
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

373 | P a g e

www.ijacsa.thesai.org

Load Balancing Problem on Hyper Hexa Cell

Interconnection Network

Aryaf Al-Adwan
1

Department of Computer and

Networks Engineering

Faculty of Engineering Technology

Al-Balqa Applied University

Amman, Jordan

Basel A. Mahafzah
2

Computer Science Department

King Abdullah II School for

Information Technology

The University of Jordan

Amman, Jordan

An’aam Aladwan
3

Department of Management

Information Systems

Al-Ahliyya Amman University

Amman, Jordan

Abstract—Dynamic load balancing techniques prevents

computer nodes from overloading unevenly while leaving other

idle. It is considered as one of the most challenging topics in

parallel computing. Moreover, it is essential for increasing the

efficiency of highly parallel systems especially in solving

multitask problems with unpredictable load estimates.

Particularly, over each processor in the parallel systems and

interconnection networks. This paper focuses on developing an

efficient algorithm for load balancing on Hyper Hexa Cell (HHC)

interconnection network, namely, HHCLB algorithm. Basically,

the Dimension Exchange Method (DEM) approach is used in this

paper to construct a new load balancing approach on the

network of HHC interconnections. Thus, an algorithm was

introduced and simulated using java threads, where the

performance of the algorithm is evaluated both analytically and

experimentally. The evaluation was in terms of various

performance metrics, including, execution time, load balancing

accuracy, communication cost. By implementing the proposed

load balancing algorithm to the HHC network, a high degree of

accuracy and minimal execution time was achieved. It is

important to highlight that the algorithm recorded small gap

between the execution time for small number of processors and

large number of processors. For instance, the algorithm achieved

0.14 seconds for balancing the load of 6 processors while 0.59

seconds for balancing the load of 3072 processors. This proves

how effective the algorithm is in balancing the load for different

network sizes from small to large number of processors, with a

slight difference in execution time.

Keywords—Parallel computing; load balancing; Hyper Hexa-

Cell; interconnection network; Dimension Exchange Method

(DEM)

I. INTRODUCTION

In parallel systems, during the processing of tasks, the load
is dynamically modified. So, during the processing of each
task, there is a need to consider the current node of each
processor. The literature has suggested many techniques and
methodologies for scheduling processes in a distributed or
parallel environment. Load balancing is primarily aimed at
equalizing the load between the nodes by minimizing
execution time and communication delays, optimizing
resource efficiency and maximizing throughput [1][2].

To prevent some processors from becoming idle when
others have a significant amount of workload, load balancing
is concerned with distributing the workload among the
processors in a parallel system. Thus, either heavily loaded
processors sending loads to other processors or idle processors
demanding work from others will perform it. It is critical that
a large number of communication steps do not significantly
contribute to the overhead of executing the load balancing
algorithm.

In any parallel machine, the interconnection network
transfers information from the source processor to the
destination processor. This task can be achieved with as little
latency as possible, enabling a large number of such transfers
to occur at the same time. Therefore, in reducing this latency,
the topology of the interconnection network plays a significant
role. Correspondingly, researchers in this field have proposed
many interconnection networks and various parallel
algorithms have been used to verify the topological properties
of such architectures. One of these interconnection networks is
Hyper Hexa Cell, which was built on the advantageous
features of the hypercube interconnection network and had
attractive topological properties such as diameter, minimum
node degree, width of bisection and optical cost [3]. This
encouraged the researchers to use this new architecture in
solving many parallel algorithms in different fields, such as
broadcast communication [4], unicast routing [5] and parallel
prefix sum [6]. Moreover the optical links version of this
interconnection network namely OTIS-HHC, was exploited by
the researchers in order to solve various problems, such as
communication algorithms[7], shortest path routing on OTIS-
HHC[8], parallel heuristic local search algorithms [9], routing
and sorting algorithms[10], parallel quick sort algorithm [11],
and traveling salesman problem[12]. Due to the importance of
load balancing in parallel architectures, different researches
were addressed this problem [13-22]. Among these researches,
HHC obtained high speedup as well as efficiency, this is due
to the iterative structure that is provided by this
interconnection network as well as the high computing
capabilities and the minimum communication time that can be
achieved by HHC. Therefore, it is worth to solve the load
balancing problem on such interconnection network. Based on
these observations this paper chose the HHC interconnection
network.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

374 | P a g e

www.ijacsa.thesai.org

This paper focuses on developing an efficient algorithm
for load balancing on hyper Hexa Cell interconnection
network where a new algorithm is introduced and its
performance is evaluated analytically and experimentally, in
terms of various performance metrics. To the best of our
knowledge, there is no work that has been addressed in the
literature to solve the load balancing problem on Hyper Hexa
Cell interconnection network, since it is relatively a new
optoelectronic architecture.

