywords is
given below.

 Given – It describes the preconditions for the scenario.

https://www.softwaretestinghelp.com/how-to-write-effective-test-cases-test-cases-procedures-and-definitions/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

271 | P a g e

www.ijacsa.thesai.org

 When – It describes the operation that we want to test.

 Then – It describes the expected result.

 And and But – They are optional. These keywords are
used as conjunctions and semantically continue the
meaning of previous sentences.

 Comment –It is optional. This can be used to provide
explanation of the test case.

In this section, the CLO-ATDD model is discussed. The
different stages of SDLC with respect to the CLO-ATDD
model are described below.

1) Communication: In the classical SDLC, only

requirements are prepared and finalized during this phase. In

ATDD, communication among the business customers, the

developers, and the testers happen to discuss the requirements

specification. In ATDD, acceptance tests are written before

the developer team starts coding. In CLO-ATDD model, the

following activities are carried out.

a) Preparation & finalization of the SRS document of the

system by different stakeholders such as developer, customer,

etc.

b) This SRS document is prepared using combinatorial

logic oriented rules. The rules are an essential part of the SRS

document. The SRS consists of a set of scenarios,

configurations, or conditions. The combinatorial logic is

applied to these sets of scenarios, configurations, or conditions

to prepare the combinatorial logic oriented rules. These

combinatorial logic oriented rules are used by a business

analyst to analyze the system, a designer to design the system,

by a programmer during coding, and by a tester to test the

system using combinatorial testing.

c) Preparation & finalization of the test suite for the user

acceptance tests. Test cases are prepared from the requirements

specification for the user acceptance test. These user

acceptance tests are prepared by using the Given-When-Then

format [51].

The SRS document is very much important in this phase of
the CLO-ATDD model. It consists of combinatorial logic
oriented rules and user acceptance tests.

2) Planning: The planning phase consists of project cost

estimation, project scheduling, and resources like human

resources, hardware, software, and network resources. The

team members are allocated as per skill sets of the members

for the project's active development. In the proposed

approach, combinatorial testing is very much essential. The

team members having skill-sets of combinatorial testing are

preferred in this model. Regarding software resources, many

combinatorial logic-oriented tools are available. Developing

new tools require more time and cost. Existing available

combinatorial testing tools like AETG and ACTS are used to

complete the projects as per the schedule and to save the

project's cost.

3) Modeling: In this section, the analysis and design of the

proposed model are discussed. Combinatorial logic is applied

while designing the system.

In the analysis stage, an in-depth analysis of the
requirements is performed to obtain a detailed understanding
of the system's business needs. System requirements are
studied and structured. The result after this stage is a
requirement document called the SRS document. The SRS
document tries to capture the requirements from the
customer's perspective. Combinatorial logic oriented UML
diagrams are drawn to specify, analyze, and visualize the
requirements specification.

It is an important stage in which the requirements
specifications are designed by using combinatorial logic. This
design is represented by a set of parameters, their respective
values, and constraints on the value combinations. If a set of
parameters and their respective values are high, then a huge
number of parameter-value combinations are generated.

There is a need to give solutions for efficiently generating
input combinations to represent software interaction and
generation of test suites using efficient techniques. While
generating test cases automatically for conducting
combinatorial testing, sometimes, the size of test suite may be
extremely large because of too many parameters and values in
input. This is called as Combinatorial Explosion of test cases.
To avoid the occurrence of the combinatorial explosion, we
proposed CLO-ATDD design.

4) Construction: In this phase, the system is implemented

and tested by using combinatorial logic. Many algorithms are

available for generating combinatorial test suites.

After completion of the system designing phase, the
coding phase begins. In this phase, developers start to develop
the system by writing code based on the combinatorial logic
oriented rules. It is the most extended phase of the SDLC
process. The stakeholders should be involved regularly to
ensure that their expectations are being fulfilled. The output of
this phase is testable and functional software.

Exhaustive testing of any system may be impossible
sometimes because the domain of input parameters to most
software systems is huge. There is a need to design optimized
test suites that are of reasonable size and are useful to detect as
many defects present in the system as possible. If test cases
are selected randomly, many of these randomly selected test
cases do not contribute to the significance of the test suite.
Thus, the number of random test cases in a test suite is not an
indication of the effectiveness of the testing. User acceptance
tests are prepared based on the combinatorial logic oriented
rules. User acceptance testing is defined as testing the
software by the user or client to verify whether it can be
accepted or not.

5) Deployment: Once the software testing phase is

completed, and defects are not present in the system, then the

final deployment process starts. As per the proposed CLO-

ATDD model, the final software is deployed after the user

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

272 | P a g e

www.ijacsa.thesai.org

accepts the user acceptance tests. The deployment manager

does the deployment.

IV. RAILWAY RESERVATION SYSTEM: A CASE STUDY OF

THE PROPOSED MODEL

In this section, a case study of Concession Management
Subsystem (CMSS) of the proposed Railway Reservation
System (RRS) is explained by using CLO-ATDD model.

