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Abstract—The SDN controller is the core of the software-

defined network (SDN), which provides important network 

operations that needs to be protected from all type of threats. 

Many researches have been focusing on different layers of 

security regarding the SDN controller such as Anti-DDOS system 

or enforcement of TLS connection between the controller and the 

Open-vswitches. One of the major security threats targeting any 

program is the environment execution itself (e.g. Operating 

system and the hardware itself). Intel's Software Guard 

Extension (SGX) offers a sloid layer of security applied to 

applications by creating a Trusted execution environment. SDN 

controller relay on a storage module to keep sensitive data such 

as Flow Rules, users’ credentials and configuration files. 

Protecting this side of the SDN controller is a must in term of 

security. To date, no work has been conducted considering SDN 

controller storage security using Intel SGX. This paper 

introduces an SGX enabled SDN controller. The new controller 

ensures the integrity and the confidentiality in a trusted 

execution environment by leveraging a recent hardware 

technology called intel SGX. This technology provides a trusted 

and secure enclave. Enclaves are   sealed and unsealed by intel 

SGX attestation mechanisms to protect the executed code and 

data inside live memory and disk from being altered by any 

unauthorized access. High privileged codes such as the OS itself 

is kept from altering data inside enclaves. We implemented the 

Intel SGX using the Floodlight SDN controller running a real 

enabled Intel SGX hardware. Our evaluation shows that the SGX 

enabled SDN controller introduces a slightly observable 

performance overhead to the floodlight controller compared to 
advantages in term of security. 
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I. INTRODUCTION 

In recent years, the network research community has 
experienced a period of intense activity that has led to the 
emergence of different architectures or paradigms such as the 
SDN. The centralization (logical or physical) of the control 
plan, had to bring the expected flexibility to the network 
applications and allow to respond to many concrete use cases. 

Software-Defined Network is a new paradigm of network 
architecture that aims to design a data plane that is fully 
programmable and separated from the control plane [1]. The 
Control Plane manages decisions about how and where to 
transmit network traffic through system configuration, 

management and exchange of routing table information. The 
Data/Forwarding Plane manages the actual transmission of 
packets to the destination network according to the logic of the 
control plan. Behind this separation, there are three main 
objectives: 

 The separation of network intelligence (control plan) 
from equipment (data plan). 

 The provision of a logically centralized view of the 
global physical network. 

 Providing an abstraction of programmable network 
equipment using Interfaces of application 
programming (API). 

Among the innovations of this new paradigm is the 
programmability of network equipment and applications. New 
network applications can be transparently programmed and 
deployed using standard APIs. However, its implementation in 
the data plane remains one of the greatest challenges for 
research. 

Protecting sensitive data from been altered or access gained 
by any authorized manner is present since the beginning of the 
programming time, a challenge that many have taken the race 
to solve it [2]. SDN technology has been introduced to solve 
the complexity of configuring network hardware. SDN enabled 
networks relay on a central decision making called the SDN 
controller to handle request coming from network devices such 
as switches and routers [3], [4]. Those requests are transported 
via API's using open flow protocol [5] and optionally secured 
using TLS. 

The SDN controllers represent the most delicate part of the 
SDN architecture as it consists of the brain of the network, 
making it vulnerable to all sort of attacks [6], [7]. Security 
issues may vary depending on the level of interest targeted by 
a malicious person; it goes from Denial of service to traffic 
redirection and flow rules modification [8]. The SDN 
controller software is run on vast untrusted platforms, 
including operating systems, hypervisors, firmware, and 
hardware. This large machine base is growing complex and 
difficult to verify. For e.g., an OS such as Linux has 17 
million line of code, however 662 vulnerabilities related to 
CVE have been recorded in 2019, such as memory corruption, 
transverse directory, unauthorized code execution. Execution 
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of normal and security-critical applications running on shared 
resources controlled by untrusted computing machines raises 
security threats. Running the SDN programs in such 
environments represent a considerable threat to its normal 
operations. 