The structure of this study is as follows: Section 2 shows a
brief background about the main concepts that are used
throughout this study, Section 3 describes the proposed
algorithms, Section 4 describes the analytical evaluation for
the two algorithms, Section 5 shows the experimental results
and the comparison analysis of our algorithms, and finally the
conclusions and future work are presented in Section 6.

II. BACKGROUND

Hyper Hexa-cell (HHC) which has a dh dimension, can be
considered as an undirected graph that can be generated by
substituting 2

d
 nodes of a hypercube by HHC graph with one

dimension [3]. A fusion of an HHC of dimension one and a
hypercube of dimension d is each dimension of the HHC. One
is the smallest dimension of an HHC and it is the basis for the
other HHC dimensions. For more clarity, HHC of six
processors and their labels is as shown in Fig. 1.

A summary of the topological characteristics of the HHC
interconnection network in terms of diameter, maximum and
minimum node degree, size, total cost and bisection width is
provided in this section, as defined in [3]. These topological
properties include the diameter, maximum node degree, size,
number of links and bisection width. The diameter is the most
important property that distinguish each interconnection from
the other, it can be defined by the maximal distance between
any two processors in the network is the diameter. The
diameter of the HHC interconnection network is d+1, where
the maximum distance between one of the top triangle's
processors and one of the processors at the bottom of the
opposite triangle will always be two steps in each sub-group.
For instance, the diameter would be 1 + 1 = 2 in the first
dimension, and 2 + 1 = 3 in the second dimension.

The maximum node degree of interconnection network can
be defined by the maximum number of links to which it is
connected. Consequently, the maximum node degree of the
HHC interconnection network is d +2, where each node within
each HHC subgroup is connected to three nodes. Also, each
node is connected to an equivalent node in an additional
dimension by a single link. The maximum node degree, for
example, is 2 + 2 = 4 in the second dimension.

Fig. 1. One Dimensional HHC [3].

Basically, the size of an interconnection network can be
considered as the number of processors or nodes in any
interconnection network. The size of the HHC interconnection
network is 6×2

(d−1)
, because in HHC interconnection network,

the minimum number of nodes is six. For example, the
number of processors in the first dimension will be 6 × (2

0
) =

6 processors and in the second dimension will be 6 × (2
1
) = 12

processors.

The total cost is the total number of communication links
that bind the processors within each network group, which can
be calculated easily using the following equation:

Number of links = ((6 ×2
d−1

) × (d + 2)) / 2 (1)

Precisely, the bisection width is the minimum number of
communication links to be eliminated in order to break the
network into two equal halves, as defined in equation 2. For
example, in the second dimension the cost of HHC will be (6×
2

1
) / 2 = 6.

Bisection width = ((6 ×2
d−1

)/ 2 (2)

III. DIMENSION EXCHANGE METHOD

Balancing is carried out between two processors in the
DEM system in such a way that the processor with a greater
load sends part of its load to the other processor, so that it has
the same load as possible. If the load is indefinitely divisible,
exactly the same amount of load will always be taken from
each processor. But this is not a realistic assumption of fact in
the distribution of tasks [15-16]. By redistributing the tasks
through the links of each dimension, this approach goes across
all dimensions, from d=1 to d = n, and balances loads. The
processors swap their load sizes in the first dimension, where
the higher load processor transfers the excess load to the lower
loaded processor; in the second , third and fourth dimensions,
the same steps are performed between the processors related.
Basically, the DEM approach is used in this paper to construct
a new load balancing approach on the network of HHC
interconnections.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

375 | P a g e

www.ijacsa.thesai.org

IV. HYPER HEXA CELL LOAD BALANCING ALGORITHM

In this section , the Hyper Hexa Cell Load Balancing
(HHCLB) algorithm is introduced, where the pseudo code for
balancing the one-dimensional HHC interconnection network
is provided, followed by the application of the DEM algorithm
to balance the multidimensional HHC, and the best and worst
cases of the algorithm are finally defined.