A. Framing SRS using CLO-ATDD Model

Indian Railways is one of the most prominent
organizations of the Government of India. Indian Railways
offers concessions on ticket fares with respect to different
concession categories such as Disabled Passengers, Patients,
Senior Citizens, Awardees, War Widows, Students, and
Youths etc. These concessions are available for various types
of journey classes viz. Sleeper (SL) Class, Second Class
(2ND), First Class (1ST), 1-2-3- Tier AC Class and Ac Chair.
The list of different concession categories and concession
types along with the journey class are shown in Table I.

1) Limitations of the existing reservation policy of Indian

Railways:

a) All the concession types mentioned in Table I are not

available on on-line ticketing platform of Indian Railways. The

concession types like senior citizens, divyangjan, general, press

person, press child, press spouse, and press companion are

available on the on-line ticketing platform. The remaining

concession types can be availed by the passenger at the

Passenger Reservation System (PRS) counters at any

reservation office of Indian Railways.

b) Only one type of concession is applicable at a time as

per the choice of a passenger. The passenger is not allowed to

avail more than one concession at a time.

There is a need to re-design, re-develop the railway
reservation system to overcome the limitations of the existing
railway reservation system. In the next section, the authors
proposed a new reservation system by revising the software
requirements specification of the existing Railway Reservation
System by using the CLO-ATTD model.

2) Proposal for revision of SRS using CLO-ATDD Model:

The following are subsystems of the present RRS of Indian

Railways which provide on-line facility for reservation.

 Search Train.

 Plan Journey.

 Cancel Ticket.

The authors propose a new RRS by incorporating
combinatorial logic in the system using CLO-ATDD model. In
the new RRS, Concession Management Subsystem (CMSS) is
enhanced to manage the concessions. CMSS is used to manage

multiple concessions at a time which can be availed by a
passenger. Here, a novel approach is proposed to enhance the
CMSS so that a passenger can be benefited by availing
multiple concessions at a time. The existing SRS document is
enhanced by incorporating combinatorial logic oriented rules
and user acceptance tests. In the SRS document, two sections
are added. These sections are very much important. First
section consists of combinatorial logic oriented rules and
second section consists of user acceptance tests. The proposed
rules for availing multiple types of concession are shown in
Table II. User acceptance tests are prepared using the Given-
When-Then format as shown in Table III.

B. Design of Concession Management Subsystem

Software systems have five types of design such as
Database Design, Program Architecture Design, File Design,
Input Design and Output Design. Screen design can be used to
represent both input and output design of a system wherever it
is relevant. Now-a-days, Graphical User Interface (GUI) is
used to design screens. In this section, the authors propose
combinatorial logic oriented design of CMSS of RRS.

In the existing RRS, a passenger has to fill up a concession
form at passenger reservation counter at any railway
reservation office. There are some concessions viz. senior
citizen, child, divyangjan etc. for which there is no need to fill
up a separate concession claim form. The proof of these
concession types is verified by a reservation clerk. For other
concession types, the passenger has to fill up a concession
claim form and submit it along with the necessary proofs to
the reservation manager. The manager verifies the document
proofs for the claim and sanctions concession for only one
concession type as mentioned in Table I. The reservation
manager issues a document termed as concession sanction
order which consists of the maximum percentage of
concession sanctioned along with signature and stamp of
reservation manager. All this procedure is to be performed off-
line and a lot of time may be required to complete this
procedure. After this, the passenger will go to reservation
counter to reserve his/her ticket. The reservation clerk verifies
the concession sanction order, provides concession in the
ticket fare, and reserves the seat/berth for the passenger.

The authors proposed a new CMSS of RRS using
combinatorial logic so that a passenger can avail more than
one concession type at a time. A passenger uses CMSS and
fills up a concession claim form by selecting one or multiple
concession types and submits it along with the necessary
proofs to reservation manager. The manager will verify all the
concessions claims and sanctions the total concession allowed
to the passenger by using CMSS. The reservation manager
uses CMSS and issues the concession sanction order consist of
total percentage of concession offered along with signature
and stamp. The passenger will reserve the ticket as per the
total percentage of concession sanctioned.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

