
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 10, 2020 

388 | P a g e  

www.ijacsa.thesai.org 

Gabor Capsule Network for Plant Disease Detection 

Patrick Mensah Kwabena
1
, Benjamin Asubam Weyori

2 

Department of Computer Science and Informatics 

University of Energy and Natural Resources 

Sunyani, Ghana 

Ayidzoe Abra Mighty
3 

School of Information and Software Engineering 

University of Electronic Science and Technology of China 

Chengdu, China 

 

 
Abstract—Crop diseases contribute significantly to food 

insecurity, malnutrition, and poverty in Africa where the 

majority of the population is into Agriculture. Manual plant 

disease recognition methods are widespread but limited, 

ineffective, costly, and time-consuming making the need to search 

for automatic and efficient methods of recognition more crucial. 

Machine learning and Convolutional Neural Networks have been 

applied in other jurisdictions in an attempt to solve these 

problems. They have achieved impressive results in this domain 

but tend to be ‘data-hungry‘, invariant, and vulnerable to attacks 

that can easily lead to misclassifications. Capsule Networks, on 

the other hand, avoids the weaknesses of CNNs and has not been 

widely used in this area. This article, therefore, proposes the use 

of Gabor and Capsule network to recognize blurred, deformed, 

and unseen tomato and citrus disease images. Experimental 

results show that the proposed model can achieve a 98.13% test 

accuracy which is comparable to the performance of state-of-the-

art CNN models in the literature. Also, the proposed model 

outperformed two state-of-the-art deep learning models (which 

were implemented as baseline models) in terms of robustness, 

flexibility, fast converges, and having fewer parameters. This 

work can be extended to other crops and may well serve as a 

useful tool for the recognition of unseen plant diseases under bad 

weather and bad illumination conditions. 
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gabor filters; crop diseases; machine learning 

I. INTRODUCTION 

Tomatoes and Citrus are major economic crops that are 
widely cultivated in developing countries where the majority 
of the farmers have little or no knowledge about the diseases 
that can affect these crops and how they can be controlled. 
These crops also form part of the daily nutritional 
requirements of many people necessary to maintain good 
health. However, both crops are plagued with several types of 
diseases that require timely and accurate identification to 
prevent crop losses. Current identification methods are manual 
which is laborious, time-consuming, and error-prone 
especially during the early stages. Newer automatic 
recognition methods [1] are therefore needed. Convolutional 
Neural Networks (CNNs) including state-of-the-art deep 
transfer learning models such as AlexNet [2], ResNet [3], 
VGG [4] and GoogleNet [5] have been used to identify crop 
diseases [6][7][8][9]. However, the problem is that they use 
max-pooling and are deeper (the deeper the CNN, the better 
the performance [10]). Max-pooling makes the network 
invariant requiring a lot of data to avoid overfitting. Depth, on 
the other hand, comes with some drawbacks such as a large 

number of parameters, high complexity, high memory 
requirements, and high computational demands. 

Hasan et al. [11] collected a tomato disease dataset and 
used the pre-trained weights of GoogleNet and InceptionV3 
for classification. A 90% and 10% division for training and 
test respectively resulted in 99% overall classification 
accuracy. A further division of 80%, 20% for training and 
testing respectively resulted in 92% accuracy. Fuentes et al. 
[12] combined Faster Region-based CNNs and Single Short 
Multibox Detector (SSD) algorithms with deep feature 
extractor pre-trained models such as VGG and ResNet for 
tomato disease/pest recognition to obtain 85.98% accuracy. 
Zhange et al. [13] trained AlexNet, ResNet, and GoogLeNet 
on the Plant Village (PV) [14] dataset obtaining 97.28% 
accuracy. This same dataset was used by Iandola et al. [15], 
Durmus et al. [16], and Krishnaswamy et al. [17],  to evaluate 
the performance of AlexNet and SqueezeNet, AlexNet 
(95.65%), AlexNet and VGG16 (99.24% for 6 classes) 
respectively. In [18], a modified LeNet [19] was used to 
obtain 94.85% accuracy on the PV dataset. Nine out of ten 
classes of the PV dataset were used by Brahimi et al. [20] to 
fine-tune GoogleNet and AlexNet resulting in 99.18% 
accuracy. In [21], VGGnet was trained and evaluated on the 
PV dataset achieving a classification accuracy of 95.24% 
while AlexNet and GoogleNet obtained 84.58% test accuracy 
on the same dataset. 