A. HHCLB Pseudo Code

The pseudo code of HHCLB basically contains two phases
as follows:

Input: Unbalanced P-processors Hyper Hexa Cell

Output: Balanced HHC with equal or approximate load on
each processor

Phase 1: Processors Load balancing

1. For (j=1; j<=p-1; j++)

2. for all pairs of processors pi,pj such that the binary

representation of i and j differ only in the dth bit

position

3. do in parallel

4. avgload = floor (load(pi)+load(pj)) / 2

5. if(load(pi)>avgload)

6. send excess load (load (pi)-avgload) to neighbor

processor along dimension d

7. load (pi) = avgload

8. else

9. receive excess load (load (pi)-avgload) from neighbor

processor

10. load (pi)+= (load(pj) –avgload)

Phase 2: Triangle Load Balancing

11. Consider the HHC as two triangles and balance each

one on parallel

12. Exchange pi,pj,pk loads sizes

13. avgload = floor (load(pi)+load(pj)+ load(pk)) / 3

14. if(load(pj)>avgload)

15. pj send excess load (load (pj)-avgload) to pi and pk

processors

16. load (pj) = avgload

17. else

18. pj receive excess load (load (pi)-avgload and load (pk)-

avgload) from pi and pk processors

19. load (pi) = avgload

20. load (pk) = avgload

The main phases of this algorithm are as follows:

Phase1: Perform load balancing on all HHC processors
that differs only in the location of the dth bit. It includes the
steps that follow:

Step 1: the load will be exchanged between the processors
that will communicate to balance their loads. So, load
balancing will be applied between the processors who differ in
the Least Significant Bit (LSB) as depicted in Fig. 2(a) and
(b). Then, the Second Significant Bit (SSB) as shown in
Fig. 2(c) and (d). Finally, the Most Significant Bit (MSB) as
shown in Fig. 2(e) and (f) (Line 2).

Step2: For each pair of processors directly linked along the
dth dimension, the average load is computed. This can be
accomplished by considering the floor of the sum of
processor’s load and dividing it by two (line 4). For example,
adding and dividing the load of processors P0 and P1 in LSB
step by two and calculate the average load of them as:
[LP0+LP1/2]. Also, the load of processor P5 and P4 in LSB
step will be added and divided by two to calculate the average
load of them [LP5+LP4/2]. Notice that, we assume that if the
average load contains fractions, the remainder , which equals
to one, will be added to the AvgLoad of the processors as
follows: between P0, P1 P1, between P5, P4 P5, between
P1, P2 P1, between P5, P6 P5 in the LSB Step.

(a) (b)

(c) (d)

(e) (f)

Fig. 2. HHC One Dimensional Load Balancing Example.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

376 | P a g e

www.ijacsa.thesai.org

Step3: Processors’ load redistribution. First, each
processor compares its load to the average load (average of the
processor’s load and its neighbor processor’s load). If the
processor’s load is greater than the average load (line 5), the
processor sends the amount of excess load (processor’s load
minus average load) along the d

th
 dimension (line 6), and the

processor’s load is adjusted to be equal to the average load
(line 7). Otherwise, the processor receives the amount of its
neighbor’s excess load along the d

th
 dimension (lines 9-10),

and its load is incremented by the amount of its neighbor’s
excess load.

When the algorithm balances the loads for the processors
based on the difference in the least significant bit the
remainder will be added to the processors with labels (P1 and
P5). When the algorithm balances the processors based on the
difference in the second significant bit the remainder will be
added to the processors with labels (P2 and P6). In the most
significant bit balancing the remainder will be added the
processor with the lower load. After this phase you will have a
balanced rectangle of processors P1, P2, P5, and P6 with
maximum difference in weight = 2). And the loads of
processors P0 and P4 will be either less than or greater than
the loads of the processors in this rectangle.

Phase 2: Triangle Load Balancing

In this phase, the HHC will be considered as two triangles
and the average processor’s load in each triangle is calculated
(lines 11-14). There will be two cases here: Case 1 (in lines
15-16), in which the load of processor P0 is greater than the
load of processors P1 and P2, in this case, processor P0 will
send the excess load to both processor P1 and P2, as depicted
in Fig. 2(f).