To solve the issue, one of the solutions is Trusted execution 
environments (TEE). TEE guarantee security by relying on less 
hardware and software computing base. Hardware is 
commonly considered to be a stable base since the cost and 
sophistication of hardware attacks usually are high. This has 
lead to the development of a secure running environment by 
industrial hardware companies for a safety-critical application 
that maintains little reliance or less dependency upon the 
operating system and hypervisor. Up to today, we found two 
main technology which are ARM Trust Zone Technology, Intel 
Software Guard Extensions (SGX) [9][10]. 

The objective of this work is to propose a secure 
architecture by programming new modules and adding security 
functions at the control plan storage based on Intel SGX. Then, 
evaluate the impact of SDN architectures at the performance 
level. 

The rest of the paper is organized as follow. The next 
section will include a background and related works followed 
by the proposed model to secure SDN controller storage using 
Intel SGX, then we present the results of the implementation 
with discussion. Finally, we conclude this work with a 
conclusion and perspectives for future work. 

II. BACKGROUND 

Trusted Execution Environment (TEE) is a tamper-
resistant computing ecosystem that works on a separate 
kernel. It guarantees the validity of the executed programs, the 
security of the runtime components (e.g. memory, CPU 
registers, and critical Input / Outputs) and the secrecy of the 
executed code, data and runtime states are maintained in non-
volatile memory [11]. In addition, the remote certificate shall 
be given to show its trustworthiness to third parties. The 
contents of TEE are not static; they can be changed safely. 
TEE condemns all software-related threats as well as hardware 
threats against the main memory of the operating system. 
Attacks leveraging backdoor authentication bugs are futile. 

Fig. 1 illustrates the difference between a Trusted 
execution environment and an ordinary OS. 

The most common TEE environments are Intel SGX and 
ARM TrustZone [12]. Both Intel SGX and ARM TrustZone 
are hardware TEE environments, but the process behind 
building a trusted environment with trusted code is distinct. 
Intel SGX provides a trusted environment for trusted programs 
that run on top of current untrusted device software. Whereas, 
ARM TrustZone is building a new, trusted ecosystem for 
trustworthy applications that operate on trustworthy device 
software and hardware that are only accessible to the trusted 
Configuration. 

In this paper we focused on intel SGX technology to 
deploy our secure SDN controller. The Choice of using Intel 
SGX was taken depending on the much benefit that supersede 
ARM TrustZone, benefits such as documentation, maturity 

and the availability of hardware enabled machines. The 
majority of researchers uses Intel SGX to deploy a trusted 
execution environment. 

Intel Software Guard Extensions (Intel SGX) provides 
hardware-based memory encryption to isolate portions of code 
and application-specific data in memory. Intel® SGX allows 
user-level code to assign private memory regions (called 
enclaves) designed to be protected against processes running 
at higher privilege levels. Only the Intel® SGX solution 
provides such a granular level of control and protection. 

Intel SGX has been used to secure flow tables inside Open-
Vswitches as mentioned in related works. 

Fig. 2 shows the architecture of a typical intel SGX 
enabled environment. 

 

Fig. 1. Trusted Execution Environment. 

 

Fig. 2. Intel SGX Architecture. 
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SGX is built to be reliable; this is done in a variety of 
ways, including robust enclave delivery, sealing and 
attestation. Intel summarizes SGX’s protections [13], [14] as 
follows; 

 Memory is secured against observation and 
modification from outside the enclave, using an in-die 
Memory Encryption Engine (MEE) [15], with a secret 
that rotates on every boot. This protection notably 
works against host hypervisors, other enclaves, and 
anything running in supervisor mode. 

 Enclaves will attest or confirm their identities to a 
competitor with the aid of a permanent hardware 
identification key for asymmetric encryption. 

 Computer calls are designed to schedule and pass 
power in and out of the enclave. Arguments are safely 
mapped according to the concept of a static enclave. 