Wang et al. [22] collected sick tomato leaf images from 
the internet and trained a region-based CNN (R-CNN) to 
detect disease types and areas of infection. Their networks 
were so deep that ResNet-101 obtained 23.25 hours of training 
time. 

Other plant disease detection models in the literature 
[23][1][24][25][26] achieved good results, however,  most of 
them are deep, complex, invariant, not robust, low performing, 
and lack flexibility. Additionally, they are invariant, cannot 
encode hue, texture, spatial orientation, and deformation. 
These weaknesses led to the introduction of Capsule Networks 
(CapsNets) [27] which are capable of encoding spatial 
information, texture, hue, and deformation. Capsules perform 
well on smaller datasets and are well suited for crop disease 
recognition since texture and orientation play key roles in the 
recognition of leaf parts that do not conform to the other parts 
of the leaf. However, capsules have a problem in recognizing 
real images with complex backgrounds [28]. 
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Fig. 1. Workflow Diagram Adopted in this Study. 

This paper adopts Capsule„s dynamic routing algorithm by 
adding a Gabor layer [29] to further enhance its textural and 
spatial recognition capabilities. The workflow adopted for the 
proposed work is shown in Fig. 1. 

Experimental results on two datasets show that the Gabor 
CapsNet outperformed both the state-of-the-art CNN baseline 
models and a CapsNet model on deformed images and unseen 
images. The proposed model also proved to be more flexible 
and converges faster than the baseline models. A model‟s 
flexibility and ability to generalize on unseen/deformed data is 
crucial for the control of plant diseases such as the early blight 
tomato disease which is spread by wind and splashing rain. 

The main contributions of this paper are: 1) reusing 
existing methods to improve the robustness and flexibility of 
CapsNets on deformed, blurred, and spatially rotated images. 
The results demonstrate the feasibility of using Gabor 
Capsules for plant disease recognition under subnormal 
conditions, 2) the proposed model outperforms existing state-
of-the-art CNN models in terms of accuracy and also has 
fewer parameters compared to deep CNN models in the 
literature except for GoogleNet, 3) the Gabor-CapsNet 
architecture has superior texture extraction capabilities 
capable of identifying sick parts. 

This paper is divided into the following sections: 
Section II presents an introduction to Gabor CapsNets 
followed by Section III which outlines the Materials and 
Methods used for this work leading to Sections IV where the 
experimental setup, the proposed model, and baseline models 
are presented. Results are presented and discussed in 
Section V followed by Section VI where the work is 
concluded and future works provided. 

II. GABOR CAPSULE NETWORK 

A Capsule [27] is a group of neurons whose activity vector 
represents the instantiation parameters with the length of the 
vector representing the likelihood that an entity exists. The 
first layer of a Capsule network is a CNN layer followed by a 
Primary Capsule (PC) layer. The Class Capsule (CC) layer 

performs the classification while the decoder network 
performs reconstruction. The CNN layer performs feature 
extraction to serve as input to the PC layer which in turn 
produces  ̂          as output. A coupling coefficient 

     
         

∑           
 allows a lower-level capsule to choose a 

higher-level capsule as a cluster centre. The coupling 
coefficient is the SoftMax of the logits             ̂   . 

During the routing process, the      are updated based on the 

agreement          ̂    between the prediction of a lower 

level capsule and a higher-level capsule. The total input to a 
higher-level capsule j takes as input the weighted sum of all 
prediction vectors  ̂    of a given PC i for a given CC j. This is 

given by    ∑    
  
    ̂   . To constrain the value of the CC‟s 

output between the range [0,1], the squashing function 

   
      

 

         
 

  

      
 is applied. CapsNets have performed well on 

a wide range of problems [30]. 

Gabor Filters [29] on the other hand are linear filters 
popularly used for texture [31] analysis, edge detection, and 
feature extraction. They can be used to approximate the 
characteristics of the visual cortex of some animals. A Gabor 
filter is composed of real and imaginary parts. The real part is 
described by equation (1), where λ = sinusoidal factor 
wavelength, θ = orientation of the normal to the Gabor 
function parallel stripes, σ = standard deviation of the 
Gaussian envelope, and γ = spatial aspect ratio specifying the 
specificity. 

                 ( 
       

   )    (  
  

 
  )         (1) 

where               ,                . 

