
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

511 | P a g e

www.ijacsa.thesai.org

High-Security Image Steganography Technique using

XNOR Operation and Fibonacci Algorithm

Ali Abdulzahra Almayyahi
1
, Rossilawati Sulaiman

2
, Faizan Qamar

3
, Abdulwahhab Essa Hamzah

4

Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia UKM Bangi 43600, Selangor, Malaysia
1, 2, 3

Photonics Technology Laboratory, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and

Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia
4

Abstract—Since the number of internet users is increasing

and sensitive information is exchanging continuously, data

security has become a problem. Image steganography is one of

the ways to exchange secret data securely using images. However,

several issues need to be mitigated, especially in the

imperceptibility (security) aspect, which is the process of

embedding secret data in the images that can be vulnerable to

attacks. This paper focuses on developing a secure method for

hiding secret messages in an image, based on the standard Least

Significant Bit (LSB). Before proceeding with the embedding

stage, the secret message's size is reduced by compression using

the Huffman algorithm, followed by two operations, which are

the Boolean operation Exclusive-NOR (XNOR) operation and the

Fibonacci algorithm when selecting pixels to embed the secret

message. As a result of these processes, a stego-image is created

with two secret keys. We obtained promising results against

standard images with higher Peak Signal-to-Noise Ratio (PSNR)

values of 66.6170, 65.8928, and 65.9386 dB for Lena.bmp,

Baboon.bmp, and Pepper.bmp, respectively, as compared to

other state-of-the-art schemes. The evaluation stage proves the

increasing level of security as well as imperceptibility.

Keywords—Image steganography; Huffman algorithm; XNOR

operation; Fibonacci algorithm; LSB; PSNR

I. INTRODUCTION

Steganography is the technique used to hide secret data in a
cover-media. It consists of two parts, "stego" which means
"cover" in Greek and "grafia" which means "writing" and both
can be defined as "covered writing" [1]. Various types of
multimedia files can be used to conceal secret data such as text
[2], image [3], video [4]-[5], audio [6][39] protocols, and
Deoxyribonucleic acid (DNA), with the most commonly used,
are images as a cover-media [7]–[9] The cover-media can also
be referred to as stego-media. There are two types of
embedding methods in a steganography system, which are
spatial domain and frequency domain. In the spatial domain,
pixels intensity is used to insert or embed the secret message
directly into the Least Significant Bit (LSB) of a pixel. The
LSB substitution is the most common technique of embedding
in the spatial domain, whereas, in the frequency domain, the
image is converted into various frequency classes, and the
embedding process has been performed by using the
coefficient factors [10]–[12].

Several issues and challenges are associated with
steganography, which includes (1) lack of security of the secret
message hidden in the image, (2) lack of payload capacity,
which reflects the amount of data that can be embedded into

the image, and (3) maintain high imperceptibility or quality of
the stego-image as similar as the cover image (original image),
which is the desired property that supports security [13]–[15].
Several literature attempts to find a balance between the
quantity of data embedded and the protection of the secret
message while maintaining the quality of the image [16], [17].
Some algorithms have succeeded in increasing the data hiding
while keeping the image's quality, but the majority have not
[18], [19]. These existing methods have made more efforts in
hiding information to get high security so that the concealing
method makes the hidden secret message not to be seen by a
hacker (or not seen by human eyes). However, more research
in steganography techniques need to do to achieve high
security and high capacity [20].

This paper proposes a new technique for enhancing the
security and capacity of the standard LSB method. A balance
between high security and high capacity is important to
maintain the cover-image quality similar to stego-image after
embedding stage. We exploit the Most Significant Bit (MSB)
and LSB in the cover-images to add a security level of the
standard LSB steganography methods. Also, capacity can be
increased by applying compression to the secret message.

The rest of the paper is organized as follows: Section II
defined related works on secret data hiding techniques. Then,
Section III illustrates the proposed method in details, followed
by Section IV, which presents the experimental results.
Section V states the conclusion of the work, and lastly,
Section VI shows recommendations for future research work.

II. RELATED WORK

This section discusses the existing solutions to counter the
issues in image steganography. Various versions of bit
inversion techniques are proposed to enhance the LSB
embedding process. In [3], the authors proposed an improved
LSB technique where the LSB's of some pixels of the cover-
image is inverted when inputs of specific bit patterns are found.
Their result shows that a high quality of invisibility and
imperceptibility in the stego-image. Another bit inversion
technique is suggested in [21], which uses a bit inversion based
on specific patterns to improve the quality of the stego-image.
The idea is to conceal the secret message after a lossless
compression of smoother areas of the image, resulting in fewer
pixels being modified in the stego-image.

The authors in [22] proposed a novel steganographic
algorithm in the spatial domain using the concept of pixel

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

512 | P a g e

www.ijacsa.thesai.org

modulation, which diminishes the changes that occur in the
stego-image generated from the cover-image. In this method,
the LSB of the image's intensity values is modified according
to the secret data. The secret data is converted into a binary
string based on each character's ASCII value that is represented
in the 8-bit notation. Then, all bits are embedded in a matrix
containing the adjacent pixel values. Their result shows a lower
average embedding capacity, but the PSNR values of the stego-
images produced are high. In order to improve the security of
the hidden secret message, the XOR transposition encryption
based on the LSB approach is proposed in [23]. The embedded
secret message is encrypted by transposing the message based
on the order of the key. The result of this process is converted
into binary and embedded into the cover-image using the XOR
operation.

An LSB method is developed by [24] for embedded secret
message into a 24-bit colour image, where the last two bit of
LSB of each channel (red, green and blue) of the cover-image,
are substituted by two bits of the secret message. This means
that the last two bits of LSB of the red channel are substituted
by the first two bits of the secret message; the last two bits of
LSB of the green channel are substituted by the second two bits
of the secret message, and the last two bits of LSB of the blue
channel are substituted by the third two bits of the secret
message. Therefore, a total of six bits of the secret image can
be concealed in a 24-bit colour image. Another approach in
[25] proposed a new technique intending to keep secure
communication intact. The proposed method merged the
advantage of the two bits of LSB and the XOR operation. the
8th bit of the cover-image is XORed with the 1st bit of the
secret data, and the 7

th
 bit is XORed with the 2nd bit of the

secret data. The bits from the final result are inserted into the
last two LSBs of the image pixel. The results proved that this
approach achieved high capacity and high security. An
efficient LSB steganography method is proposed in [26] for
transferring secret data in the digital format using the number
theory. This research focuses on the spatial domain using the
Fibonacci sequence and Zeckendorf theorem, which increase
the embedding rate from 8-bit to 12-bit, on a grayscale image.
This method achieves a high embedding capacity.

