
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

475 | P a g e
www.ijacsa.thesai.org

Secure Software Defined Networks Controller

Storage using Intel Software Guard Extensions

Qasmaoui Youssef1

Hassan First University, Faculty of

Sciences and Techniques, Computer

Networks, Mobility and Modeling

laboratory: IR2M, Settat, Morocco

Maleh Yassine2

IEEE Senior Member

Sultan Moulay Slimane University

LaSTI Laboratory, Beni Mellal

Morocco, Settat, Morocco

Abdelkrim Haqiq3

IEEE Senior Member

Hassan First University, Faculty of

Sciences and Techniques, Computer

Networks, Mobility and Modeling

laboratory: IR2M, Settat, Morocco

Abstract—The SDN controller is the core of the software-

defined network (SDN), which provides important network

operations that needs to be protected from all type of threats.

Many researches have been focusing on different layers of

security regarding the SDN controller such as Anti-DDOS system

or enforcement of TLS connection between the controller and the

Open-vswitches. One of the major security threats targeting any

program is the environment execution itself (e.g. Operating

system and the hardware itself). Intel's Software Guard

Extension (SGX) offers a sloid layer of security applied to

applications by creating a Trusted execution environment. SDN

controller relay on a storage module to keep sensitive data such

as Flow Rules, users’ credentials and configuration files.

Protecting this side of the SDN controller is a must in term of

security. To date, no work has been conducted considering SDN

controller storage security using Intel SGX. This paper

introduces an SGX enabled SDN controller. The new controller

ensures the integrity and the confidentiality in a trusted

execution environment by leveraging a recent hardware

technology called intel SGX. This technology provides a trusted

and secure enclave. Enclaves are sealed and unsealed by intel

SGX attestation mechanisms to protect the executed code and

data inside live memory and disk from being altered by any

unauthorized access. High privileged codes such as the OS itself

is kept from altering data inside enclaves. We implemented the

Intel SGX using the Floodlight SDN controller running a real

enabled Intel SGX hardware. Our evaluation shows that the SGX

enabled SDN controller introduces a slightly observable

performance overhead to the floodlight controller compared to
advantages in term of security.

Keywords—Software defined networks; software guard

extensions; storage; integrity; confidentiality

I. INTRODUCTION

In recent years, the network research community has
experienced a period of intense activity that has led to the
emergence of different architectures or paradigms such as the
SDN. The centralization (logical or physical) of the control
plan, had to bring the expected flexibility to the network
applications and allow to respond to many concrete use cases.

Software-Defined Network is a new paradigm of network
architecture that aims to design a data plane that is fully
programmable and separated from the control plane [1]. The
Control Plane manages decisions about how and where to
transmit network traffic through system configuration,

management and exchange of routing table information. The
Data/Forwarding Plane manages the actual transmission of
packets to the destination network according to the logic of the
control plan. Behind this separation, there are three main
objectives:

 The separation of network intelligence (control plan)
from equipment (data plan).

 The provision of a logically centralized view of the
global physical network.

 Providing an abstraction of programmable network
equipment using Interfaces of application
programming (API).

Among the innovations of this new paradigm is the
programmability of network equipment and applications. New
network applications can be transparently programmed and
deployed using standard APIs. However, its implementation in
the data plane remains one of the greatest challenges for
research.

Protecting sensitive data from been altered or access gained
by any authorized manner is present since the beginning of the
programming time, a challenge that many have taken the race
to solve it [2]. SDN technology has been introduced to solve
the complexity of configuring network hardware. SDN enabled
networks relay on a central decision making called the SDN
controller to handle request coming from network devices such
as switches and routers [3], [4]. Those requests are transported
via API's using open flow protocol [5] and optionally secured
using TLS.

The SDN controllers represent the most delicate part of the
SDN architecture as it consists of the brain of the network,
making it vulnerable to all sort of attacks [6], [7]. Security
issues may vary depending on the level of interest targeted by
a malicious person; it goes from Denial of service to traffic
redirection and flow rules modification [8]. The SDN
controller software is run on vast untrusted platforms,
including operating systems, hypervisors, firmware, and
hardware. This large machine base is growing complex and
difficult to verify. For e.g., an OS such as Linux has 17
million line of code, however 662 vulnerabilities related to
CVE have been recorded in 2019, such as memory corruption,
transverse directory, unauthorized code execution. Execution

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

476 | P a g e
www.ijacsa.thesai.org

of normal and security-critical applications running on shared
resources controlled by untrusted computing machines raises
security threats. Running the SDN programs in such
environments represent a considerable threat to its normal
operations.