273 | P a g e

www.ijacsa.thesai.org

TABLE I. LIST OF CONCESSION CATEGORIES AND CONCESSION TYPES ALONG WITH JOURNEY CLASS

Category of Concession

Journey Class

SL 2ND 1ST 1AC 2AC 3AC AC Chair

% of Concession

Disabled Passengers

Orthopedically Handicapped, Mentally retarded, Blind 75 75 75 50 50 75 75

Deaf & Dumb 50 50 50 NA NA NA NA

Patients

Cancer 100 75 75 50 50 100 75

Thalassemia, Heart, Kidney 75 75 75 50 50 75 75

Hemophilia 75 75 75 NA NA 75 75

T.B./Lupus Valgaris, Non-infectious Leprosy 75 75 75 NA NA NA NA

AIDS NA 50 NA NA NA NA NA

Sickle & Aplastic Anaemia 50 NA NA NA 50 50 50

Senior Citizens

Men- 60 years and above. 40 40 40 40 40 40 40

Women- 58 years and above 50 50 50 50 50 50 50

Awardees

President’s Police Medal, Indian Police Award (Age>=60)
50M/

60F
50M/60F 50M/60F 50M/60F 50M/60F 50M/60F

50M/

60F

Shram 75 75 NA NA NA NA NA

National Awardee Teachers /Bravery Award 50 50 NA NA NA NA NA

War Widows

War Widows, Widows3 75 75 NA NA NA NA NA

Students

SC/ST Category for hometown & educational tours 75 75 NA NA NA NA NA

Students of Govt. schools for study tour, Entrance exam - Girls of Govt.

schools in rural areas
NA 75 NA NA NA NA NA

Main written examination conducted by UPSC & SSC NA 50 NA NA NA NA NA

Foreign students, Research scholars’ for journeys4, Cadets and Marine

Engineers5 , , Hometown & educational tours
50 50 NA NA NA NA NA

Students and non-students participating in Camps 25 25 NA NA NA NA NA

Youths

National Youth Project, To attend job interview in Statutory Bodies,

Bharat Scouts &
50 50 NA NA NA NA NA

ManavUththanSewaSamiti 40 40 NA NA NA NA NA

To attend job interviews in Central & State Govt. 50 100 NA NA NA NA NA

Kisans

Kisans and Industrial Labourers 25 25 NA NA NA NA NA

Kisans travelling 33 33 NA NA NA NA NA

Kisans& Milk Producers, Delegates for attending Annual Conferences6 50 50 NA NA NA NA NA

Artists & Sportspersons

Artistes & Film technicians 75 75 50 NA 50 50 50

All India, State, National tournaments Sportsmen,
Mountaineering Expeditions

75 75 50 NA NA NA NA

Press Correspondents 50 50 50 50 50 50 50

Medical Professionals

Doctors – Allopathic - travelling for any purpose 10 10 10 10 10 10 10

Nurses & Midwives - for leave and duty 25 25 NA NA NA NA NA

(3 widow of I.P.K.F. Personnel, Policemen & Paramilitary personnel, defense personnel, Martyrs of Operation Vijay in Kargil, 4 journey in connection with

research work. (age<=35), 5 apprentices for travel between home and training ship, 6 delegates of Bharat Krishak Samaj & Sarvodaya Samaj, Wardha)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

274 | P a g e

www.ijacsa.thesai.org

TABLE II. RULES FOR AVAILING CONCESSION IN SRS DOCUMENT USING CLO-ATDD MODEL

Rule No. Criteria % of total concession

1 No. of concession types selected= 1 % of total concession is applicable as per Table I.

2 No. of concession types selected= 2 % of total concession = % of highest concession type + 5% of remaining concession type

3 No. of concession types selected= 3 % of total concession = % of highest concession type + 7% of remaining higher concession type

4 No. of concession types selected > 3 % of total concession = % of highest concession type + 10% of highest of the remaining concession type

5
% of total concession exceeds

maximum allowed concession
% of total concession = maximum allowed concession (=100%)

TABLE III. SAMPLE USER ACCEPTANCE TEST

Test Case No. Keyword Description

1

Given The passenger selects concession type as orthopedically handicapped for second class journey.

When Rule 1 is applied. (Refer Table II)

Then The passenger gets 75% concession in ticket fare. (Refer Table I)

2

Given The passenger selects concession types as an orthopedically handicapped and a cancer patient for second class journey.

When Rule 2 is applied.

Then The passenger gets 78.75% concession in ticket fare.

Comment
% of total concession= 75% (orthopedically handicapped) + 5% of 75 (cancer patients)
= 75 % + 3.75% = 78.75% (Refer Table I & Rule 2 of Table II)

3

Given
The passenger selects concession types as a female senior citizen, an orthopedically handicapped and a cancer patient for

second class journey.

When Rule 3 is applied.

Then The passenger gets 80.25% concession in ticket fare.

Comment
% of total concession= 75% (orthopedically handicapped) + 7% of 75 (cancer patients)
= 75 % + 5.25% = 80.25% (Refer Table I & Rule 3 of Table II)

4

Given
The passenger selects concession types as a female senior citizen, war widow, an orthopedically handicapped and cancer

patient for sleeper class journey.

When Rule 4 & Rule 5 are applied.