An adaptive LSB replacement was suggested by [27] for
several colour images. In this method, the RGB colour
channels are converted into the YCbCr form [28], where the Cr
channel is selected and divided into an 8*8 size block. Each
block is then transformed into discrete cosine, and a coefficient
is selected where the bit sequence of the secret message is
embedded to this coefficient. The image quality is preserved
and robust against stego-attacks. An image steganography
method was developed by [29], which is based on the use of
two secret keys to randomize the embedding process of secret
messages. Randomization increases the security of the secret
message. The proposed method used some colour such as Red,
Green, and Blue to enhance the pixel's values and calculate the
location of the pixels' random position to embed the secret
message. This approach provides high data hiding capacity and
a high-security level compared with the standard LSB
substitution technique.

A method of using a modified LSB algorithm is proposed
in [30], based on the three RGB channels to increase the

security level of the hidden message. This method relied on
encryption of secret text message using the encryption key and
the XNOR operation before embedding it in a colour image
using LSB. The idea of concealing the message depends on the
extraction of chromatic channels of the three RGB channels for
each pixel and specifying the channel in which the bit of the
encryption message is hidden.

A highly secure chaos-based image steganography method
is proposed in [31]. Encryption to the secret message is
performed using Caesar cipher and Chaos theory. The
ciphertext obtained after the encryption process is embedded in
a cover image using a 3, 3, 2 LSB replacement algorithm,
which gave better security and performance than the traditional
LSB technique. Another approach that combines the
cryptography and steganography methods was presented in
[32]. The Vigenere Cipher and Huffman Coding techniques are
used to encrypt and compress the secret message. This method
improved the security level and ensured the message content
could not be recovered without knowledge of the decrypting
key and the Huffman Dictionary table.

An approach for data hiding in RGB images based on the
grey level modification (GLM) and multi-level encryption
(MLE) is proposed in [33]. The secret key and secret messages
are encrypted using the MLE algorithm before mapping it to
the grayscale cover-image. A transposition function is applied
to the cover-image before data embedding. The use of a secret
key, MLE, and GLM adds various security levels to the
algorithm, making it very complicated for a malicious user to
recover the original secret data.

Based on the literature, many solutions have been proposed
to solve standard LSB's main problems, which are related to
security, capacity, and imperceptibility. Security focuses on the
embedding methods, which is considered secure if an attacker
finds it challenging to extract secret data from the cover
medium. On the other hand, high capacity means that there are
larger spaces to store secret messages in the cover-image.
Lastly, imperceptibility is related to the high quality of the
stego-image generated by the algorithm that is close to the
original cover-image. In this study, the focus is on increasing
the security level of a stego-image (maintaining
imperceptibility) while improving the embedding capacity by
utilizing the standard LSB image technique.

III. PROPOSED METHODOLOGY

The proposed methodology is explained in Fig. 1. It
consists of four different stages as following:

 Data Preparation stage.

 Data Embedding stage.

 Evaluating stag.

 Extracting stage.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

513 | P a g e

www.ijacsa.thesai.org

Fig. 1. Proposed Method.

A. First Stage: Data Preparation

1) Huffman coding: Before proceeding with the

embedding stage, the Huffman algorithm is applied to the

secret message to compress the message and then transform it

into streams of bits. Later, each stream is converted into a

secret code using the Huffman table. The result after the

compression process is the vector of secret codes. The

advantages of Huffman encoding are 1) lossless compression

that improves the embedding capacity and 2) security because

the encoded bitstream does not really disclose any information

and only can be decoded using the Huffman table [34].

However, if the Huffman coded bitstream changes with just

one bit, the Huffman table could not decode it. Huffman

coding also satisfies the desired condition of high embedding

capacity [21].

Next, a numerical example is provided to explain how
Huffman will work within the proposed system. This example
used five different symbols as B, E, A, D, and C with their
frequencies of 14, 8, 56, 10, 12, respectively, as shown in
Table I. The following seven steps are performed:

 Step 1: Construct a table that contains the source
symbols and their respective frequency numbers.

 Step 2: Arrange the source symbols in ascending order
according to their frequency numbers.

 Step 3: Merge the first two frequency numbers and
then rearrange the table.

 Step 4: Repeat Step 3 until a single frequency number
is obtained.

 Step 5: Construct a Huffman tree by assigning the
value of 0 or 1 to each pair of branches in the tree.

 Step 6: Construct the final table (Huffman coding) that
contains the leaf nodes and their respective codes
according to the Huffman tree.

 Step 7: Create the compressed secret text by rewriting
the output codes using the table of Huffman coding [1,
011, 010, 001, 000], as mentioned in Table II (in the
'Code' column).

As illustrated in the Huffman tree (Fig. 2), the two-parent
nodes have the frequencies of 18 and 26, from accumulating
the frequency of their children (8,10) and (12, 14),
respectively. The high-frequency letter 'A' will be created at a
high level to construct the final tree will connect both children
in one parent with a frequency of 100.

For the output code in Step 7, each leaf has a path to reach
the main node (100), so the paths' numbers and direction refer
to these values. For example, the code for 'C' is 010, from
following the path from 'C' to 100. For 'A', the code is 1, as it
has only one path to the main node. After completing the
Huffman tree to the text, we obtain (188 bits) while the text in
ASCII code is represented by 800 bits (100 characters × 8 bits),
as shown in Table II.

Huffman: 56*1+14*3+12*3+10*3+8*3=188 bits

ASCII: (56+14+12+10+8)*8=800 bits

TABLE I. CONSTRUCTION OF THE HUFFMAN TREE

Step

1

Symbol B E A D C

Frequency 14 8 56 10 12

2
Symbol E D C B A

Frequency 8 10 12 14 56

3.1
Symbol ED C B A

Frequency 18 12 14 56

3.2
Symbol ED CB A

Frequency 18 26 56

3.3
Symbol EDCB A

Frequency 44 56

3.4
Symbol EDCBA

Frequency 100

TABLE II. THE SEQUENCE OF SYMBOLS AND CODES USING THE

HUFFMAN TREE

Symbols Code Length Frequency

A 1 1 56

B 011 3 14

C 010 3 12

D 001 3 10

E 000 3 8

Secret text
Preparation

Huffman

coding

Cover-image

Preparation DATA
PREPARATION

EMBEDDING

PROCESS

Pixels Selection

XNOR

operation

Fibonacci

sequence

EVALUATING STEGO-IMAGE

PSNR

EXTRACTING

END

START

SECOND STAGE

THIRD STAGE

FOURTH STAGE

FIRST STAGE

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

514 | P a g e

www.ijacsa.thesai.org

Fig. 2. Huffman Tree.