Practically, λ regulates the width of the Gabor function 
strips; increasing λ will increase the width and vice versa. θ, 
on the other hand, governs the orientation of the strips. A 0

0
 θ 

represents a vertical strip. γ and σ respectfully control the 
height and overall size of the strips. 

Gabor filters recognize orientation and texture. During 
convolution, global Gabor Filter banks are used to extract the 
features. Given an input image       , convolution (*) of the 
image with a global Gabor filter bank           , produces 

(         ) features that can be approximated by equation 

(2). 

                                       (2) 

Gabor Capsules [32] (applied to Expectation maximization 
Capsules) and Gabor CNNs [33][31][34] have performed well 
on images through texture recognition. 

III. MATERIALS AND METHODS 

A. Image Acquisition and Preprocessing 

Tomato dataset: It is a subset of the Plant Village dataset 
and consists of 18,159 images; nine categories of infected 
leaves and one healthy leaves class. Data imbalance, the 
similarity of images from different classes, and varied image 
backgrounds make the dataset challenging for classification 
models. 
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Citrus dataset [35]: This dataset is made up of sick and 
healthy leaves and fruits with the following categories: 
Blackspot, Canker, Scab, Greening, and Melanose. The 
dataset is made up of 759, 256 x 256x3 images acquired from 
crop-fields making it complex as well as having the data 
imbalance problem that plagues most data sets. It was used for 
the classification of citrus diseases in [36]. Fig. 2 depicts 
sample raw images from the two datasets. 

 

Fig. 2. Sample Images from the Two Datasets. Top Row: Tomato Dataset. 

Bottom Row: Citrus Dataset. 

The images were resized from the original 256x256 to 
48x48, 68x68, and 224x224 depending on which model was 
being trained. Standard data augmentation techniques such as 
vertical and horizontal mirroring, blurring, deformation, and 
rotation were applied to 50% of the images in each class of the 
test sets. The deformation was achieved using Moving Least 
Squares‟ affine transformation [37] and the blurring by the use 
of Gaussian function in what is known as Gaussian Blur [38] 
with a kernel size of 15x15. These steps were necessary to test 
the ability of the models to generalize on unseen data and also 
under bad illumination conditions. Some of the preprocessed 
images are shown in Fig. 3. 

 

Fig. 3. Sample Preprocessed Images: (a) Bacterial_Spot Infected Original 

Image on the Left and its Deformed Counterpart on the Right, (b) 

Bacterial_Spot Infected Original Image on the Left and its Deformed-Rotated 
Counterpart on the Right, (c) Early_Blight Infected Original Image on the 

Left and its Gaussian Blurred Counterpart on the Right. 

IV. EXPERIMENTS 

This work was carried out in Python 3.7. PyTorch 1.3 was 
used to design all the models with visualizations produced in 
Visdom server. The computing hardware was a 64bit 
Windows machine with NVIDIA GeForce GTX 1060 Graphic 
Processing Unit (GPU) running on CUDA 10.1 with a 
dedicated memory of 8GB. The CPU is an Intel Core i7, 8th 
generation. 

In this work, a Gabor Capsule network is proposed and 
trained from scratch. Three baseline models were used to 
evaluate the performance of the proposed model. The baseline 
models are 1) Capsule network based on dynamic routing, 
2) AlexNet, and 3) GoogleNet. The last two were fine-tuned 

based on the implementation in [20]. The models were each 
trained for 400 epochs with a batch size of 60. Other 
hyperparameters for implementing the CapsNets include three 
routing iterations, rectified linear unit (ReLU) for non-
linearity, use of the sigmoid function in the last FC layer, 
SoftMax function, and the Adam optimizer. 

A. Proposed Gabor Capsule Model 

This paper uses the properties of Gabor filters in Capsule 
networks to develop a plant disease detection model. Fig. 4 
shows the proposed architecture which is made up of one 
Gabor layer, one CNN layer, a PC layer, and the class capsule 
(DiseaseRecognition) layer. The Gabor layer is implemented 
as a convolutional layer with its filters constrained to fit a 
Gabor function [33]. The Gabor layer uses 96, 7x7 kernels to 
produce 96, 42x42 feature maps for the subsequent 
convolutional layer at a stride of 1. The first convolutional 
layer (Conv1) uses ReLU non-linear activation and has 96, 
9x9 kernels producing 96, 34x34 feature maps. Conv1 runs at 
a stride of 1. 