Then The passenger gets 100% concession in ticket fare. (Refer Table I & Rule 4 of Table II)

Comment

% of total concession= 100% (cancer patient) + 10% of 75 (war widow)

= 100 % + 7.5% = 107.5% (As per rule 4)

As per rule 5, % of total concession = 100%

For input and output design, GUI based screen is designed
as shown in Fig. 1. The CMSS is role based viz. passenger and
reservation manager. The GUI consists of all concession
categories and types as mentioned in Table I. A passenger has
to fill up his/her personal information, journey details, and has
to select one or multiple concession types. For example, the
passenger can select concession types as a female senior
citizen, war widow, an orthopedically handicapped and cancer
patient for sleeper class journey and submits the form. A
passenger cannot select infeasible combination of concession
types. For example, a male senior citizen passenger cannot
select for concession type of war widow. The GUI is designed
in such as way that a passenger cannot select infeasible
combination of concessions types. When a passenger is filling
the concession claim form, only Submit and Print buttons are
enabled and Approve button is disabled.

In case of a reservation manager, Approve and Print
buttons are enabled. The reservation manager verifies the
document proofs of selected concessions claimed by the
passenger. If any claim is not valid then the manager can
unselects the concession claim. The manager can then approve
the concession claim. The combinatorial logic oriented rules
mentioned in Table II are used by CMSS to calculate total
concession in ticket fare. Finally, the concession sanction

order is printed which consists of original ticket fare, total
number of concessions submitted by the passenger, total
number of concessions sanctioned by the reservation manager,
and net ticket fare.

C. Implementation

In this section, implementation strategy of proposed CMSS
and technique of test case generation is discussed.

1) Implementation strategy of proposed CMSS: The inputs

of the proposed system are parameters and values. In CMSS,

the concession categories and concession types are considered

as parameters and values, respectively. Each concession

category includes multiple concession types. The CMSS

system has some constraints and conditions; for example, a

male passenger cannot avail concessions of widow concession

type because of infeasible combinations of parameters and

values.

Client-server architecture is used to implement the
proposed CMSS, as shown in Fig. 2. Interactive web pages at
the client-side are designed by using Vue JS open source
JavaScript framework. Express Node.js framework is used to
develop a robust set of features of the proposed system at the
server-side.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

275 | P a g e

www.ijacsa.thesai.org

Fig. 1. GUI of CMSS.

Fig. 2. Client-Server Architecture of the Proposed CMSS.

A request is sent by the user at the client-side and a request
object is generated. It represents the HTTP request and has
properties for the request query string, parameters, body,
HTTP headers. Response to the request is generated at the
server-side and it creates a response object. It represents the
HTTP response that an Express app sends when it gets an
HTTP request. MongoDB open-source document-based
database is used in the proposed system to store the user and
concession details. The system is implemented as per the
specifications mentioned in Table I, CLO-ATDD rules for
availing concessions mentioned in Table II and user
acceptance tests mentioned in Table III.

2) Test case generation technique: Test case generation

technique of the proposed system is explained in this section.

The percentage of concession is dependent on journey class

and concession categories which are mentioned in Table I.

Only widow concession is gender-specific and so it applies to

the females only. The fare of the ticket is based on Child and

Adult passenger types. Children above the age of 5 years and

under 12 years of age are charged as 50% of adult ticket fare

and considered as a child passenger. The fare of the ticket is

exempted for the children under five years of age. Necessary

information details for reservation class are shown in Table

IV. The concession categories, types, selection mode of

concession types and feasibility details of proposed CMSS are

shown in Table V. The concession categories are infeasible to

passenger types, gender and age. Some concessions are

infeasible to child passenger type and some are infeasible to

an adult passenger type. The passengers can select multiple

concession types in the disabled passenger and patient

concession category. For the remaining concession types, only

one concession type is selected.

3) Proposed algorithm to generate the test cases: Step 1:-

A dictionary in python for all types of journey class declared

named class_dict and a dictionary for the type of

passenger names type_dict.

e.g. type_dict={"1":"Child","2":"Adult"}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

276 | P a g e

www.ijacsa.thesai.org

TABLE IV. BASIC INFORMATION DETAILS FOR RESERVATION CLASS

Journey Class SL 2ND 1ST 1AC 2AC 3AC AC Chair

Gender Male Female

Passenger Type Child (5<=Age<= 12 yrs) Adult (Age> 12 yrs)

TABLE V. CONCESSION CATEGORIES AND TYPES ALONG WITH SELECTION MODE BASED ON PASSENGER TYPES

Concession

categories

Disabled

Passenger
Patient

Senior

Citizen
Widow Student Awardee

Artists & Sports-

person
Youth Kisan

Medical

Professionals

No. of

concession types
04 10 2 5 8 5 5 4 3 2

Selection Mode Multiple Multiple Single Single Single Single Single Single Single Single

Applicable to

passenger type

Adult,

Child

Adult,

Child

Adult

(based on
age)

Adult

female
Adult Adult Adult Adult Adult Adult

Step 2:- A dictionary of all the concession categories
declared with keys against the values of the patient, disable
passenger etc. A dictionary named categories is defined with
the keys being broad categories like Patient, Disability etc.
and the keys a dictionary which contains the specifications of
that category, e.g. categories = {'type':type_dict}.