Therefore, 76.5% of space can be saved using Huffman
coding.

2) Image preparation: The cover-image is the original

image that is selected to host the secret messages before

embedding. RGB colour images or grayscale images are used

as a cover-medium in this research. The images can be

downloaded from http://sipi.usc.edu/database/database.php?

volume=misc (USC-SIPI) [32] with different sizes as a data

set. The size of the cover-images is 512*512 pixels to hide the

secret messages. Lena.bmp, Baboon.bmp, Pepper.bmp,

Airplane.bmp, Camera.bmp, Barbara.bmp, Tiffany.bmp, and

Tree.bmp are used to cover-images.

B. Second Stage: Proposed Embedding Process

1) Pixel selections: The embedding method deals with the

process of selecting and preparing pixels for embedding. Fig.

3 shows an example of pixel selections. The text message

represents the secret message, and it will be encoded with the

Huffman algorithm. The encoded message will be embedded

into a cover-image. In this example, Lena.bmp is chosen as a

cover-image. The embedding process starts at the top left of

the row and column (the x and y) position of Lena.bmp. The

pixel position of x and y is compared to determine whether to

embed using the XNOR operation or using the Fibonacci

sequence. If the x value is higher than the y value, the

Fibonacci sequence is used to embed it; otherwise, the XNOR

operation is applied. Whereas, in the case where the value of x

is equal to y, the embedding is skipped. Therefore, half of the

pixels use the XNOR operation while the other half use the

Fibonacci algorithm. After all secret messages are embedded,

the output will be a stego-image.

2) XNOR operation: In embedding with XNOR, the idea

is to use the last bit of MSB of the red channel as a secret key,

which is agreed by the sender and recipient. The red channel

will specify which channel (either green or blue) that the bit of

the secret text message will be hidden inside it. The red

channel is chosen as the secret key, while the embedding

process happens in either green and blue. The reason is that

human eyes are most sensitive to red, followed by green and

blue [40-41], and therefore we avoid embedding secret data in

the red channel.

Fig. 3. Pixel Selections Flowchart.

The algorithm for pixel selections is shown in Fig. 4.

Fig. 4. Pixel Selections based on Values of x and y.

There are two processes inside the embedding stage, which
are channel selections and data insertion. Firstly, in the channel
selections for embedding, the last bit of the red channel's LSB
is specified, either '0' (to select BLUE channel) or '1' (to select
GREEN channel). Secondly, in the data insertion, it performs
the XNOR operation of the last MSB red channel with one bit
of the secret text. Finally, the result (0 or 1) will be carried to
the selected channel and replace it with LSB's first bit in the
cover-image (as shown in Table III). Fig. 5 and Fig. 6 provides
an example of embedding using the XNOR operation.

44

18 26

100

A (56)

E (8) D (10) C (12) B (14)

1 0

0

0 0

1

1 1
Cover-image
RGB 24 Bit

Text Message

Huffman

Algorithm

Encoded Message
(10110011...)

XNOR

Embedding

Fibonacci

Embedding

Final output:

Stego-image

Lena.bmp

20

30

21 22 23

31 32 33

10 11 12 13

00 01 02 03

X Y

Algorithm 1: Pixel selections for embedding

Input:

Image Pixel points (x, y)

Output:

Selected Points for embedding

Steps:

1. Image size = 512*512

2. For x, y in a range of (image_size)

3. Select the points of x as a key

4. If (x > y) then

Apply Fibonacci Embedding

5. If (x < y) then

Apply XNOR Embedding

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

515 | P a g e

www.ijacsa.thesai.org

TABLE III. INPUT, OUTPUT AND CHANNEL SELECTIONS

XNOR operation
First bit LSB for

channel selection Last bit of MSB red

channel of the cover-image

Secret

bit
Result

0 0 1 BLUE

0 1 0 BLUE

1 0 0 GREEN

1 1 1 GREEN

Fig. 5 explains an example of embedding one bit of secret
data using the XNOR operation inside the Green channel.

Fig. 5. Embedding One Bit with XNOR Operation Inside Green Channel.

The text message in Fig. 5 represents the secret message,
which is encoded with the Huffman algorithm. Consider an
image pixel with Red, Green, and Blue colour channels, which
has decimal values of 155, 70, and 120, respectively. These
decimal values are converted to binary values. Consider also
that the encoded message starts with 1001 and so on.

The MSB of the red channel, which is '1', will be XNORed
with the secret message bit '1', and the results, in this case, is
also '1'. Therefore, this result will be embedded in the green
channel, according to Table III. As a result, the final decimal
values has been changed to 155, 71, and 120, respectively.

On the other hand, Fig. 6 has '0' for the MSB red channel,
XNORed with '0' of the secret bit, and the result is '1'.
Therefore, it will be embedded in the blue channel. The
decimal values have changed to 27, 70, and 121, respectively.

The embedding process using the XNOR operation is
summarized in Fig. 7.

Fig. 6. Embedding One Bit with XNOR Operation Inside Blue Channel.

 Algorithm 2: XNOR Image Embedding

 Input:

Image Pixels of RGB:

R = {Pr1,Pr2,…,Prn},

G = {Pg1,Pg2,…,Pgn}

B = {Pb1,Pb2,…,Pbn}

Message (Mx)

Output: Stego-image

 Steps:

1. Apply Huffman encoding on the message H(Mx)

2. Get the binary representation of the encoded message

H(Mx)={bm1,bm2,…,bmh}

3. Get Binary values of each Red, Green and Blue pixels

 Pri ={br1,br2,…,br8},

 Pgi ={bg1,bg2,…,bg8},

 Pbi ={bb1,bb2,…,bb8}

4. Get last bit MSB of Red array (br8)

5. Get first bit LSB of Green and Blue arrays (bg1,bb1)

6. Get first bit of the message binary array (bm1)

7. If (br8) == 1 then

 (br8) XNOR (bm1) == (bg1)

8. If (br8) == 0 then

 (br8) XNOR (bm1) == (bb1)

9. Initiate stego-image with the new values of RGB pixels

Fig. 7. Embedding Algorithm of the XNOR.