To solve the issue, one of the solutions is Trusted execution
environments (TEE). TEE guarantee security by relying on less
hardware and software computing base. Hardware is
commonly considered to be a stable base since the cost and
sophistication of hardware attacks usually are high. This has
lead to the development of a secure running environment by
industrial hardware companies for a safety-critical application
that maintains little reliance or less dependency upon the
operating system and hypervisor. Up to today, we found two
main technology which are ARM Trust Zone Technology, Intel
Software Guard Extensions (SGX) [9][10].

The objective of this work is to propose a secure
architecture by programming new modules and adding security
functions at the control plan storage based on Intel SGX. Then,
evaluate the impact of SDN architectures at the performance
level.

The rest of the paper is organized as follow. The next
section will include a background and related works followed
by the proposed model to secure SDN controller storage using
Intel SGX, then we present the results of the implementation
with discussion. Finally, we conclude this work with a
conclusion and perspectives for future work.

II. BACKGROUND

Trusted Execution Environment (TEE) is a tamper-
resistant computing ecosystem that works on a separate
kernel. It guarantees the validity of the executed programs, the
security of the runtime components (e.g. memory, CPU
registers, and critical Input / Outputs) and the secrecy of the
executed code, data and runtime states are maintained in non-
volatile memory [11]. In addition, the remote certificate shall
be given to show its trustworthiness to third parties. The
contents of TEE are not static; they can be changed safely.
TEE condemns all software-related threats as well as hardware
threats against the main memory of the operating system.
Attacks leveraging backdoor authentication bugs are futile.

Fig. 1 illustrates the difference between a Trusted
execution environment and an ordinary OS.

The most common TEE environments are Intel SGX and
ARM TrustZone [12]. Both Intel SGX and ARM TrustZone
are hardware TEE environments, but the process behind
building a trusted environment with trusted code is distinct.
Intel SGX provides a trusted environment for trusted programs
that run on top of current untrusted device software. Whereas,
ARM TrustZone is building a new, trusted ecosystem for
trustworthy applications that operate on trustworthy device
software and hardware that are only accessible to the trusted
Configuration.

In this paper we focused on intel SGX technology to
deploy our secure SDN controller. The Choice of using Intel
SGX was taken depending on the much benefit that supersede
ARM TrustZone, benefits such as documentation, maturity

and the availability of hardware enabled machines. The
majority of researchers uses Intel SGX to deploy a trusted
execution environment.

Intel Software Guard Extensions (Intel SGX) provides
hardware-based memory encryption to isolate portions of code
and application-specific data in memory. Intel® SGX allows
user-level code to assign private memory regions (called
enclaves) designed to be protected against processes running
at higher privilege levels. Only the Intel® SGX solution
provides such a granular level of control and protection.

Intel SGX has been used to secure flow tables inside Open-
Vswitches as mentioned in related works.

Fig. 2 shows the architecture of a typical intel SGX
enabled environment.

Fig. 1. Trusted Execution Environment.

Fig. 2. Intel SGX Architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

477 | P a g e
www.ijacsa.thesai.org

SGX is built to be reliable; this is done in a variety of
ways, including robust enclave delivery, sealing and
attestation. Intel summarizes SGX’s protections [13], [14] as
follows;

 Memory is secured against observation and
modification from outside the enclave, using an in-die
Memory Encryption Engine (MEE) [15], with a secret
that rotates on every boot. This protection notably
works against host hypervisors, other enclaves, and
anything running in supervisor mode.

 Enclaves will attest or confirm their identities to a
competitor with the aid of a permanent hardware
identification key for asymmetric encryption.

 Computer calls are designed to schedule and pass
power in and out of the enclave. Arguments are safely
mapped according to the concept of a static enclave.

 SGX does not protect itself against reverse engineering
or side-channel attacks: to counteract this is the
responsibility of the client.