Step 3:- An empty dictionary concession_class declared
where the keys of each concession type against a list of values
of concession in order of journey class. e.g.
concession_class["Cancer"] = [100, 75, 75, 50, 50, 100, 75].

Step 4:- A function concession defined to calculate the
concession in case of multiple values for patients and disabled
passenger category. This concession function takes in the list
of disability, patients etc. as pairs for 2-way testing and as
triplets for 3-way testing along with the journey class as
resvClass. It then calculates the length of this list and sorts it
in ascending order. This sorted list has concession values, the
last element being the highest concession. Depending on the
number of concession values, they are multiplied with a
multiplier to calculate final concession and a final concession
is returned through this function.

Step 5:- A function printCombination () defined which
takes in an array, n and r to calculate all combinations of size r
in an array of size n (nCr).

Step 6:- A function combinationUtil () defined which
takes in the array, a temporary array named data, start which is
the starting index of the array, end which is the end index of
the array and r which is the size of combination. Both these
functions are in the main function called getCombination ()
which gives us a result of all combinations. All of these
combinations are stored in the form of a dictionary where the
keys are the broad categories i.e. Disability, Patient, Awardee
etc. and the values are a list of all possible combinations of
that category. e.g. {'Disability': [['Orthopedically
Handicapped', 'Mentally retarded']}.

Step 7:- A final concession_list dictionary is declared
whose keys are as same as the final result, i.e. the broad
category. Furthermore, the values will be all the information
for that broad category, i.e., the journey class, the type of
customer, the combination of that broad category and the
concession given.

Step 8:- Iterating through a loop, in the dictionary
final_result, we go through the dictionary values to pick up
each possible combination that we have calculated through
getCombination () function.

Step 9:- Another for loop iterates class_dict to calculate
journey class to display for a particular combination and to go
through type_dict to find out the type of customer for that
combination.

Step 10:- Two lists are declared to append the list of all the
combinations against the journey class and its respective
concession.

Step 11:- The first list goes through the final_result, makes
a list of journey class, type of customer, concession value and
the particular combination. The second loop is used to take
this entire list having information about a particular
combination to store it in a different list called final which has
values as list, i.e., temp_final.

Examples-

{'Disability': [['SL', 'Adult/Child', 78.75, ['Orthopedically
Handicapped', 'Mentally retarded']], ['2nd', 'Adult/Child',
78.75, ['Orthopedically Handicapped', 'Mentally retarded']]}

Step 12:- This final list for a broad category is created and
then stored in concession_list against its key i.e., Disability,
Patient etc.

Step 13:- Edit concession_list according to particular
conditions by using a loop, iterating through the final
concession_list to make changes wherever it is needed. All the
test cases having the same concession for all seven journey
classes have been combined into one test case.

Step 14:- Writing all of the results into a text file by taking
the console output and creating a new text file which contains
all the test cases. The unsuccessful cases for each broad
category are written at the end of the file.

V. RESULT ANALYSIS AND DISCUSSION

The authors proposed the technique of generation of
combinatorial test cases to reduce the time and improve the
effectiveness of the testing. Total of 665 test cases are
generated using 2-way combinatorial strategy, and 1435 test
cases are generated through 3-way combinatorial strategy. The
authors claimed that proposed testing technique gives

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

277 | P a g e

www.ijacsa.thesai.org

reliability and efficiency completely. The user acceptance test
is fully satisfied. The combinatorial explosion of test cases is
avoided using CLO-ATDD model. The result of the proposed
technique is shown in Table VI.

A. Findings

There are some systems such as Reservation system,
College admission system, Concession management system,
etc. where combinatorial logic plays an extremely important
role. The authors made a survey to find a suitable model
among the classical process models viz. Waterfall, Spiral,
Incremental, etc., and agile process models viz. Extreme
Programming, Scrum, etc., to represent combinatorial logic.
The authors found that TDD and ATDD models are more
suitable to represent combinatorial logic. Compared to TDD
model, ATDD is most suitable model. The authors proposed
to enhance the existing ATDD model to CLO-ATDD model.

B. Comparision with Existing Models

In the TDD model, test cases are written in the same
language in which the features are implemented. The TDD
model focuses on the implementation of the features. In the
ATDD model, test cases are written in simple business
language. User acceptance tests are written from the user's
point of view. Developers implement the system using these
user acceptance tests. In CLO-ATDD model, user acceptance
tests are prepared in a business language using combinatorial
logic oriented rules. Hence, CLO-ATDD is more suitable
model than TDD and ATDD to incorporate combinatorial
logic.

C. Limitations of the Proposed Model

The first limitation is generating more than 6-way
combinations of parameters for combinatorial testing. In case,
if we have to go for higher values of interaction strength, we
may have to find new algorithms and techniques. The second
limitation is exhaustive testing. But, if the size of test suite is
small and manageable, then we recommend exhaustive
testing. The third limitation is combinatorial explosion
problem as discussed in section (III (B(c))) which is a
universal problem in software testing. Our proposed model
attempts to avoid this combinatorial explosion problem to
some extent.