 Case 2 (in lines 17-20), the load of processor P0 are less
than the load of processors with labels P1 and P2, in this case
processor P0 will receive the excess load from both P1
processor and P2 processor. This will be applied in parallel
with processors P4, P5, and P6. Finally, after applying the two
phases a balanced one-dimensional HHC will be obtained, as
depicted in Fig. 3.

Regarding the balancing of the other dimensions, where d
>1, the balancing will be started by applying the DEM
algorithm [17-18] on the connected HHC cells. In the two-
dimensional HHC, two steps are only needed for load
balancing. The first, is to balance the HHC cells in the first
dimension while in the second step each processor will be
balanced with its directly connected neighbor in the second
dimension.

B. Best and Worst Cases of HHCLB Algorithm

The best case occurred when the HHC interconnection is
almost balanced; in this case, the algorithm will perform only
global information collection and average calculation without
load balancing steps, because each processor will find out that
its load is equal or almost equal to the average load between
them. On the other hand, the worst case occurred when all the
workload is on one processor P1 while other processors are
idle or have very minimum load as shown in Fig. 4.

Fig. 3. Balanced HHC.

Fig. 4. Worst case of HHCLB Algorithm.

If each processor is assigned at most M tasks before the
load balancing algorithm is performed, then at each step there
are at most M/2 tasks to be moved across the edges of
dimension.

Assuming the maximum workload is M. In phase 1, the
first step of the algorithm is required to transfer M/2 excess
load from P1 to P0. In step 2, M/4 load will be transferred
from P1 to P2. While in step 3, M/8 load will be transferred
from P0 to P2. In step 4, M/16 load will be transferred from
P1 to P2. In step 5, 3M/16 load will be transferred from P0 to
P4. Subsequently, in phase2, M/48 excess load will be
transferred by the algorithm. Adding all these loads would
result in a first dimension execution time of 1.2M. This will
end with every load of M/6 on each processor. On the second
dimensions, M/6 will be divided by 2 on the second
dimension, resulting in an excess load of M/12 that will be
transferred between the two HHC cells. And so forth. Thus, in
all dimensions, the total execution time will be as shown in
equation (3).

Solving equation (3) results in O (M + ln (d)) execution
time.

Total execution time = ∑

 (3)

V. ANALYTICAL EVALUATION

HHCLB algorithm is evaluated in this section in terms of
the following metrics: execution time, accuracy of load
balancing, and number of communication steps.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

377 | P a g e

www.ijacsa.thesai.org

A. Execution Time for HHCLB

The execution time metric calculates the time required to
achieve load balancing steps. The worst-case time complexity
of the proposed load balancing algorithm on HHC, is the time
taken to move the excess load M from one processor to
another, which can be defined as the difference between the
maximum load of one processor and the average load of the
processor. When all processor loads are zero and processor P1
has the maximum load, the worst case of HHCLB occurred,
this will generate O (M + ln d), as discussed in section IV.

B. Load Balancing Accuracy

The accuracy in load balancing represents the difference
between the maximum and the minimum number of tasks
assigned to any processor in the whole interconnection which
also defined as the error rate in the algorithm [14].

In the first dimension, HHCLB algorithm generates a
maximum error equal to 2, and in the above dimensions it will

achieve error with maximum e ≤ d+1.

C. Number of Communication Steps

Communication cost in load balancing is the number of
communication steps that are needed for load balancing [14].

The number of communication steps in phase1 is five
steps. But in each step, there are two more additional steps for
load exchanging and average load calculation. Therefore, this
will produce 5*3 = 15 steps. Additionally, in phase2, the
number of communication steps will be 2*3 = 6 steps. So, in
the first dimension, the total number of steps is 21. On the
other hand, the maximum number of steps in all dimensions
will be increased by three in each dimension, this will result in
21+3*(d-1) = 3d+18. In the worst case, we may have
additional three steps over each dimension, Thus the total
number of communication steps will be 6*(d-1) + 21 = 6d+15.
The summary of the performance metrics is shown in Table I.