III. RELATED WORKS

There are only a few works in the literature that discuss
SDN security using SGX. Intel Software Guard Extensions
(SGX) has provided the general purpose of the hardware-
assisted TEE referred to as Intel SGX. Intel SGX is an
expansion of the x86 architecture with a new range of
security-related instructions [16]. These instructions are used
by security-critical programs to create a hardware-assisted
trust environment referred to as an enclave [17]. Intel SGX
enclave maintains secrecy through hardware-maintained data
layout and honesty tests by encrypting data and code when it
is outside the CPU package [18]. Intel SGX is a centralized
security architecture, and the trustworthy TCB computing
foundation is known to be a CPU package.

TruSDN is a mechanism for bootstrapping confidence in
the technology of SDN [19]. Supports the safe supply of
switches in SGX enclaves, a protected communication channel
between switches and SDN controllers, and secure
communication between endpoints.

Trusted Click [20] investigates the viability of network
processing in SGX enclaves. Although none of the above
methods discusses the credibility and anonymity of OpenFlow
flow tables, they can be complemented by OFTinSGX to
accomplish this. SCONE allows operators to protect the
secrecy and integrity of computing in containers against host
root access adversaries [21]. An alternative approach to
securing virtual network functions running in containers,
which prevents the unnecessary expansion of the trusted
computing foundation, is proposed in [22]. Event Controller
Eviction mitigates DoS attacks and OpenFlow Application
overflow [23]. This framework uses two different frameworks
– the learning module and the flow control module – while the
case handler system prevents overload and DoS attacks, the
OpenFlow flow tables have no security guarantees.
OFTinSGX maintains the integrity and confidentiality of

OpenFlow tables and the reasoning for forwarding and
disposal procedures.

TLSonSGX guarantees that OvS authorities retain
communication with SDN controllers and the cryptographic
material they use [24]. This methodology can be paired with
OFTinSGX to provide broader security assurances for
OpenFlow switches. Fig. 3 shows the TLSonSGX system
design.

Fig. 3. TLSonSGX System Design.

In recent works OFTinSGX has been proposed by [9],
which has four components: SGX OpenFlow table, SGX rule
structure, SGX Eviction component, and SGX tables dpif,
which helps OvS to delegate its OpenFlow tables and forward
logic to enclave memory.

The important limitation of this work is that the abstraction
of only the contents of the OpenFlow flow tables does not
address all security concerns, as the classifier only includes
references to the classification rules. The procedure used to
control the OpenFlow flow tables can cover both the contents
of the tables and the full description of the rules assigned to
the untrusted memory.

Fig. 4 illustrates the OFTinSGX Architecture.

Fig. 4. OFTinSGX Architecture.

IV. THE PROPOSED SGX SDN CONTROLLER

A. SDN Storage Module Overview

This section presents the design and the architecture of the
proposed model to secure SDN controller storage using Intel
SGX.

Generally, the SDN controller is relying on a storage
module that handles all sensitive data; controller data are
mostly configuration files such as flow rules. In our case, we
use the floodlight SDN controller to implement our approach.
Fig. 5 illustrates the Floodlight architecture. The proposed
model consists of rewriting the storage module code taking
into consideration the Intel SGX technology.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

478 | P a g e
www.ijacsa.thesai.org

Fig. 5. Floodlight Architecture.

The storage module consists of four main modules: link
discovery module(responsible for discovering and maintaining
the status of links in the OpenFlow network), Device manager
module (tracks devices as they move around a network and
defines the destination device for a new flow), Static flow
entry pusher (allows a user to manually insert flows and
groups into an OpenFlow network) module and QOS
module(give a user a way to simply push QoS state to
switches that support these features) interacting with the
primary storage module which is mainly a NoSQL database
residing in the random-access memory. Fig. 6 shows the
interaction between the four-module and the storage module.

A compromised host can present a huge issue to the
NoSQL database making it vulnerable to several attacks such
memory dump or memory exhaustion attacks. Our method
consists of hardening all the space used by the NoSQL
database by implementing the Intel SGX technology to
prevent any damage to the RAM area used by the SDN
controller.