B
in

ar
y

Text message
Image Pixel

Huffman

Encoding

Encoded
Message

R B

155 120 70
Decimal

10011011 01111000

G

01000110

colour

channel

Result

01000111

1001… XNOR

1

10011011 01111000 01000111

155 120 71 Stego-image

Text message Image Pixel

Huffman

Encoding

Encoded
Message

R B

27 120 70 Decimal

00011011 01111000

B
in

ar
y

G

01000110

colour

channel

Result

1001…

XNOR

1

10011011 01111001 01000110

27 121 70 Stego-image

01111001

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

516 | P a g e

www.ijacsa.thesai.org

3) Fibonacci decomposition: Fibonacci numbers are a

sequence of numbers that begin with zero or one, and then the

next value is the summation of the two previous numbers [35].

In this research, we convert pixel values from binary into

Fibonacci representation for the image. Binary consists of 8-

bit planes, and the pixel values will occupy these bit.

However, the bit planes with Fibonacci decomposition

consists of 12-bit planes, therefore manipulating the LSB of

Fibonacci is more flexible and efficient [26], as shown in

Fig. 8.

Fig. 8. Bit Plane Distribution in Binary and Fibonacci Representation.

In the 13
th
 century, Leonardo of Pisa introduced the

classical Fibonacci number [36]. The general definition of the
Fibonacci sequence can be explained by using equation (1).

 (1)

Where F0 = 0, F1 = 1, and F2 = 1, N Fibonacci number.
The sequence of Fibonacci is as follows:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,… and so on; such
that any numeric value can be represented as binary
representation [35]–[37]. Table IV distinguishes between two
representations, Binary and Fibonacci for 8-bit and 12-bit
planes. In the binary representation, a large range of numbers is
available for 8 bits that are [0-255], whereas Fibonacci
representation provides the same range [0-255] to represent 12
bits, like the following:

 Binary representation for 255=128 +127 = 11111111

 Fibonacci binary representation for 255 = 233+21+1 =
100001000001.

It is important to note that the binary representation does
not introduce redundancy. On the other hand, the Fibonacci
representation is redundant, which means that different
sequences may represent a single number. For instance, using
the Fibonacci representation, a number 70 can have different
representations such as the following:

1) 55+13+2

2) 34+21+13+2

3) 55+8+5+2

4) 34+21+8+5+2

Thus, it could be represented as follows (shown in
Table V):

In order to obtain the unique representation of the given
number, the Zeckendorf theorem can be applied, which states
that "each positive integer m can be represented as the sum of
distinct numbers in the sequence of Fibonacci numbers, using
no two consecutive Fibonacci numbers" [38]. Consequently,

any positive number can be represented using equation (2)
[25].

 ∑

 (2)

As can be seen in Table V, there are four representations
for number 70. However, only one representation should be
selected. Thus, to choose only one of them, the one with the
lexicographically lowest value of 1 will always be selected. In
the case of number 70, the one which has a minimum number
of '1' will be selected as the Fibonacci representation, which is
the first rows of Table V (which has three '1'). Thus, a
sequence produced using Fibonacci numbers would be valid if
there are no two repeating '1' in a sequence. Therefore, the
probabilities for the first two bits LSBs of a cover-image pixel
in Fibonacci representation are '00', '01', or '10' with no
repeating of '1'. For embedding purposes, one bit from the
secret message (either 0 or 1) can be hidden in the first bit of
Fibonacci LSB in the cover-image. Depending on these
probabilities, our mapping is proposed, as illustrated in
Table VI.

TABLE IV. BIT PLANE REPRESENTATION IN BINARY AND FIBONACCI

Bit plane Binary Fibonacci

1 1 1

2 2 2

3 4 3

4 8 5

5 16 8

6 32 13

7 64 21

8 128 34

9 - 55

10 - 89

11 - 144

12 - 233

TABLE V. REPRESENTATION NUMBER 70 IN FIBONACCI

Number Fibonacci Binary

70

0*1+1*2+0*3+0*5+0*8+1*13+0*21+0*34+1*5
5+0*89+0*144+0*233

010001001
000

0*1+1*2+0*3+1*5+1*8+0*13+0*21+0*34+1*5
5+0*89+0*144+0*233

010110001
000

0*1+1*2+0*3+1*5+1*8+0*13+1*21+1*34+0*5
5+0*89+0*144+0*233

010110110
000

0*1+1*2+0*3+0*5+0*8+1*13+1*21+1*34+0*5
5+0*89+0*144+0*233

010001110
000

TABLE VI. MAPPING ALGORITHM FOR FIBONACCI

 Secret bits

Cover bits
0 1

00 00 01

01 00 01

10 10 01

8-Bit planes 12-Bit planes

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

517 | P a g e

www.ijacsa.thesai.org

In the proposed method, the idea of embedding using
Fibonacci is by using the green channel of each pixel for the
cover-image as a secret key. The secret bit will be inserted to
the first bit of the LSB of the green channel, according to
Table VI. For example, if the first two bits from the cover-
image is '00', and the secret bit is '0', then the stego-image bit is
not changed, which is '00'. Otherwise, the stego-image is
changed to '01'. Only the green channel is selected to make it
harder for the attacker to guess the embedding channel.

Another example is shown in Fig. 9, with the cover-image
in the Fibonacci code is represented as 000100100010 in the
Green channel. The secret bit can be either '0' or '1'. According
to the mapping in Table VI, if the secret bit is '1', and the first
two bits is '10', the result after embedding will become '01',
which means that the Fibonacci code now becomes
000100100011.

However, this Fibonacci code is not valid according to the
Zeckendorf theorem because it has two consecutive '1'.
Therefore, a condition is given where the second bit is changed
to 0, to avoid the consecutive ones. The final result will be
000100100001. Meanwhile, if the secret bit is '0', and the first
two bits is '10', the green bits on the cover-image is not
changed. If there is no change to the cover-image, it means less
distortion on the stego-image after the embedding process,
which results in a high level of security for the hidden message.

Fig. 9. An Example of Fibonacci Pixel Embedding in the Proposed Method.

Fig. 10. Embedding One bit in the Fibonacci Algorithm.