TABLE I. SUMMARY OF PERFORMANCE METRICS FOR EVALUATING

HHCLB ALGORITHM

Analysis Metric Equation

Execution Time in the First Dimension 1.2M→ O(M)

Total Execution Time O (M + ln (d))

Maximum Number of Steps in all
dimensions

In average 3d+18
In worst case 6d+15

Accuracy e d+1

Links utilized All

VI. EXPERIMENTAL RESULTS AND COMPARATIVE

ANALYSIS

The experimental results obtained to validate the
performance of the proposed algorithms for load balancing in
HHC interconnection networks are shown in this section. To
implement the algorithm, the simulation environment was set
up using the Java Jdk7.2 and Eclipse Java EE IDE
environments. All tests were performed on a 16 GB RAM
Intel Processor (CPU 3.2 GHz) with 8 MB Cache memory and
Windows10 as an operating system.

The implementation was based on the following classes:

 Topology class, which connects the multidimensional
interconnection of the HHC cells.

 HHC class, which according to the HHC
interconnection, connects the processors.

 Node class, which sets each processor's properties.

The simulation begins by constructing the desired network
of interconnections according to the user-determined
dimension. To allow parallel execution of the implemented
load balancing algorithms, the load balancing mechanism is
implemented using multithreading. The library of Java threads
is used to build and manage a complex number of threads used
to simultaneously perform load balancing steps. Our
implementation was done by: load computation, calculation of
average load, and transfer of excess load.

A. Execution Time

Several experiments have been conducted to compute the
time required to execute the proposed load balancing method,
on 6, 12, 24, 48, 96, 192, 384, 768, 1536 and 3072-processor
HHC. That indicates that the experiments were performed for
several dimensions starting from dimension one up to
dimension ten. The execution of the algorithm was done
using the same random number sequences that represents the
load of the processors using specific seeds for our random
number generator. For this purpose, four seeds were selected:
{1, 2, 8, and 12} to run the experiment. Finally, the results
were recorded according to the execution time as shown in
Table II.

Table II depicts the average execution time in seconds
taken by HHCLB to balance the HHC interconnection in
different dimensions, in this experiment, the maximum load
which assigned to each processor was at most 200 workload
units. A careful examination of this table shows that the
execution time is increased as the number of processors
increases too. For instance, the average execution time for
balancing 24 processors is equal to 0.23 seconds, while it
takes 0.56 seconds to balance 1536 processors. This shows the
efficiency of the HHCLB algorithm, where a large number of
processors only need a very limited amount of time to balance
their loads.

The preceding discussion concerned with the effect of the
size of the network on the execution time. Currently, it is the
time to examine the contribution made by the number of
workload units allocated to each processor. So, another
experiment had been performed with variable average loads
sizes assigned to each processor. The load sizes used are at
most {10, 50, 100, 500} workload units assigned to each
processor as shown in Table III.

Experiments have shown that the number of workloads
units allocated to processors have a huge effect on the
execution time for a large number of processors. This is more
apparent with a greater number of processors. For example,
the execution time for HHCLB algorithm with 200 workload
units and 24 processors is 0.26 seconds while it is 1.31
seconds for 1000 workload units and 24 processors. As shown
in Table III these findings were revealed.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

378 | P a g e

www.ijacsa.thesai.org

TABLE II. AVERAGE EXECUTION TIME USING HHCLB ON SEVERAL

DIMENSIONS OF HHC INTERCONNECTION NETWORK (MAXIMUM LOAD SIZE IS

200 WORKLOAD UNITS PER PROCESSOR)

No of Processors HCCLB Algorithm Execution time (Sec)

6 0.14

12 0.19

24 0.25

48 0.29

96 0.35

192 0.39

384 0.46

768 0.53

1536 0.56

3072 0.59

TABLE III. AVERAGE EXECUTION TIME IN SECONDS USING HHCLB

ALGORITHM ON SEVERAL DIMENSIONS OF HHC (WITH 10,200,400 AND 1000

WORKLOAD UNITS)

Workload

Units

HHC

Dimension

No of

Processors

HCCLB Algorithm

Execution time (Sec)

10

1D 6 0.01

2D 12 0.015

3D 24 0.019

4D 48 0.023

5D 96 0.026

200

1D 6 0.19

2D 12 0.24

3D 24 0.26

4D 48 0.29

5D 96 0.36

400

1D 6 0.29

2D 12 0.41

3D 24 0.54

4D 48 0.59

5D 96 0.63

1000

1D 6 0.77

2D 12 0.93

3D 24 1.31

4D 48 1.46

5D 96 1.72

B. Communication Cost

The average number of communication steps was
computed among several runs of HCCLB algorithm on
different HHC cells in several dimensions from dimension one
to dimension ten.