B. SDN Enabled SGX Architecture

SDN enabled SGX model operates as an intermediate
system. Specifically, it executes a process daemon that
intercepts all the call made to the ordinary storage module by
the controller application. These calls are translated into
corresponding functions of the SDN enabled SGX model
enclave. For instance, when a new open flow rules need to be
inserted, the call is made via our interface and call the
corresponding function inside the enclave via a JNI (Java
Native Interface). The code residing in the enclave return the
right value depending on the result of the function via the
interface. In this design, all the data structures related to the
file system are continuously kept in the Enclave Page

Cache(EPC), which is a subset of DRAM that cannot be
directly accessed by other software, including system software
and SMM code. The CPU’s included memory controllers also
reject DMA transmissions targeting the EPC, thus protecting it
from access by other peripherals.

The NoSQL database files are maintained by the enclave
and protected by the encryption mechanisms of the SGX
technology, making a dump of the memory useless as its
encrypted and cannot be read.

Data is decrypted by the SGX unsealing mechanism: this
process occurs while entering the enclave and is thus secured
by the CPU borders. Consequently, a dump of the EPC
(enclave page cache) would be captured and blocked by the
SGX protection mechanisms.

Fig. 7 shows the proposed SDN enabled SGX model.

Fig. 6. The Proposed Storage Module.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

479 | P a g e
www.ijacsa.thesai.org

Fig. 7. The Proposed SDN Enabled SGX Model.

V. IMPLEMENTATION AND EVALUATION

A. Implementation Setup

We implemented the SDN controller enabled SGX on a
Linux platform holing an SDN controller named floodlight
developed using JAVA programming language. Since intel
SGX SDK support only C/C++ language, we used the Java
Native Interface (JNI) to make the right call to C functions to
handle intel SGX operations. The next scenario demonstrates
the different phases of the implementation, this scenario is
almost generic to any Intel SGX enabled case:

 Step 1: An enclave is created by the untrusted part of
the application.

 Step 2: The enclave must be initialized via a launch
token, fetched and provided by Intel’s launch enclave.

 Step 3: Access to the LE and other architectural
enclaves, e.g., the quoting enclave (QE) and the
provisioning enclave (PE), is provided by the Intel
application enclave service manager (AESM). SGX
libraries provide an abstraction layer for
communicating with the AESM.

 Step 4: Execution of a trusted function which executes
an ECALL.

 Step 5: The ECALL goes through the SGX call
interface to bring the executing thread inside the
enclave.

 Step 6: An OCALL is executed once the execution in
the trusted environment completes.

 Step 7: Finally giving the control back to the caller.

The program run on HP Proliant gen10 server with the
following Configuration:

 Intel XEON E-2174G with intel SGX support.

 32GB of RAM.

To generate traffic we use mininet simulator [25], mininet
was setup and configured on five different computers to be
able to generate 2000 request by each one.

The written code mainly focuses on the Storage Source
Service, which is the main interface of the storage module of
floodlight controller, also some of the dependencies were
taken into accounts such as IDebugCounterService and
IRestApiService.

Table I shows a summary of the code changes made to the
storage module inside the floodlight controller. The most
significant part of the added code consists of new (JAVA
NATIVE INTERFACE) JNI interface and make files,
floodlight storage also has been modified to accept the call
from OCALL I/O peripherals.

B. Performance Analysis

Our evaluation is based on the scenario that involves a
number of nodes making calls to the SDN controller. In this
case, the network devices receive various request to dispatch
packets from a script that run on several separated machines.
Decision making is sent from the data layer represented by the
network devices. Next, the controller responds with the
corresponding flow rule. Rules present inside the Open-
vswitches are deleted, so the network devices are forced to
make calls to the controller. The script sends over 10000
requests to several separated switches. The generated traffic
sent to the controller allows us to take statistics and compare
them to the normal scenario.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

480 | P a g e
www.ijacsa.thesai.org

TABLE I. SUMMARY OF THE CODE CHANGES

Lines of code of SGX enabled SDN controller

component Lines of original code % changed

Floodlight storage module 3688 9.05% (350 lines)

JNI interface 1203 100% (1203 line)

Other(e.g. make files) 200 100% (200 lines)

A normal scenario consists of the same use case but with
non-modified controller. Table II, shows the collected
measures and a relative Overhead. Overhead is between 7 and
10% in the first run. The overhead is calculated as shown in
the following equation:

OH = (E[SGX] − E[normal])/E[normal]∗100

The increase of the overhead is caused by the use of SGX
enclaves. For each ECALL to the storage module to gather
flow rules, the CPU switch to the enclave mode, resulting to
an increase of execution time. Overhead increases linearly
with the number of e-call invocations. The state of the
controller gets stabilized after a while since the flow rules are
cached inside the open flow tables within the open vswitches.