The primary capsule layer is a convolutional capsule layer 
with 12 channels of convolutional 8D capsules. Each 
component capsule in the primary capsule layer has 13x13 
capsules. The PC layer outputs 13*13*12, 8D capsules. The 
decoder network is a fully connected layer with 512 neurons 
followed by 1024 and 6912 neurons for the first, second, and 
third FC layers respectively. It is the responsibility of the 
decoder network to perform reconstruction of the original 
images. The frequency    and orientation    of the Gabor 
filters in the Gabor layer is set using the expressions in 
equations 3 and 4 [33]. 

   
 

 
√ 

      
               (3) 

   
 

 
                   (4) 

where 𝑛=1,2, . . . ,5 and  =1, 2, …, 8. 

B. Baseline Models 

In this section, the three baseline models are discussed in 
detail. 

 

Fig. 4. Gabor CapsNet Architecture for Plant Disease Recognition. 
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C. CNN Baseline Models 

The two CNN models in [20] were implemented in this 
paper as baseline models to provide a common 
implementation platform for a fair comparison of results 
between the proposed and baseline models. 

1) GoogleNet: In 2014, GoogleNet [5] achieved an 

impressive top-5 error rate of 6.67% in the ImageNet Large 

Scale Visual Recognition Challenge (ILSVRC). The network 

was built on LeNet [19] with an Inception module and global 

average pooling. Its architecture is a 22-layer deep CNN. 1x1 

convolutions were used for reduction in dimensionality and 

computations. Its pre-trained weights have since been reused 

and transferred to solve other image recognition tasks. In this 

work, GoogleNet was implemented as one of the baseline 

models occupying 25.91MB disk space with approximately 

6.55 Million parameters. The following changes were made to 

the pre-trained model to solve the problem at hand: 1) the 

output layer was changed from 1000 to 10 since there are ten 

classes in the tomato dataset, 2) the top three layers were fine-

tuned since the initial layers usually extract generic features 

(e.g. edge detectors or color blob detectors) while the upper 

layers are dataset-specific. 

2) AlexNet: AlexNet [2] won the 2012 ILSVR Challenge 

with a top-5 error of 26% to 15.3%. The network comprises 

stacked convolutional layers of 11x11, 5x5,3x3 convolutions. 

It utilized dropout, stochastic gradient descent (SGD), does 

max pooling, and uses a rectified linear unit (ReLU) for non-

linearity. The architecture of AlexNet is such that it occupied 

242.03 MB disk space with approximately 61 million 

parameters. The pre-trained model was loaded and the last 

three layers fine-tuned to adapt to the new classification 

problems with 10 and 6 classes respectively for the tomato and 

citrus datasets as well as reducing the image sizes from 

227x227, 3 to 224x224, 3 channels. 

D. Capsule Baseline Model 

Fig. 5 is the architecture of the baseline Capsule network 
model. The input images are resized from (256x256x3) to 
(48x48x3).  They are then fed into the first convolutional layer 
(Conv1) with 7x7, 96 kernels with ReLU non-linear 
activation. The convolutions in the Conv1 layer are performed 
with a stride of 1. Conv1 then produces 256, 42x42 feature 
maps which are fed into the second convolutional layer 
(Conv2) also with ReLU non-linear activation. Conv2 is made 
up of 96, 9x9 kernels performing convolution over the image 
at a stride of 1. Conv2 then produces 96, 34x34 feature maps 
as input to the primary capsule (PC) layer. The primary 
capsule layer is a convolutional capsule layer with a kernel 
size of 9x9 and a stride of 2. In the PC layer, the output of the 
standard convolution layer comes in the form of 96 channels 
of scalers in 13x13 arrays. These are seen as 12 channels of 8-
dimensional vectors organized in 13x13 arrays. The resulting 
value for the PC output is a 13*13*12, 8-dimensional vectors 
(also called the routing nodes) which are changed into a 16-
dimensional vector in the DiseaseRecognitionCaps layer. 
These dimensions may hold features such as size, texture, 
deformation, orientation, hue, and position. A tensor product 

between u and the weights (W) produces  ̂    which is made 

up of 2028, 16-dimensional vectors for each 
DiseaseRecognitionCaps output. Since there are 10 classes in 
all, the total number of outputs for the 
DiseaseRecognitionCaps is 2028*10, 16D vectors. These are 
fed into a Fully connected (FC) layer consisting of three 
layers. This part is usually referred to as the decoder and is 
made up of 512 neurons in the first FC layer followed by 1024 
neurons. The last layer of the decoder network is made up of 
6912 neurons necessary for reconstructing the input image. 