Table IV shows the average number of communication
steps required by the algorithm to balance the loads on HHC
interconnection network. It is clearly shown that HHCLB
algorithm requires small number of communication steps.

TABLE IV. MAXIMUM NUMBER OF STEPS USING HCCLB ALGORITHM ON

SEVERAL DIMENSIONS OF HHC INTERCONNECTION NETWORK (MAXIMUM

LOAD SIZE IS 200 WORKLOAD UNITS PER PROCESSOR)

No of Processors HCCLB Algorithm Communication Steps

6 18

12 24

24 30

48 33

96 39

192 45

384 48

768 51

1536 54

3072 60

C. Load Balancing Accuracy

The variation between the maximum amount of workload
units in each processor and the minimum amount of workload
units in each other is known as the error which is responsible
for determining the accuracy of the load balancing. The
accuracy of HHCLB algorithm on different HHC cells in
several dimensions from dimension one to dimension ten was
computed. The experiments show that the error in the
algorithm does not exceed d+1. For instance, the accuracy for
96 processors is equal to four which is less than the fifth
dimension. In addition, Table V showed a very excellent
performance, where the accuracy for a very large number of
processors such as 3072 processors is only seven. Thus, when
the network size becomes very large the error is very small for
HHCLB algorithm.

Fig. 5 illustrates a slight increase in accuracy as the
number of processors increases.

TABLE V. THE NUMBER OF ERRORS RESULTED AFTER EXECUTING

HHCLB OVER DIFFERENT HHC DIMENSIONS

No of

Processors

Dimension of

HHC

HHCLB Algorithm Load

Balancing Accuracy

6 1D 2

12 2D 3

24 3D 3

48 4D 3

96 5D 4

192 6D 5

384 7D 5

768 8D 5

1536 9D 6

3072 10D 7

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

379 | P a g e

www.ijacsa.thesai.org

Fig. 5. Accuracy of HHCLB Algorithm.

VII. CONCLUSIONS AND FUTURE WORK

We presented a new algorithm for balancing the load
across the network of HHC interconnections in this paper.
Moreover, it was evaluated and implemented. The efficacy of
the HHCLB algorithm is proved not only by the parameters of
the analytical evaluation, but also by the experimental
findings. The results show the effectiveness of the HHCLB
algorithm as regards to several performance metrics. Limited
execution time was achieved, with a high degree of accuracy
by applying the proposed load balancing approach to the HHC
network. Consequently, with the time needed to perform load
balancing on HHC, it was clear from the empirical and
analytical results that the algorithm requires limited number of
communication steps. So, the main goal of load balancing for
equalizing the load among the processors with a minimization
of the execution time and the communication delays is
satisfied. Future work includes the extension of the proposed
scheme for load balancing to be applied in optoelectronic
architecture of the HHC interconnections.

REFERENCES

[1] Willebeek-LeMair, H. Marc, and A. P. Reeves, “Strategies for dynamic
load balancing on highly parallel computers”. Parallel and Distributed
Systems, IEEE Trans, vol. 4, pp. 979-993, 1993.

[2] P. Shah and SM. Shah, “Load Balancing in Distributed System Using
Genetic Algorithm”. Special issues on IP Multimedia Communications,
vol. 1, pp. 139-142, October 2011.

[3] B. Mahafzah, A. Sleit, N. Hamad, E. Ahmad, T. and Abu-Kabeer. “The
OTIS hyper hexa-cell optoelectronic architecture”. Computing, vol. 94,
pp. 411–432, 2012.

[4] B. Mahafzah, and I. Al-Zoubi. "Broadcast communication operations for
hyper hexa-cell interconnection network." Telecommunication Systems,
vol. 67, pp. 73-93,2018.

[5] J. Al-Sadi. "A New Unicast Routing Algorithm for Hyper Hexa-Cell
Interconnection Networks." International Journal of Information
Systems and Social Change (IJISSC), vol. 8, pp. 45-57, 2017.

[6] A. Gupta, and B. Sarkar. "Parallel Prefix Sum Algorithm on
Optoelectronic Biswapped Network Hyper Hexa-cell." International
Journal of Computer Network & Information Security, vol. 10, pp. 27-
35, 2018.