Fig. 10 explains another example of the Fibonacci
embedding process. Similar to the previous example, we
choose 155, 70, and 120 as the values for Red, Green, and Blue
channels. The Fibonacci value for 70 is given as a sequence, as
well as its binary representation, which is 000100100010. The
first two bits of the Fibonacci representation is '10' (Bold and
underlined), and the secret message is '1'. Therefore, the
embedding results, according to Table VI, is 000100100011,
but this representation is not valid according to the Zekendorf
theorem. So, we change the second bit to '0': 000100100001,
which is also representing 69 in decimal value.

The algorithm for the embedding process is summarized in
Fig. 11.

Fig. 11. Embedding Process using Fibonacci.

C. Third Stage: Performance Evaluation

Any steganography system aims to build a secure
communication system that cannot be detected by a third party.
The attacker can use statistical methods to identify the stego-
image such as histogram analysis and chi-square attack, even if
the cover-image is unknown [26],[32]. As mentioned before,

G = 0 0 0 1 0 0 1 0 0 0 1 0
0 0 0 1 0 0 1 0 0 0 1 0

0 0 0 1 0 0 1 0 0 0 0 1

0

1

Secret bit

 233 144 89 55 34 21 13 8 5 3 2 1

Text
m

 0 0 0 1 0 0 1 0 0 0 1 0

0 0 0 1 0 0 1 0 0 0 0 1

Stego - Image

Image Pixel

R B G

155 120 70

10011011 01111000 01000110

Huffman
Encoding

colour

channel

Decimal

R B G

155 120 69

F
ib

o
n

ac
ci

B

in
ar

y

Encoded

Message

1001…

Algorithm 3: Image Embedding using Fibonacci

Input:

Image Pixels of RGB where:

R ={Pr1,Pr2 …,Prn

G ={Pg1,Pg2,…,Pgn}

B ={Pb1,Pb2,…,Pbn}

Message(Mx)

Output:Stego-image

Steps:

1. Apply Huffman encoding on the message H(Mx)

2. Get the binary representation of the encoded

message H(Mx)= {bm1, bm2, …, bmh}

3. Select the Green pixels G = {Pg1, Pg2, …, Pg3}

4. Get the Binary values of each Green pixel Pgi = {b1,

b2, …, b8}

5. Transform the binary array of Green pixel into

Fibonacci representation Fib(Pgi) = {bf1, bf2, …, bf11, bf12}

6. Get the first two bits LSB of green pixel Fibonacci

(bf1, bf2)

7. Get the first bit of the encoded message (bm1)

7.1 If bf1=0 && bf2=0 && bm1=0

 bf1=0, bf2=0

7.2 Else If bf1=0 && bf2=0 && bm1=1

 bf1=1, bf2 = 0

7.3 Else If bf1=1 && bf2=0 && bm1=0

 bf1=0, bf2=0

7.4 Else If bf1=1 && bf2=0 && bm1=1

 bf1 = 1, bf2 = 0

7.5 Else If bf1=0 && bf2=1 && bm1=0

 bf1 = 0, bf2 = 1

7.6 Else

 bf1 = 1, bf2 = 0

8. Get the decimal value of the new green pixel

Fibonacci array Fib(Pgi) = {NEWbf1, NEWbf2,…, bf11,

bf12} D

9. Initiate the stego-image with the new values of

RGB pixels

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

518 | P a g e

www.ijacsa.thesai.org

after the embedding stage, the image produced is called stego-
image. The PSNR values are used to evaluate the quality of
this stego-image, and the desired value for PSNR is as similar
as possible with the cover-image. When the value of PSNR is
high, that indicates the proposed method does not damage or
distort the cover-image. The PSNR value is calculated like the
following equation (3).

 (3)

Equation (4) is used to calculate the mean squared error.
MSE is calculated by obtaining the average square error. Then
its result will be used to calculate PSNR to evaluate the
resolution and quality of the stego-image.

 ∑ ∑

 (4)

Here, m and n are the images sizes while x and y are the
cover and stego-images, respectively.

D. Fourth Stage: Extracting Stage

The information hiding process always follows specific
procedures, which are an embedding method, and the main
steps in this method with information of the embedding process
should also be known to the receiver. The receiver uses the
secret keys, which contain the embedding information. In order
to extract from the secret message embedded in a stego-image,
the same procedure for embedding is used but in a reverse
manner. The pixel selection process summarized in Fig. 12.

Fig. 12. Pixel Selection for the Extracting Process.

Fig. 13 and Fig. 14 explains the extracting processes for
XNOR and Fibonacci, respectively.

Fig. 13. Extracting Process with XNOR Operation.

Fig. 14. Extracting Process with the Fibonacci Algorithm.

Algorithm 4: Pixel Selections for Extracting Process

Input:

Stego-Image Pixel points (x, y)

Output:

Selected Points for extracting

Steps:

1 Image size = 512*512

2 For x,y in a range of (image_size)

3 Select the points of x as a key

4 If (x > y) then

Apply Fibonacci Extracting

5 If (x < y) then

Apply XNOR Extracting

Algorithm 5: Image Extracting using XNOR

Input: Stego-image Pixels of RGB

R ={Pr1,Pr2,…,Prn}

G ={Pg1,Pg2,…,Pgn}

B ={Pb1,Pb2,…,Pbn}

Output:Message (Mx)

Steps:

1. Initialize an empty array of bits Ex

2. Get Binary values of each Red, Green and Blue pixels

Pri ={br1,br2,…,br8}, Pgi ={bg1,bg2,…,bg8}, Pbi

={bb1,bb2,…,bb8}

3. Get last bit MSB of Red array (br8)

4. Get first bit LSB of Green and Blue arrays

 (bg1,bb1)

5. If (br8) == 1

(br8) XNOR (bg1) == (bm1) then

Add (bg1) to H(Mx)

6. If (br8) == 0 && (bb1)== 0

(br8) XNOR (bb1) == (bm1) then

Add (1) to H(Mx)

7. If (br8) == 0 && (bb1)== 1

 (br8) XNOR (bb1) == (bm1) then

 Add (br8) to H(Mx)

8. Get binary representation of the encode message

H(Mx) = {bm1, bm2, …, bmh}

9. Apply Huffman to decode H(Mx)

Algorithm 6: Image Extracting using Fibonacci

Input:

Image Pixels of RGB where:

R = {Pr1,Pr2,…,Prn}

G = {Pg1,Pg2,…,Pgn}

B = {Pb1,Pb2,…,Pbn}

Output:Message Mx

Steps:

1. Initialize an empty array of bits Ex

2. Select the Green pixels, G={Pg1,Pg2,…,Pgn}

3. Get the Binary values of each Green pixel Pgi =

{b1,b2,…,b8}

4. Transform the binary array of Green pixel into Fibonacci

representation Fib(Pgi) = {bf1, bf2, …, bf11, bf12}

5. Get the first two LSB bits of green pixel Fibonacci (bf1,

bf2)

6. If (bf1 = 1 | bf2 = 0)

 add 1 to H(Mx)

7. Else:

 add 0 to H(Mx)

8. Get the binary representation of the encoded message

H(Mx)= {bm1, bm2 ,…, bmh}

9. Apply Huffman to decode H(Mx)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

519 | P a g e

www.ijacsa.thesai.org

IV. EXPERIMENTAL RESULTS

A. Dataset

A dataset is defined as a group of images that is used to
benchmark the observation of this research with the existing
literature. The study follows the same strategy to evaluate and
benchmark the experimental results obtained using the
proposed method. RGB colour images with size 512*512 have
been used as benchmarks in the evaluation stage. The
following images are selected as cover-images, as shown in
Fig. 15.

B. PSNR Comparison and Analysis

The PSNR is an expression for the ratio between the
maximum possible value of a signal and the distorting noise
that affects its representation quality. If the PSNR values are
greater than 50 dB when tested on several images, the images
are high in quality [37]. This type of evaluation is used to
measure the quality of the image after embedding. PSNR is
most commonly used to measure the quality of reconstruction
of lossy presentation codecs (e.g., for image hiding). In this
case, the signal is the original data, and the noise is the error
introduced by the embedding process. When comparing image
representation codecs, PSNR approximates the human
perception of reconstruction quality. Although a higher PSNR
generally indicates that the reconstruction is of higher quality,
in some cases, it may not [38]. PSNR is most easily defined
via the mean squared error (MSE), as mentioned before, which
is based on the dimensions of the image.

The MSE is calculated by obtaining the average square
error. Then its result will be used to calculate PSNR to evaluate
the resolution and quality of the stego-image, as shown in
Table VII.

Table VIII shows the comparison stages of the results with
four other methods in [30], [32], [26], and [33], with 8Kb,
10Kb, 13Kb, and 16Kb of secret messages, and 512*512 size
of cover images. We note that the bigger the secret messages'
size, the lower the PSNR value as more significant data will
cause more distortion to the stego-image. From the results,
high values of PSNR are obtained compared with previous
findings. This indicates that the proposed method is very
efficient in hiding data, which means that this technique can
keep changes to the stego-image to a minimum. Therefore, we
can conclude that this technique has a good quality of
imperceptibility.

Fig. 15. Dataset used as Cover-Images.

TABLE VII. PSNR AND MSE VALUES FOR STEGO-IMAGES

Cover- image

Secret Message

 8 KB

Secret Message

16 KB

MSE PSNR MSE PSNR

Lena.bmp 0.002477 74.191525 0.014170 66.6170

Camera.bmp 0.006153 70.239859 0.019850 65.1531

Babbon.bmp 0.004360 71.735740 0.016741 65.8928

Airplane.bmp 0.004323 71.772626 0.016536 65.9463

Tiffany.bmp 0.004240 71.856456 0.016924 65.8456

Peppers.bmp 0.004189 71.908861 0.016565 65.9386

Tree.bmp 0.004057 72.048147 0.017345 65.7389

Barbara.bmp 0.003378 72.843499 0.016370 65.9902

TABLE VIII. COMPARISON OF PSNR AND MSE VALUES IN (DB) WITH THE

LITERATURE

Methods

Size of

Secret

Message

(Kb)

PSNR

Lena Baboon Pepper

[26] 12.79 51.045 51.997 49.442

[32] 10 62.32 62.29 62.22

[33] 8 57.411 - 57.442

[30] 2.96 53.65 40.89 39.99

Proposed Method

8 74.192 71.736 71.909

10 72.750 69.927 69.971

13 70.301 67.64012 67.681

16 66.617 65.893 65.939

C. Histogram Analysis

One way to discover a good steganography method is to
analyze the histogram of all stego-images and then compare
them with the original. It represents the number of pixels that
have colours in the image's colour space. The histogram for the
original cover-image and stego-image for Lena and baboon,
with 16KB size of secret messages embedded, are shown in
Fig 16 to Fig. 19, respectively.

Fig. 16. Histogram of Cover-Image Lena.bmp.

Lena.bmp Baboon.bmp Peppers.bmp Barbara.bmp

Airplane.bmp Camera.bmp Tree.bmp Tiffany.bmp

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

520 | P a g e

www.ijacsa.thesai.org

Fig. 17. Histogram of Lena.bmp Stego-Image.

Fig. 18. Histogram of Cover-Image Baboon.bmp.

Fig. 19. Histogram of Baboon.bmp Stego-Image.

From the figures of Lena's and Baboon's stego-images, the
histogram of the stego-images was similar to that of the cover
images, resulting from alternately choosing either green or blue
channels to embed the secret data, which does not give any
significant difference between the two images. This means that
the proposed technique can embed secret messages with
minimum changes in the stego-image.

D. Embedding Capacity

The embedding capacity or ratio capacity depends on how
much secret data bits can be hidden in the cover-image. It is
calculated using equation (5).

 (5)

Table IX shows the comparison of the hiding capacity
between our proposed method and four other methods. The
results show that the proposed method yields similar results to
the other methods in terms of capacity.

TABLE IX. COMPARISON OF HIDING CAPACITY

Methods Capacity (Kb) Ratio capacity

[30] 2.9 0.093

[33] 8 0.25

[32] 10 0.313

[26] 12.79 0.399

Proposed Method

8 0.250

10 0.313

13 0.406

16 0.501

V. CONCLUSION

The standard LSB method is the most popular
steganography technique, as it is more efficient to use.
However, this method's main weakness is that it is easy to
recover the secret text message from the image, which is
always hidden in the LSB of each pixel in an image. The
developed XNOR operation with the Fibonacci sequence
presents several characteristics that have enhanced the LSB
standard technique's limitation. In terms of security level, there
are three criteria integrated for higher security. Firstly, the
Fibonacci algorithm uses only the green channel for
embedding instead of the three channels red, green, and blue.
The advantage of this is that the red and blue channels will act
as noise data, which makes the extraction process harder for
any intruder. Secondly, similar to the Fibonacci embedding
operation, the XNOR operation also uses only one channel (the
green or blue channels), while the other two channels act as
noise data. Lastly, this method exploits the pixel selection to
conceal the secret message, either use the Fibonacci algorithm
or XNOR operation, to make the extraction process more
secure. In this paper, we exploited the characteristics of both
the XNOR operation and the Fibonacci algorithm to obtain
high security and capacity to embed the secret message.
Another important thing is that using the green or blue channel
for each pixel on the cover-image gives an advantage as almost
all of the pixels will be exploited to conceal secret data, and
thus, capacity will be increased.