 SGX does not protect itself against reverse engineering 
or side-channel attacks: to counteract this is the 
responsibility of the client. 

III. RELATED WORKS 

There are only a few works in the literature that discuss 
SDN security using SGX. Intel Software Guard Extensions 
(SGX) has provided the general purpose of the hardware-
assisted TEE referred to as Intel SGX. Intel SGX is an 
expansion of the x86 architecture with a new range of 
security-related instructions [16]. These instructions are used 
by security-critical programs to create a hardware-assisted 
trust environment referred to as an enclave [17]. Intel SGX 
enclave maintains secrecy through hardware-maintained data 
layout and honesty tests by encrypting data and code when it 
is outside the CPU package [18]. Intel SGX is a centralized 
security architecture, and the trustworthy TCB computing 
foundation is known to be a CPU package. 

TruSDN is a mechanism for bootstrapping confidence in 
the technology of SDN [19]. Supports the safe supply of 
switches in SGX enclaves, a protected communication channel 
between switches and SDN controllers, and secure 
communication between endpoints. 

Trusted Click [20] investigates the viability of network 
processing in SGX enclaves. Although none of the above 
methods discusses the credibility and anonymity of OpenFlow 
flow tables, they can be complemented by OFTinSGX to 
accomplish this. SCONE allows operators to protect the 
secrecy and integrity of computing in containers against host 
root access adversaries [21]. An alternative approach to 
securing virtual network functions running in containers, 
which prevents the unnecessary expansion of the trusted 
computing foundation, is proposed in [22]. Event Controller 
Eviction mitigates DoS attacks and OpenFlow Application 
overflow [23]. This framework uses two different frameworks 
– the learning module and the flow control module – while the 
case handler system prevents overload and DoS attacks, the 
OpenFlow flow tables have no security guarantees. 
OFTinSGX maintains the integrity and confidentiality of 

OpenFlow tables and the reasoning for forwarding and 
disposal procedures. 

TLSonSGX guarantees that OvS authorities retain 
communication with SDN controllers and  the cryptographic 
material they use [24]. This methodology can be paired with 
OFTinSGX to provide broader security assurances for 
OpenFlow switches. Fig. 3 shows the TLSonSGX system 
design. 

 

Fig. 3. TLSonSGX System Design. 

In recent works OFTinSGX has been proposed by [9], 
which has four components: SGX OpenFlow table, SGX rule 
structure, SGX Eviction component, and SGX tables dpif, 
which helps OvS to delegate its OpenFlow tables and forward 
logic to enclave memory. 

The important limitation of this work is that the abstraction 
of only the contents of the OpenFlow flow tables does not 
address all security concerns, as the classifier only includes 
references to the classification rules. The procedure used to 
control the OpenFlow flow tables can cover both the contents 
of the tables and the full description of the rules assigned to 
the untrusted memory. 

Fig. 4 illustrates the OFTinSGX Architecture. 

 

Fig. 4. OFTinSGX Architecture. 

IV. THE PROPOSED SGX SDN CONTROLLER  

A. SDN Storage Module Overview 

This section presents the design and the architecture of the 
proposed model to secure SDN controller storage using Intel 
SGX. 

Generally, the SDN controller is relying on a storage 
module that handles all sensitive data; controller data are 
mostly configuration files such as flow rules. In our case, we 
use the floodlight SDN controller to implement our approach. 
Fig. 5 illustrates the Floodlight architecture. The proposed 
model consists of rewriting the storage module code taking 
into consideration the Intel SGX technology. 
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Fig. 5. Floodlight Architecture. 