TABLE VI. RESULTS OF PROPOSED TECHNIQUE

No. test cases/test case

generation

Combinatorial test case generation

2-way 3-way

Number of test cases

generated
665 1435

VI. CONCLUSION AND FUTURE WORK

The present paper has explored an enhancement of the
Acceptance Test Driven Development model to improve the
software development life cycle by applying combinatorial
logic. The proposed Combinatorial Logic Oriented-
Acceptance Test Driven Development (CLO-ATDD) model
has been illustrated with a case study of the Indian Railway
Reservation System. This system was fully implemented and
verified by using the combinatorial testing and combinatorial
testing approach. This system typically considers multiple

concession types and calculates an appropriate percentage of
concession in ticket fare to the passenger as per proposed
CLO-ATDD model. The authors hope that this proposal
would be valuable for end-user, i.e. the tourism community
ultimately. In future, the aforementioned CLO-ATDD model
can be applied to design various systems where combinatorial
logic is essential. Also, this model will also helpful to generate
combinatorial logic oriented test cases using UML diagrams.

REFERENCES

[1] Lei, Yu, and Kuo-Chung Tai. "In-parameter-order: A test generation
strategy for pairwise testing." In Proceedings Third IEEE International
High-Assurance Systems Engineering Symposium (Cat. No. 98EX231),
pp. 254-261 (1998).

[2] Grindal, Mats, Jeff Offutt, and Sten F. Andler. "Combination testing
strategies: a survey." Software Testing, Verification and Reliability 15,
no. 3 (2005): 167-199.

[3] Nie, Changhai, and Hareton Leung. "A survey of combinatorial testing."
ACM Computing Surveys (CSUR) 43, no. 2 (2011): 1-29.

[4] Kuhn, D. Richard, Renee Bryce, Feng Duan, Laleh Sh Ghandehari, Yu
Lei, and Raghu N. Kacker. "Combinatorial testing: Theory and
practice." In Advances in Computers, vol. 99, pp. 1-66. Elsevier, 2015.

[5] Lott, C., Ashish Jain, and S. Dalal. "Modeling requirements for
combinatorial software testing." In ACM SIGSOFT Software
Engineering Notes, vol. 30, no. 4 (2005), pp. 1-7.

[6] Zamansky, Anna, and Eitan Farchi. "Helping the tester get it right:
Towards supporting agile combinatorial test design." In SEFM 2015
Collocated Workshops, pp. 35-42. Springer, Berlin, Heidelberg, 2015.

[7] Lei, Yu, and Kuo-Chung Tai. "In-parameter-order: A test generation
strategy for pairwise testing." In Proceedings Third IEEE International
High-Assurance Systems Engineering.

[8] Mondal, Sayani, and Partha Pratim Das. "Effectiveness of Test-Driven
Development as an SDLC Model: A case study of an elevator controller
design." In Emerging Trends in Computing and Communication, pp.
225-233. Springer, New Delhi, 2014.

[9] Dogša, Tomaž, and David Batič. "The effectiveness of test-driven
development: an industrial case study." Software Quality Journal 19, no.
4 (2011): 643-661.

[10] Cohen, David M., Siddhartha R. Dalal, Michael L. Fredman, and
Gardner C. Patton. "The AETG system: An approach to testing based on
combinatorial design." IEEE Transactions on Software Engineering
Vol.23, No. 7 (1997), pp. 437-444.

[11] R. Kuhn, Yu Lei and Raghu Kacker, “Practical Combinatorial Testing:
beyond Pair wise”, IEEE Computer Society - IT Professional, Vol. 10,
No. 3 (2008).

[12] D. Richard Kuhn, Raghu N. Kacker and Yu Lei, “Practical
combinatorial testing”, NIST Special Publication, (2010).

[13] Bhuvana, S., and M. V. Srinath. "A survey on Automated Combinatorial
Testing for Software Tool (ACTS) with experimental revise based on T-
way test generation." (2016).

[14] Jayaram, Rekha, and R. Krishnan. "Approaches to Fault Localization in
Combinatorial Testing: A Survey." In Smart Computing and
Informatics, pp. 533-540. Springer, Singapore, 2018.

[15] Khalsa, Sunint Kaur, and Yvan Labiche. "An orchestrated survey of
available algorithms and tools for combinatorial testing." In 2014 IEEE
25th International Symposium on Software Reliability Engineering, pp.
323-334.

[16] Mudarakola, Lakshmi Prasad, and M. Padmaja. "The survey on artificial
life techniques for generating the test cases for combinatorial testing."
International Journal of Research Studies in Computer Science and
Engineering (IJRSCSE) 2, no. 6 (2015): 19-26.