VI. FUTURE WORK

For future work, the three channels of RGB can be
exploited to use as an indicator for embedding with the XNOR
operation. The proposed method used the red channel as the
key or supplier for embedding to green or blue channels (that
means the red channel that will select which channel for
embedding) as well as exploit one channel of RGB with the
Fibonacci algorithm. In the proposed method, the green
channel is used only for embedding, and that will let the
proposed method be applied on three-channel RGB for
embedding instead of using only the green channel. Another
recommendation is to apply the proposed method with other
cover-media types, such as text or audio.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

521 | P a g e

www.ijacsa.thesai.org

ACKNOWLEDGMENT

This work was supported by Universiti Kebangsaan
Malaysia under research grant PP-FTSM-2020.

REFERENCES

[1] Ghosh, A. K. Chattopadhyay, and A. Nag, "A novel approach of image
steganography with encoding and location selection," in Advances in
Intelligent Systems and Computing, 2019, doi: 10.1007/978-981-13-
1544-2_10.

[2] S. S. Baawi, M. R. Mokhtar, and R. Sulaiman, "New text steganography
technique based on a set of two-letter words," Journal of Theoretical and
Applied Information Technology, vol. 95, no. 22, pp. 6247–6255, 2017.

[3] M. A. Majeed and R. Sulaiman, "An improved LSB image
steganography technique using bit-inverse in 24 bit colour image,"
Journal of Theoretical and Applied Information Technology, vol. 80, no.
2, pp. 342–348, 2015.

[4] S. Kamil, M. A. Authors, S. N. H. S. Abdullah, and Z. Ahmad,
"Lightweight and optimized multi-layer data hiding using video
steganography paper," International Journal of Advanced Computer
Science and Applications, vol. 9, no. 12, pp. 256–262, 2018, doi:
10.14569/IJACSA.2018.091237.

[5] S. Kamil, M. Ayob, S. N. H. Sheikh Abdullah, and Z. Ahmad,
"Optimized Data Hiding in Complemented or Non-Complemented Form
in Video Steganography," Proceedings of the 2018 Cyber Resilience
Conference, CRC 2018, pp. 1–4, 2019, doi: 10.1109/CR.2018.8626871.

[6] A. H. Ali, L. E. George, A. A. Zaidan, and M. R. Mokhtar, "High
capacity, transparent and secure audio steganography model based on
fractal coding and chaotic map in temporal domain," Multimedia Tools
and Applications, vol. 77, no. 23, pp. 31487–31516, 2018, doi:
10.1007/s11042-018-6213-0.

[7] F. Akhter and M. Selim, "A New Approach of Graph Realization for
Data Hiding using Human Encoding," International Journal of Advanced
Computer Science and Applications, vol. 7, no. 12, pp. 436–442, 2016,
doi: 10.14569/ijacsa.2016.071256.

[8] S. Mavanai, A. Pal, R. Pandey, A. Prof, and D. Nadar, "Message
transmission using DNA crypto-system," International Journal of
Computer Science and Mobile Computing, vol. 8, no. 4, pp. 108–114,
2019.

[9] M. Cui and Y. Zhang, "Incorporating randomness into DNA
steganography to realize secondary secret key, self-destruction , and
quantum key distribution-like function," pp. 1–19, 2019, doi:
https://doi.org/10.1101/725499.

[10] R. A. Watheq, F. Almasalha, and M. H. Qutqut, "A new steganography
technique using JPEG images," International Journal of Advanced
Computer Science and Applications, vol. 9, no. 11, pp. 751–760, 2018,
doi: 10.14569/ijacsa.2018.0911107.

[11] A. Pradhan, K. R. Sekhar, and G. Swain, "Digital image steganography
using LSB substitution, PVD, and EMD," Mathematical Problems in
Engineering, vol. 2018, 2018, doi: 10.1155/2018/1804953.

[12] S. Jeevitha and N. Amutha Prabha, "A comprehensive review on
steganographic techniques and implementation," ARPN Journal of
Engineering and Applied Sciences, vol. 13, no. 17, pp. 4780–4791,
2018.

[13] R. Gupta, S. Gupta, and A. Singhal, "Importance and techniques of
information hiding : A review," International Journal of Computer
Trends and Technology, vol. 9, no. 5, pp. 260–265, 2014, doi:
10.14445/22312803/ijctt-v9p149.

[14] M. S. Subhedar and V. H. Mankar, "Current status and key issues in
image steganography: A survey," Computer Science Review, vol. 13–
14, pp. 95–113, 2014, doi: 10.1016/j.cosrev.2014.09.001.

[15] E. Satir and H. Isik, "A Huffman compression based text steganography
method," Multimedia Tools and Applications, vol. 70, no. 3, pp. 2085–
2110, 2014, doi: 10.1007/s11042-012-1223-9.

[16] A. Gutub and N. Al-juaid, "Multi-bits stego-system for hiding text in
multimedia images based on user security priority," Journal of Computer
Hardware Engineering, vol. 1, no. April, pp. 1–9, 2018, doi:
10.63019/jche.v1i2.513.

[17] G. V. K. Murugan and R. Uthandipalayam Subramaniyam,
"Performance analysis of image steganography using wavelet transform
for safe and secured transaction," Multimedia Tools and Applications,
vol. 79, no. 13–14, pp. 9101–9115, 2019, doi: 10.1007/s11042-019-
7507-6.

[18] T. Rabie, M. Baziyad, and I. Kamel, "Enhanced high capacity image
steganography using discrete wavelet transform and the Laplacian
pyramid," Multimedia Tools and Applications, vol. 77, no. 18, pp.
23673–23698, 2018, doi: 10.1007/s11042-018-5713-2.

[19] Y. Yeung, W. Lu, Y. Xue, J. Huang, and Y.-Q. Shi, "Secure binary
image steganography with distortion measurement based on prediction,"
IEEE Transactions on Circuits and Systems for Video Technology, vol.
30, no. 5, pp. 1423-1434, 2019, doi: 10.1109/tcsvt.2019.2903432.