TABLE II. COLLECTED MEASURES AND OVERHEAD

Controller response time

Number of requests

to the SDN controller

Normal

scenario

Intel SGX enabled

SDN controller
Overhead

10000 (first run) 3300 us 3630 10 %

10000 (second run) 2170 us 2320 7 %

10000 (third run no

flow flashing)
300 us 313 us 4.33 %

Table II shows the Overhead interval between two test
cases. The same parameters are kept during the two tests. The
deference between the overhead in both runs is due to CPU
consumption by the OS itself and other floodlight operations.

The third run on the scenario was conducted in a special
case where the open-vswitches are not flushed so flow rules
are kept inside the switches flow tables, open flow switches
call the SDN controller only if there is no entry matching the
upcoming packets. There was a slit increase in time execution
in this case and that was because of normal operations
executed by the controller itself.

VI. CONCLUSION

The concept of SDNs or Software Defined Networks is an
architecture that facilitates network management and control,
and allows rapid introduction of network services through
programming and separation of the control plane from the data
plane. With this new architecture, administrators can manage
the network in a unified way from the control plane, and can
introduce or eliminate any service through the application
plane without changing the physical infrastructure. New
network applications can be transparently programmed and
deployed using standard APIs. Most modern SDN controllers
can run on any OS However, its implementation in the data
domain remains one of the biggest challenges for storage
security at the control plane level.

In this work, we proposed using Intel SGX to provide
additional security to the general intent of the Execution
Environment of applications.

In order to evaluate the performance impact of our SDN
enabled Intel SGX architecture we implemented our SDN
controller model enabled SGX on a Linux platform holing an
SDN controller named floodlight. The results of our model
implementation show the efficiency of our model without any
major cost in term of performance.

VII. FUTURE WORKS

As a perspective, we would like to test our model in large
test platforms to estimate its capacity and limitations and
compare it to the TEE provided by ARM named ARM
Trustzone.

Other evolution will be conducted on other point of views
such as using intel SGX to build the entire application instead
of the storage module alone.

REFERENCES

[1] M. F. H. and M. A. Ismail, “Distributed Shadow Controllers based

Moving Target Defense Framework for Control Plane Security,” Int. J.
Adv. Comput. Sci. Appl., vol. 10, no. 12, pp. 150–156, 2019, doi:

10.14569/IJACSA.2019.0101221.

[2] Safaa MAHRACH and Abdelkrim HAQIQ, “DDoS Flooding Attack
Mitigation in Software Defined Networks,” Int. J. Adv. Comput. Sci.

Appl., vol. 11, no. 1, pp. 693–700, 2020, doi:
10.14569/IJACSA.2020.0110185.

[3] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti, “A

Survey on the Security of Stateful SDN Data Planes,” IEEE Commun.
Surv. Tutorials, 2017.

[4] J. Son and R. Buyya, “A Taxonomy of Software-Defined Networking

(SDN)-Enabled Cloud Computing,” ACM Comput. Surv., vol. 51, no. 3,
p. 59, 2018.

[5] N. McKeown et al., “OpenFlow: enabling innovation in campus

networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[6] K. Bhushan and B. B. Gupta, “Distributed denial of service (DDoS)

attack mitigation in software defined network (SDN)-based cloud
computing environment,” J. Ambient Intell. Humaniz. Comput., pp. 1–

13, 2018.

[7] H. D’Cruze, P. Wang, R. O. Sbeit, and A. Ray, “A Software-Defined

Networking (SDN) Approach to Mitigating DDoS Attacks,” in
Information Technology-New Generations, Springer, 2018, pp. 141–

145.

[8] A. QASMAOUI, Y., & HAQIQ, “Enhanced Solid-Flow: An Enhanced
Flow Rules Security Mechanism for SDN,” IAENG Int. J. Comput. Sci.,

vol. 47, no. 3, 2020.