 

Fig. 5. The Baseline CapsNet Architecture for Plant Disease Recognition. 

V. RESULTS AND DISCUSSION 

The datasets were divided with a ratio of 8:2 for training 
and testing respectively for all the models. The loss function 
used to train the model is made up of the margin and 
reconstruction losses as depicted in Fig. 6(a) and (c) and 
Appendix A (Fig. 11). The default values for m+, m-, and λ of 
the loss function in [27] were maintained in this 
implementation. Three routing iterations were used during 
training for the Capsule models. The proposed model obtained 
98.13% and 93.33% accuracies for the tomato and citrus 
datasets respectively. The proposed model outperformed all 
the other models on both datasets. Fig. 7 and 8 depict the 
confusion matrices obtained by training the proposed model 
with the datasets. It can be seen from Table I that GoogleNet 
achieved 97.60% accuracy outperforming the CapsNet 
(95.29%) and AlexNet (94.40%) baseline models on the 
tomato dataset. 

A. Model Flexibility and Robustness 

Random changes to parameter values and/or intermediate 
layers in all the models were carried out to determine how 
sensitive each model is to these changes. The effect of these 
changes adversely affected the performance of the CNN 
models as compared to the proposed Capsule models. 

Varying the momentum, batch size, learning rate, drop-
out, and learning rate decay did not significantly affect the 
performance of the CapsNets models as observed in [30]. The 
single most important hyperparameter that significantly 
affected the performance of the CapsNet models was the 
number of routing iterations with three producing the best 
performance values. To illustrate the flexibility and robustness 
of the CapsNets, the input images were resized from 256x256 
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to 48x48, 68x68, and 224x224, and the models trained. The 
results in Table I show that the performance of the baseline 
CNN models was affected by simple resizing. The default 
settings in AlexNet could not train with the 48x48 images. 

On the other hand, as the image size was increased, the 
CapsNet models produced almost consistent results. However, 
increasing the image size to 224x224 required more 
computational resources and training time and could not be 
implemented for this study. 

It is noted here that Pytorch can accumulate gradients over 
multiple smaller batches as long as enough memory exists for 
a batch, however, 400 epochs were excessive, slow to train, 
and was taking too long a time. 

  
   (a)   (b) 

  
   (c)   (d) 

Fig. 6. Loss and Accuracy of the Proposed Gabor CapsNet Model Trained 

on (a) and (b) Tomato Dataset, (c), and (d) Citrus Dataset. The Training 

Curves are shown in Orange with the Test Result Curves shown in Green. 

 

Fig. 7. Confusion Matrix for Tomato Dataset. 

 

Fig. 8. Confusion Matrix for Citrus Dataset. 

B. Model Convergence 

The resulting plots in Fig. 9 and 10 show that the proposed 
Gabor CapsNet learns and converges faster than the other 
models. For instance, between epochs 0 to 100, the Gabor 
CapsNet attains accuracies higher than all the other models. 
The final accuracies are approximately equal to the accuracies 
they assume in the initial stages. As a result, the final accuracy 
of the proposed Capsule network can be approximated during 
the first few epochs. 

On the contrary, the baseline models rise gradually 
through each epoch up to the last epoch. The final accuracy of 
the baseline models can therefore not be approximated at the 
initial stages. One has to wait for the entire duration of the 
training before a determination of the final accuracy can be 
made. This convergence is attributed to the ability of the 
Gabor filters to encode the texture of the diseased parts of 
leaves. The ensuing capsule layer after the Gabor layer also 
can encode texture, pose, and deformation. Fast learning and 
convergence are the results of the working together of these 
layers. These are particularly useful during a preliminary 
investigation into crop diseases and for prototyping. 