[20] D. Laishram and T. Tuithung, "A survey on digital image
steganography: current trends and challenges," Proceedings of 3rd
International Conference on Internet of Things and Connected
Technologies (ICIoTCT), 2018, Malaviya National Institute of
Technology, Jaipur (India), March 26-27, 2018.

[21] N. Akhtar, "An LSB substitution with bit inversion steganography
method," Springer India 2016. Proceedings of 3rd International
Conference on Advanced Computing, Networking and Informatics,
Smart Innovation, Systems and Technologies, vol. 43, pp. 515–521,
2016, doi: DOI 10.1007/978-81-322-2538-6_53.

[22] S. Das, S. Sharma, S. Bakshi, and I. Mukherjee, "A framework for pixel
intensity modulation based image steganography," Advances in
Intelligent Systems and Computing, vol. 563, pp. 3–14, 2018, doi:
10.1007/978-981-10-6872-0_1.

[23] A. Setyono and D. R. I. M. Setiadi, "Securing and hiding secret message
in image using XOR transposition encryption and lsb method," Journal
of Physics: Conference Series, vol. 1196, no. 1, 2019, doi:
10.1088/1742-6596/1196/1/012039.

[24] D. Rawat and V. Bhandari, "A steganography technique for hiding
image in an image using LSB method for 24 bit colour image,"
International Journal of Computer Applications, vol. 64, no. 20, pp. 15–
19, 2013, doi: 10.5120/10749-5625.

[25] K. Joshi, R. Yadav, and G. Chawla, "an enhanced method for data
hiding using 2-bit XOR in image steganography," International Journal
of Engineering and Technology, vol. 8, no. 6, pp. 3043–3055, 2017, doi:
10.21817/ijet/2016/v8i6/160806266.

[26] A. Rehman, T. Saba, T. Mahmood, Z. Mehmood, M. Shah, and A.
Anjum, "Data hiding technique in steganography for information
security using number theory," Journal of Information Science, vol. 45,
no. 6, pp. 767–778, 2019, doi: 10.1177/0165551518816303.

[27] S. Maurya and V. Shrivastava, "An improved novel steganographic
technique for RGB and YCbCr colourspace," IOSR Journal of Computer
Engineering, vol. 16, no. 2, pp. 155–157, 2014.

[28] Y. G. Yang, L. Zou, Y. H. Zhou, and W. M. Shi, "Visually meaningful
encryption for colour images by using Qi hyper-chaotic system and
singular value decomposition in YCbCr colour space," Optik, vol. 213,
p. 164422, 2020, doi: 10.1016/j.ijleo.2020.164422.

[29] S. Dagar, "Highly randomized image steganography using secret keys,"
International Conference on Recent Advances and Innovations in
Engineering, ICRAIE 2014, 2014, doi: 10.1109/ICRAIE.2014.6909116.

[30] R. M. Neamah, J. A. Abed, and E. A. Abbood, "Hide text depending on
the three channels of pixels in colour images using the modified LSB
algorithm," International Journal of Electrical and Computer
Engineering, vol. 10, no. 1, pp. 809–815, 2020, doi:
10.11591/ijece.v10i1.pp809-815.

[31] G. S. Charan, S. S. V. Nithin Kumar, B. Karthikeyan, V.
Vaithiyanathan, and K. Divya Lakshmi, "A novel LSB based image
steganography with multi-level encryption," ICIIECS 2015 - 2015 IEEE
International Conference on Innovations in Information, Embedded and
Communication Systems, pp. 1–5, 2015, doi: 10.1109/ICIIECS.
2015.7192867.

[32] Z. S. Younus and M. K. Hussain, "Image steganography using
exploiting modification direction for compressed encrypted data,"
Journal of King Saud University - Computer and Information Sciences,
2019, doi: 10.1016/j.jksuci.2019.04.008.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 10, 2020

522 | P a g e

www.ijacsa.thesai.org

[33] K. Muhammad, J. Ahmad, H. Farman, Z. Jan, M. Sajjad, and S. W.
Baik, "A secure method for colour image steganography using gray-
level modification and multi-level encryption," KSII Transactions on
Internet and Information Systems, vol. 9, no. 5, pp. 1938–1962, 2015,
doi: 10.3837/tiis.2015.05.022.

[34] A. Nag, S. Biswas, D. Sarkar, and P. P. Sarkar, "A novel technique for
image steganography based on DWT and Huffman," International
Journal of Computer Science and Security, (IJCSS), vol. 4, no. 6, pp.
73–82, 2013, doi: 10.1017/CBO9781107415324.004.

[35] M. N. Abdulwahed, "An effective and secure digital image
steganography scheme using two random function and chaotic map,"
Journal of Theoretical and Applied Information Technology, vol. 98, no.
1, pp. 78–91, 2020.

[36] A. A. Abdulla, S. A. Jassim, and H. Sellahewa, "Efficient high-capacity
steganography technique," Mobile Multimedia/Image Processing,
Security, and Applications 2013, vol. 8755, no. February 2019, p.
875508, 2013, doi: 10.1117/12.2018994.

[37] M Sherif, "StegoCrypt : Geometric and Rudin – Shapiro Sequence –
Based Bit – Cycling and 3DES", Bachelor Thesis, 2019.

[38] Aroukatos N.G., Manes K., Zimeras S., "Social networks medical image
steganography using sub-Fibonacci sequences," Springer International
Publishing Switzerland 2016 A.A. Lazakidou et al. (eds.), mHealth
Ecosystems and Social Networks in Healthcare, Annals of Information
Systems 20, pp. 171–185, 2016, doi: 10.1007/978-3-319-23341-3.

[39] S. Kamil, M.Ayob, S. N. H. S. Abdullah, and Z. Ahmad, Challenges in
multi-layer data security for video steganography revisited, Asia-Pacific
Journal of Information Technology and Multimedia (APJITM). pp. 53-
62, 2018, doi: dx.doi.org/10.17576/apjitm-2018-0702(02)-05

[40] S. Roy and A. K. Pal, "A blind DCT based color watermarking
algorithm for embedding multiple watermarks," AEU - International
Journal of Electronics and Communications, vol. 72, pp. 149–161, 2017,
doi: 10.1016/j.aeue.2016.12.003.

[41] S. Rajagopala et al., "MSB Based Embedding with Integrity: An
Adaptive RGB Stego on FPGA Platform," Information Technology
Journal, vol. 13, no. 12, pp. 1945–1952, 2014, doi:
10.3923/itj.2014.1945.1952.