[7] A. Akhtar, K. Lucas, “Comparison of communication algorithms on
OTIS-HHC and OTIS-ring parallel architectures”. International Journal
of Engineering and Computer Science vol. 3, pp. 8741–8745,2014.

[8] A. Gupta, and B. Sarkar. "Shortest path routing on OTIS hyper hexa-
cell." In Computing, Communication and Networking Technologies
(ICCCNT), 8th International Conference on, pp. 1-6. IEEE, 2017.

[9] A. Al-Adwan, B. Mahafzah, and A. Sharieh, “ Parallel Heuristic Local
Search Algorithm on OTIS Hyper Hexa-Cell and OTIS Mesh of Trees
Optoelectronic Architectures”, Applied Intelligence, vol. 49, pp. 661-
688, 2019.

[10] A. Akhtar, K. Lucas,” Routing and sorting on OTIS-hyper hexa-cell”,
International Journal of Engineering & Computer Science vol. 7, pp.
7388–7393 ,2014.

[11] A. Al-Adwan, R. Zaghloul, B. Mahafzah, and A. Sharieh, "Parallel
quicksort algorithm on OTIS hyper hexa-cell optoelectronic
architecture”, Journal of Parallel and Distributed Computing, vol.141,
pp. 61-73, 2020.

[12] A. Al-Adwan, R. Zaghloul, B. Mahafzah, and A. Sharieh ,” Solving
traveling salesman problem using parallel repetitive nearest neighbor
algorithm on OTIS-hypercube and OTIS-mesh optoelectronic
architectures”. The Journal of Supercomputing vol. 74, pp. 1–36, 2018.

[13] A. Awwad, and J. Al-Sadi. "Efficient Load Balancing Algorithm for the
Arrangement-Star Network." Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA). The Steering Committee of The World Congress
in Computer Science, Computer Engineering and Applied Computing
(WorldComp), 2016.

[14] B. Mahafzah, B. and B. Jaradat, “The hybrid dynamic parallel
scheduling algorithm for load balancing on Chained-Cubic Tree
interconnection networks”. The Journal of Supercomputing, vol. 52, pp.
224-252, 2010.

[15] H. Rim, J. Jang and S. Kim, “An efficient dynamic load balancing using
the dimension exchange method for balancing of quantized loads on
hypercube multiprocessors”. In Parallel Processing, 1999. 13th
International and 10th Symposium on Parallel and Distributed
Processing, 1999. IPPS/SPDP. Proceedings IEEE, pp. 708-712, April
1999.

[16] G. Jan and Y. Hwang, “An efficient algorithm for perfect load balancing
on hypercube multiprocessors”. The Journal of Supercomputing, vol. 25,
pp. 5-15, 2003.

[17] H. Yuan-Shin H and E. Gene. “A Simple Algorithm for Optimal Load
Balancing on Hypercube Multiprocessors”, The journal of
supercomputing, vol. 25, pp. 5-15, 2001.

[18] B. Mahafzah and B. Jaradat, “The load balancing problem in OTIS-
Hypercube interconnection networks”. The Journal of Supercomputing,
vol. 46, pp. 276-297, 2008.

[19] B. Mahafzah, M. Alshraideh, L. Tahat, and N. Almasri,” Topological
Properties Assessment for Hyper Hexa-Cell Interconnection Network”,
International journal of computers, vol. 13,pp 115-121, 2019.

[20] J. Sadi, “Factor‐Optical‐Factor Factor Exchanges Method: a new load
balancing method for Extended Optical Transpose Interconnection
System‐n‐Cube networks”, Concurrency and Computation: Practice and
Experience, vol. 13, pp.3415-3428,(2015).

[21] AM. Awwad, J. Al-Sadi, “Investigating the Distributed Load Balancing
Approach for OTIS-Star Topology”, International Journal of Computer
Science and Information Security, vol. 14, pp.163-171, 2016.

[22] AM. Awwad and J. Al-Sadi, J, “The Load Balancing Algorithm for the
Star Interconnection Network”, International Journal of Computer,
Information, Systems and Control Engineering, vol. 8, pp.1598-1602.
2015.

0

1

2

3

4

5

6

7

8

6 12 24 48 96 192 384 768 1536 3072

A
cc

u
ra

cy

No of Processors

Load Balancing Accuracy