TABLE I. ACCURACY DECREASES AS IMAGE SIZE IS REDUCED FOR THE 

BASELINE CNN MODELS. CAPSNET MODELS DID NOT SHOW ANY 

SIGNIFICANT CHANGE IN ACCURACY 

Model (dataset) 

Accuracy 

48x48 

images 

68x68  

images 

224x224  

images 

Gabor CapsNet (tomato) 98.12% 98.93% ------ 

CapsNet (tomato) 95.29% 95.11% ------ 

AlexNet (tomato) ------ 81.85% 94.40% 

GoogleNet (tomato) 90.20% 95.98% 97.60% 

Gabor CapsNet (Citrus) 93.33% 92.85% ------ 

CapsNet (Citrus) 90.69% 90.26% ------ 

AlexNet (Citrus) ------ 81.85% 90.90% 

GoogleNet (Citrus) 88.81% 90.17% 91.04% 
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Fig. 9. Model Convergence on Tomato Dataset. 

 

Fig. 10. Model Convergence on the Citrus Dataset. 

C. Reduced Parameters 

The models were evaluated on the number of trainable 
parameters using the 68x68 images and the results shown in 
Table II. The complexity of a model can be inferred from the 
number of trainable parameters it generates. As shown in 
Table II, the proposed model had fewer parameters than the 
AlexNet baseline model. This is a contribution to the state-of-
the-art since fewer parameters are needed to reduce model 
complexity and its ability to over-fit smaller datasets. 

D. Comparison to Related Works in Literature 

The tomato dataset has been used in the literature to fit 
several CNN and deep learning models. In Table III, a 
comparison between these models and the proposed model 
based on average test accuracies is provided for the tomato 
dataset. For a fair comparison, other implementations in the 
literature using custom tomato datasets [12][11][22] were not 
adopted for this exercise. It can be seen from Table III that the 
proposed model produced results that are comparable to the 
state-of-the-art models irrespective of the complexity of the 
input images. 

TABLE II. COMPARISON OF PARAMETERS BETWEEN THE PROPOSED 

MODEL AND THE BASELINE MODELS 

Model Number of Parameters 

Gabor CapsNet 12,397,216 ~ 12 Million 

CapsNet  9,583,936 ~ 10 Million 

Baseline AlexNet 61 Million 

Baseline GoogleNet 6.55 Million 

TABLE III. COMPARISON OF RESULTS OF THE PROPOSED MODEL TO 

THOSE IN THE LITERATURE. NOTICE THAT SOME OF THE MODELS USED 6 OR 9 

CLASSES OUT OF THE TOTAL 10 CLASSES 

Reference Model Algorithm  
Number of 

Classes 
Accuracy 

[16] AlexNet (pre-trained weights) 10 95.65% 

[16] 
SqueezeNet (pre-trained 

weights) 
10 94.30% 

[18] Variation of LeNet [19] 10 94.85% 

[21] VGG 10 95.24% 

[20] AlexNet 9 98.66% 

[20] GoogleNet 9 99.18% 

[13] ResNet [3] 10 97.28% 

[17] VGG16 6 99.24% 

Proposed Gabor CapsNet 10 98.12% 

Baseline CapsNet 10 95.29% 

VI. CONCLUSION 

In this work, Gabor Capsule Network for the recognition 
of tomato and citrus diseases has been proposed. Two state-of-
the-art CNN and one capsule baseline models were also 
implemented for comparison. To determine the robustness of 
the proposed models, extensive preprocessing such as rotation, 
deformation, and Gaussian blur was applied to a proportion of 
the test set and used to test each of the models. The Gabor 
CapsNet outperformed the other models on the two datasets in 
terms of accuracy, convergence, robustness, complexity, and 
flexibility. The results suggest that Capsule Networks can 
outperform other deep learning methods on complex real-
world datasets. Furthermore, they can recognize unhealthy 
plants even in challenging weather and illumination conditions 
as well as from diverse angles. The results in this paper show 
that Capsules have a huge potential to improve agriculture 
especially as the algorithm is being improved by researchers 
to enable it mature for practical adoption. 

In the future, a further reduction in the number of 
parameters for possible implementation on mobile devices like 
smartphones will be pursued since a high percentage of 
farmers have mobile phones. The possibility of using a custom 
routing algorithm will also be considered. 
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APPENDIX A 

 
(a)      (b) 

    
     (c)    (d)    (e) 

 
      (f)        (g) 

    
(h)           (i)        (j) 

Fig. 11. Sample Results from the Proposed Gabor Capsule Network: (a)-(e) Tomato Dataset, (f)-(j) Citrus Dataset. (a), (b), (f), and (g) are Loss and Accuracy for 

Training and Test. (c) and (h) are the Confusion Matrices. (d), (e), (i), and (j) are the Ground Truth and Reconstructed Images. 