[9] J. Medina, N. Paladiy, and P. Arlosz, “Protecting OpenFlow using Intel
SGX,” in 2019 IEEE Conference on Network Function Virtualization

and Software Defined Networks (NFV-SDN), Nov. 2019, pp. 1–6, doi:
10.1109/NFV-SDN47374.2019.9039980.

[10] S. Costan, V., & Devadas, “Intel SGX Explained,” IACR Cryptol. ePrint

Arch., vol. 86, pp. 1–118, 2016.

[11] V. Lefebvre, G. Santinelli, T. Müller, and J. Götzfried, “Universal
Trusted Execution Environments for Securing SDN/NFV Operations,”

2018, doi: 10.1145/3230833.3233256.

[12] J. Winter, “Trusted Computing Building Blocks for Embedded Linux-
Based ARM Trustzone Platforms,” in Proceedings of the 3rd ACM

Workshop on Scalable Trusted Computing, 2008, pp. 21–30, doi:
10.1145/1456455.1456460.

[13] S. Kim, Y. Shin, J. Ha, T. Kim, and D. Han, “A First Step Towards
Leveraging Commodity Trusted Execution Environments for Network

Applications,” 2015, doi: 10.1145/2834050.2834100.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 10, 2020

481 | P a g e
www.ijacsa.thesai.org

[14] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applications from an

Untrusted Cloud with Haven,” ACM Trans. Comput. Syst., vol. 33, no.
3, Aug. 2015, doi: 10.1145/2799647.

[15] S. Gueron, “A Memory Encryption Engine Suitable for General Purpose

Processors,” Cryptol. ePrint Arch. Rep. 2016/204, 2016.

[16] Intel®, “Intel® Sofware Guard Extensions Programming Reference,”
(Cited pages 13 14.), 2014.

[17] I. Graydon, E. Beatty, S. Paul, M. N. Us, and J. A. Hauck, “Method and

apparatus to provide secure application execution,” 2006.

[18] F. X. Simon P Johnson, Uday R Savagaonkar, Vincent R Scarlata and
and C. V. R. McKeen, “Technique for supporting multiple secure

enclaves,” US Patent 8,972,746., 2015.

[19] N. Paladi and C. Gehrmann, “TruSDN: Bootstrapping Trust in Cloud

Network Infrastructure,” in International Conference on Security and
Privacy in Communication Systems (pp. 104-124), 2017, pp. 104–124.

[20] M. Coughlin, E. Keller, and E. Wustrow, “Trusted Click: Overcoming

Security Issues of NFV in the Cloud,” in Proceedings of the ACM
International Workshop on Security in Software Defined Networks

& Network Function Virtualization, 2017, pp. 31–36, doi:
10.1145/3040992.3040994.

[21] S. Arnautov et al., “{SCONE}: Secure Linux Containers with Intel

{SGX},” in 12th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16), Nov. 2016, pp. 689–703, [Online].

Available: https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/arnautov.

[22] D. Girtler and N. Paladi, “Component integrity guarantees in software-

defined networking infrastructure,” in 2017 IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-

SDN), Nov. 2017, pp. 292–296, doi: 10.1109/NFV-SDN.2017.8169858.

[23] Ying Qian, Wanqing You, and Kai Qian, “OpenFlow flow table
overflow attacks and countermeasures,” in 2016 European Conference

on Networks and Communications (EuCNC), Jun. 2016, pp. 205–209,
doi: 10.1109/EuCNC.2016.7561033.

[24] N. Paladi, L. Karlsson, and K. Elbashir, “Trust Anchors in Software

Defined Networks,” in Computer Security, 2018, pp. 485–504.

[25] R. L. S. de Oliveira, C. M. Schweitzer, A. A. Shinoda, and L. R. Prete,

“Using Mininet for emulation and prototyping Software-Defined
Networks,” in 2014 IEEE Colombian Conference on Communications

and Computing (COLCOM), 2014, pp. 1–6, doi: 10.1109/ColCom
Con.2014.6860404.