[17] Mudarakola, Lakshmi Prasad, J. K. R. Sastry, and V. Chandra Prakash.
"Testing embedded systems using test cases generated through
combinatorial techniques." International Journal of Engineering &
Technology 7, no. 2.7 (2018): 146-158.

[18] Vudatha, Chandra Prakash, Sateesh Nalliboena, Sastry Kr
Jammalamadaka, Bala Krishna Kamesh Duvvuri, and L. S. S. Reddy.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

278 | P a g e

www.ijacsa.thesai.org

"Automated generation of test cases from output domain of an
embedded system using Genetic algorithms." 3rd International In
Electronics Computer Technology (ICECT), IEEE (2011), vol. 5, pp.
216-220.

[19] Vudatha, Chandra Prakash, Sateesh Nalliboena, Sastry KR
Jammalamadaka, Bala Krishna Kamesh Duvvuri, and L. S. S. Reddy.
"Automated generation of test cases from output domain and critical
regions of embedded systems using genetic algorithms." 2nd National
Conference on Emerging Trends and Applications in Computer Science,
pp. 1-6. IEEE, 2011.

[20] Vudatha Chandra Prakash, Sastry K R Jammalamadaka, and Bala
Krishna Kamesh Duvvuri. "Automated generation of Test cases for
testing critical regions of embedded systems through Adjacent Pair-wise
Testing." International Journal of Mathematics and Computational
Methods in Science & Technology Vol.2, No.2, (2012), pp. 10-15.

[21] Wu, Huayao, Changhai Nie, Justyna Petke, Yue Jia, and Mark Harman.
"A Survey of Constrained Combinatorial Testing." (2019).

[22] Ramgouda Patil, V Chandra Prakash, “Neural Network Based Approach
for Improving Combinatorial Coverage in Combinatorial Testing
Approach”, Journal of Theoretical and Applied Information Technology,
Vol.96. No 20 (2018),pp.6677-6687

[23] Gouda, Ram, and V. Chandraprakash. "Optimization Driven Constraints
Handling in Combinatorial Interaction Testing." International Journal of
Open Source Software and Processes (IJOSSP) 10, no. 3 (2019): 19-37.

[24] Ramgouda, P., and V. Chandraprakash. "Constraints handling in
combinatorial interaction testing using multi-objective crow search and
fruitfly optimization." Soft Computing 23, no. 8 (2019): 2713-2726.

[25] Lott, C., Ashish Jain, and S. Dalal. "Modeling requirements for
combinatorial software testing." In ACM SIGSOFT Software
Engineering Notes, vol. 30, no. 4 (2005), pp. 1-7.

[26] Grindal, Mats, and Jeff Offutt. "Input parameter modeling for
combination strategies." In Proceedings of the 25th conference on
IASTED International Multi-Conference: Software Engineering, pp.
255-260. ACTA Press, 2007.

[27] V.Chandra Prakash and Kadiyala Priyanka, 2016. “Test Case Generation
for Pairwise + Testing.” Asian Journal of Information Technology. Vol.
15 No.23 (2016), pp.4800-4805.

[28] Vrushali Kondhalkar, V.Chandra Prakash. "Automated Generation of
Test Cases for Conducting Pairwise plus Testing”. Journal of Advanced
Research in Dynamical and Control Systems (ISSN 1943-023X), Issue 7
(2018), pp.1484-1492.

[29] Dr.V.Chandra Prakash, Subhash Tatale, Vrushali Kondhalkar, Laxmi
Bewoor. "A critical review on automated test case generation for
conducting combinatorial testing using particle swarm optimization."
International Journal of Engineering & Technology (UAE), Vol.7,
No.3.8, (2018), pp. 22-28.

[30] Dhadyalla, Gunwant, Neelu Kumari, and Timothy Snell. "Combinatorial
testing for an automotive hybrid electric vehicle control system: a case
study." In Software Testing, Verification and Validation Workshops
(ICSTW), 2014 IEEE Seventh International Conference on, pp. 51-57.

[31] Dr.ChandraPrakash V, Dr.Sastry JKR, Sravani G, Manasa USL, Khyathi
A, Harini A, Testing Software Through Genetic Algorithms – A Survey,
Journal of Advanced Research in Dynamical and Control Systems Vol.
9. Sp– 12. (2017).

[32] M. Lakshmi Prasad,Dr.J.K.R. Sastry, A Graph Based Strategy (GBS) for
Generating Test Cases Meant for Testing Embedded Systems Using
Combinatorial Approaches, Jour of Adv Research in Dynamical &
Control Systems, Vol. 10, 01-Special Issue, (2018).

[33] J. Sasi Bhanu, M. Lakshmi Prasad, Dr. JKR Sastry, A Combinatorial
Particle Swarm Optimization (PSO) Technique for Testing an
Embedded System, Jour of Adv Research in Dynamical & Control
Systems, Vol. 10, 07-Special Issue, 2018, pp. (321-336).