The storage module consists of four main modules: link 
discovery module(responsible for discovering and maintaining 
the status of links in the OpenFlow network), Device manager 
module (tracks devices as they move around a network and 
defines the destination device for a new flow), Static flow 
entry pusher (allows a user to manually insert flows and 
groups into an OpenFlow network) module and QOS 
module(give a user a way to simply push QoS state to 
switches that support these features) interacting with the 
primary storage module which is mainly a NoSQL database 
residing in the random-access memory. Fig. 6 shows the 
interaction between the four-module and the storage module. 

A compromised host can present a huge issue to the 
NoSQL database making it vulnerable to several attacks such 
memory dump or memory exhaustion attacks. Our method 
consists of hardening all the space used by the NoSQL 
database by implementing the Intel SGX technology to 
prevent any damage to the RAM area used by the SDN 
controller. 

B. SDN Enabled SGX Architecture 

SDN enabled SGX model operates as an intermediate 
system. Specifically, it executes a process daemon that 
intercepts all the call made to the ordinary storage module by 
the controller application. These calls are translated into 
corresponding functions of the SDN enabled SGX model 
enclave. For instance, when a new open flow rules need to be 
inserted, the call is made via our interface and call the 
corresponding function inside the enclave via a JNI (Java 
Native Interface). The code residing in the enclave return the 
right value depending on the result of the function via the 
interface. In this design, all the data structures related to the 
file system are continuously kept in the Enclave Page 

Cache(EPC), which is a subset of DRAM that cannot be 
directly accessed by other software, including system software 
and SMM code. The CPU’s included memory controllers also 
reject DMA transmissions targeting the EPC, thus protecting it 
from access by other peripherals. 

The NoSQL database files are maintained by the enclave 
and protected by the encryption mechanisms of the SGX 
technology, making a dump of the memory useless as its 
encrypted and cannot be read. 

Data is decrypted by the SGX unsealing mechanism: this 
process occurs while entering the enclave and is thus secured 
by the CPU borders. Consequently, a dump of the EPC 
(enclave page cache) would be captured and blocked by the 
SGX protection mechanisms. 

Fig. 7 shows the proposed SDN enabled SGX model. 

 

Fig. 6. The Proposed Storage Module. 
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Fig. 7. The Proposed SDN Enabled SGX Model. 

V. IMPLEMENTATION AND EVALUATION 

A. Implementation Setup 

We implemented the SDN controller enabled SGX on a 
Linux platform holing an SDN controller named floodlight 
developed using JAVA programming language. Since intel 
SGX SDK support only C/C++ language, we used the Java 
Native Interface (JNI) to make the right call to C functions to 
handle intel SGX operations. The next scenario demonstrates 
the different phases of the implementation, this scenario is 
almost generic to any Intel SGX enabled case: 

 Step 1: An enclave is created by the untrusted part of 
the application. 

 Step 2: The enclave must be initialized via a launch 
token, fetched and provided by Intel’s launch enclave. 

 Step 3: Access to the LE and other architectural 
enclaves, e.g., the quoting enclave (QE) and the 
provisioning enclave (PE), is provided by the Intel 
application enclave service manager (AESM). SGX 
libraries provide an abstraction layer for 
communicating with the AESM. 

 Step 4: Execution of a trusted function which executes 
an ECALL. 

 Step 5: The ECALL goes through the SGX call 
interface to bring the executing thread inside the 
enclave. 

 Step 6: An OCALL is executed once the execution in 
the trusted environment completes. 

 Step 7: Finally giving the control back to the caller. 

The program run on HP Proliant gen10 server with the 
following Configuration: 

 Intel XEON E-2174G with intel SGX support. 

 32GB of RAM. 

To generate traffic we use mininet simulator [25], mininet 
was setup and configured on five different computers to be 
able to generate 2000 request by each one. 

The written code mainly focuses on the Storage Source 
Service, which is the main interface of the storage module of 
floodlight controller, also some of the dependencies were 
taken into accounts such as IDebugCounterService and 
IRestApiService. 