AUTHORS’ PROFILE

Youssef Qasmaoui received his Master degree in Networks and IT
Security and his Bachelor degree in Networks and IT Systems, respectively in
2012 and 2010 from the Faculty of Sciences and Techniques (FST), Settat –
Morocco. He also received a second Master degree in Information System
Engineering at the University of Western Brittany at Brest – France. He is
also doing his Ph.D. thesis at the FST, Settat - Morocco. His research interests
include Software Defined Networks, Virtual Laboratory and Networks
Security.

Yassine MALEH is a cybersecurity professor and practitioner with
industry and academic experience. He is a Ph.D. degree in Computer
Sciences. Since 2019, He working as a professor of cybersecurity at Sultan
Moulay Slimane University, Morocco. He was working for the National Port

agency (ANP) in Morocco as an IT Security Manager from 2012 to 2019. He
has published more than 60 research papers. This includes 7 books, 20 book
chapters, 14 peer-reviewed journal articles, and 20 peer-reviewed conference
manuscripts.

He has served on Program Committees of more than 20 conferences and
events and has organized many Symposiums/Workshops as a General Chair.
He is an editor of a number of journals including Editor in Chief: International
Journal of Smart Security Technologies (IJSST). Associate Editor: IEEE
Access (Impact Factor: 4.09), International Journal of Digital Crime and
Forensics (IJDCF) and International Journal of Information Security and
Privacy (IJISP). He was also a Guest Editor of a special issue on Recent
Advances on Cyber Security and Privacy for Cloud-of-Things of the
International Journal of Digital Crime and Forensics (IJDCF), Volume 10,
Issue 3, July-September 2019. He served and continues to serve as a reviewer
of numerous prestigious journals such as Elsevier Ad Hoc Networks, IEEE
Network Magazine, IEEE Sensor Journal, ICT Express, and Springer Cluster
Computing, etc…

Prof. Abdelkrim HAQIQ has a High Study Degree (Diplôme des Etudes
Supérieures de troisième cycle) and a PhD (Doctorat d'Etat), both in the field
of modeling and performance evaluation of computer communication
networks, from Mohammed V University, Faculty of Sciences, Rabat,
Morocco. Since September 1995 he has been working as a Professor at the
department of Applied Mathematics and Computer at the Faculty of Sciences
and Techniques, Settat, Morocco. He is the Director of Computer, Networks,
Mobility and Modeling laboratory: IR2M. He is an IEEE senior member and
an IEEE Communications Society member. He is also a member of Machine
Intelligence Research Labs (MIR Labs), Washington, USA. He was a co-
director of a NATO Multi-Year project entitled “Cyber Security Analysis and
Assurance using Cloud-Based Security Measurement system”, having the
code: SPS-984425. Prof. Abdelkrim HAQIQ's interests lie in the areas of
modeling and performance evaluation of communication networks, mobile
communications networks, cloud computing and security, emergent
technologies, Markov chains and queueing theory, Markov decision processes
theory, and game theory. He is the author and co-author of more than 170
papers (international journals and conferences/workshops). He supervised 15
PhD thesis and co-supervised 3 PhD thesis. Actually, he is supervising and
co-supervising other PhD thesis. He is an associate editor of the International
Journal of Computer International Systems and Industrial Management
Applications (IJCISM), an editorial board member of the International Journal
of Intelligent Engineering Informatics (IJIEI) and of the International Journal
of Blockchains and Cryptocurrencies (IJBC), an international advisory board
member of the International Journal of Smart Security Technologies (IJSST)
and of the International Journal of Applied Research on Smart Surveillance
Technologies and Society (IJARSSTS). He is also an editorial review board of
the International Journal of Fog Computing (IJFC) and of the International
Journal of Digital Crime and Forensics (IJDCF). Prof. Abdelkrim HAQIQ
was a chair and a technical program committee chair/member of many
international conferences and scientific events. He was also a Guest Editor
and Co-Editor of special issues of some journals, books and international
conference proceedings. From January 1999 to December 1999 he had a Post-
Doctoral Research appointment at the department of Systems and Computers
Engineering at Carleton University in Canada. He also has held visiting
positions at the High National School of Telecommunications of Paris, the
Universities of Dijon, Versailles St-Quentin-en-Yvelines and LAAS CNRS,
Toulouse in France, the University of Ottawa in Canada, the FUCAM in
Belgium, the National Engineering School of Sfax, Tunisia, the University of
Naples Federico II, Italy and the University of Algarve, Portugal.