[34] M. Lakshmi Prasad, Dr. JKR Sastry, Building Test Cases by Particle
Swarm Optimization (PSO) For Multi Output Domain Embedded
Systems Using Combinatorial Techniques, Jour of Adv Research in
Dynamical & Control Systems, Vol. 10, 06-Special Issue, 2018.

[35] Dr. J Sasi Bhanu,M. Lakshmi Prasad, Dr. J. K. R. Sastry, Combinatorial
Neural Network Based a Testing of an Embedded System, Jour of Adv
Research in Dynamical & Control Systems, Vol. 10, 07-Special Issue,
2018.

[36] Dr. J Sasi Bhanu, M. Lakshmi Prasad, Dr. J. K. R. Sastry, Testing
Embedded System through Optimal Combinatorial Mining Technique,
Jour of Adv Research in Dynamical & Control Systems, Vol. 10, 07-
Special Issue, 2018, pp. (337-354).

[37] Dr. J Sasi Bhanu, M. Lakshmi Prasad, Dr. J. K. R. Sastry, Testing
Embedded Systems Using - A Graph Based Combinatorial Method
(GBCM), Jour of Adv Research in Dynamical & Control Systems, Vol.
10, 07-Special Issue, 2018, pp. (355-375).

[38] M. Lakshmi Prasad, A. Raja Sekhar Reddy, J.K.R. Sastry, GAPSO:
Optimal Test Set Generator for Pairwise Testing, International Journal
of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958,
Volume-8 Issue-6, August 2019.

[39] Dr.Sasi BhanuJ, Dr.Baswaraj D, Sunitha Devi Bigul, Dr. JKR Sastry,
Generating Test cases for Testing Embedded Systems using
Combinatorial Techniques and Neural Networks based Learning Model,
International Journal of Emerging Trends in Engineering Research,
Volume 7, No. 11 November 2019, pp 417-429.

[40] Moe, Myint Myint. "Comparative Study of Test-Driven Development
(TDD), Behavior-Driven Development (BDD) and Acceptance Test–
Driven Development (ATDD)." (2019).

[41] Losada, Begoña, Juan-Miguel López-Gil, and Maite Urretavizcaya.
"Improving Agile Software Development Methods by means of User
Objectives: An End User Guided Acceptance Test-Driven Development
Proposal." In Proceedings of the International Conference on Human
Computer Interaction, pp. 1-4. 2019.

[42] Hoffmann, Luiz Felipe Simoes, Luiz Eduardo Guarino de Vasconcelos,
Etiene Lamas, Adilson Marques da Cunha, and Luiz Alberto Vieira
Dias. "Applying acceptance test driven development to a problem based
learning academic real-time system." In 2014 11th International
Conference on Information Technology: New Generations, pp. 3-8.
IEEE.

[43] Basit, Mujeeb A., Krystal L. Baldwin, Vaishnavi Kannan, Emily L.
Flahaven, Cassandra J. Parks, Jason M. Ott, and Duwayne L. Willett.
"Agile Acceptance Test–Driven Development of Clinical Decision
Support Advisories: Feasibility of Using Open Source Software." JMIR
medical informatics 6, no. 2 (2018).

[44] Clerissi, Diego, Maurizio Leotta, Gianna Reggio, and Filippo Ricca. "A
lightweight semi-automated acceptance test-driven development
approach for web applications." In International Conference on Web
Engineering, pp. 593-597. Springer, Cham, 2016.

[45] Nilsson, Johan, and Xiaoqian Xiong. "Applicability of Acceptance Test
Driven Development in Integration and Verification Process in a Large
Scale Company." (2016).

[46] Ramler, Rudolf, and Claus Klammer. "Enhancing Acceptance Test-
Driven Development with Model-based Test Generation." In 2019 IEEE
19th International Conference on Software Quality, Reliability and
Security Companion (QRS-C), pp. 503-504.

[47] Anang, Yunarso, Masakazu Takahashi, and Yoshimichi Watanabe.
"Collaborating Acceptance Test-Driven Development and QFD in
Business System Software Development." (2017).

[48] Connolly, David, Frank Keenan, and Fergal McCaffery. "Acceptance
test-driven development by annotation of existing documentation."
(2010).

[49] Aggarwal, Vishal, and Manpreet Singh. "Acceptance Test Driven
Development." Journal of Advanced Computing and Communication
Technologies (ISSN: 2347-2804) (2014): 1-4.

[50] Weiss, Johannes, Peter Mandl, and Alexander Schill. "Introducing the
QCEP-testing system for executable acceptance test driven development
of complex event processing applications." In Proceedings of the 2013
International Workshop on Joining AcadeMiA and Industry
Contributions to testing Automation, pp. 13-18.

[51] Axelrod, Arnon. "Acceptance Test Driven Development." In Complete
Guide to Test Automation, pp. 371-394. Apress, Berkeley, CA, 2018