Table I shows a summary of the code changes made to the 
storage module inside the floodlight controller. The most 
significant part of the added code consists of new (JAVA 
NATIVE INTERFACE) JNI interface and make files, 
floodlight storage also has been modified to accept the call 
from OCALL I/O peripherals. 

B. Performance Analysis 

Our evaluation is based on the scenario that involves a 
number of nodes making calls to the SDN controller. In this 
case, the network devices receive various request to dispatch 
packets from a script that run on several separated machines. 
Decision making is sent from the data layer represented by the 
network devices. Next, the controller responds with the 
corresponding flow rule. Rules present inside the Open-
vswitches are deleted, so the network devices are forced to 
make calls to the controller. The script sends over 10000 
requests to several separated switches. The generated traffic 
sent to the controller allows us to take statistics and compare 
them to the normal scenario. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 10, 2020 

480 | P a g e  
www.ijacsa.thesai.org 

TABLE I. SUMMARY OF THE CODE CHANGES 

Lines of code of SGX enabled SDN controller  

component Lines of original code % changed 

Floodlight storage module 3688 9.05% (350 lines) 

JNI interface 1203 100% (1203 line) 

Other(e.g. make files ) 200 100% (200 lines) 

A normal scenario consists of the same use case but with 
non-modified controller. Table II, shows the collected 
measures and a relative Overhead. Overhead is between 7 and 
10% in the first run. The overhead is calculated as shown in 
the following equation: 

OH = (E[SGX] − E[normal])/E[normal]∗100 

The increase of the overhead is caused by the use of SGX 
enclaves. For each ECALL to the storage module to gather 
flow rules, the CPU switch to the enclave mode, resulting to 
an increase of execution time. Overhead increases linearly 
with the number of e-call invocations. The state of the 
controller gets stabilized after a while since the flow rules are 
cached inside the open flow tables within the open vswitches. 

TABLE II. COLLECTED MEASURES AND OVERHEAD 

Controller response time 

Number of requests 

to the SDN controller 

Normal 

scenario 

Intel SGX enabled 

SDN controller 
Overhead 

10000 (first run) 3300 us 3630 10 % 

10000 (second run) 2170 us 2320 7 % 

10000 (third run no 

flow flashing) 
300 us 313 us 4.33 % 

Table II shows the Overhead interval between two test 
cases. The same parameters are kept during the two tests. The 
deference between the overhead in both runs is due to CPU 
consumption by the OS itself and other floodlight operations. 

The third run on the scenario was conducted in a special 
case where the open-vswitches are not flushed so flow rules 
are kept inside the switches flow tables, open flow switches 
call the SDN controller only if there is no entry matching the 
upcoming packets. There was a slit increase in time execution 
in this case and that was because of normal operations 
executed by the controller itself. 

VI. CONCLUSION 

The concept of SDNs or Software Defined Networks is an 
architecture that facilitates network management and control, 
and allows rapid introduction of network services through 
programming and separation of the control plane from the data 
plane. With this new architecture, administrators can manage 
the network in a unified way from the control plane, and can 
introduce or eliminate any service through the application 
plane without changing the physical infrastructure. New 
network applications can be transparently programmed and 
deployed using standard APIs. Most modern SDN controllers 
can run on any OS However, its implementation in the data 
domain remains one of the biggest challenges for storage 
security at the control plane level. 

In this work, we proposed using Intel SGX to provide 
additional security to the general intent of the Execution 
Environment of applications. 

In order to evaluate the performance impact of our SDN 
enabled Intel SGX architecture we implemented our SDN 
controller model enabled SGX on a Linux platform holing an 
SDN controller named floodlight. The results of our model 
implementation show the efficiency of our model without any 
major cost in term of performance. 

VII. FUTURE WORKS 

As a perspective, we would like to test our model in large 
test platforms to estimate its capacity and limitations and 
compare it to the TEE provided by ARM named ARM 
Trustzone. 

Other evolution will be conducted on other point of views 
such as using intel SGX to build the entire application instead 
of the storage module alone. 
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