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Abstract—Human activity recognition has been an important
task for the research community. With the introduction of deep
learning architectures, the performance of activity recognition
algorithms has improved significantly. However, most of the
research in this area has focused on activity recognition for
health/assisted living with other applications being given less
attention. This paper considers continuous activity recognition
in logistics (order picking and packing operations) using a
convolutional neural network with temporal convolutions on
inertial measurement sensor data from the recently released
LARa dataset. Four variants of the popular CNN-IMU are
experimented upon and a discussion of the results is provided.
The results indicate that temporal convolutions are able to achieve
satisfactory performance for some activities (hand center and
cart) whereas they perform poorly for the activities of stand and
hand up.
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man Activity Recognition (HAR); inertial sensors; LARa dataset

I. INTRODUCTION

Activity recognition has been an important task for re-
searchers in the field of gaming [1], assisted living [2], sports
analysis [3], logistics and other industrial operations [4] and
for monitoring of patients diseases, such as Parkinsons to
build activity profiles for therapeutic purposes [5]. Eventhough
activity recognition, generally speaking, can be performed in a
variety of ways [6], [7], [8], inertial sensors have been far by
the most popular modality to use for this purpose. This is due
to the fact that they are mobile, less cumbersome to wear and
cost less than sensing devices for other modalities. Moreover,
with their incorporation in phones and smart watches etc, these
sensors are usually easily available to the subject for use in
activity recognition tasks. This ubiquitous presence combined
with ease of data collection has resulted in large datasets being
produced which has led to the use of deep learning for various
aspects of activity recognition tasks as shown in [9], [10].

As mentioned, the field of activity recognition has been
of attention to researchers in various domains, a domain that
has not received as much interest is activity recognition in
industrial settings. In this paper, data from the LARa dataset
[11] is utilized to perform continuous recognition of activities
in a logistics scenario using two different convolutional neural
network (CNN) architectures , one is a typical convolutional
network and the other is a modified version of the parallel CNN
architecture called CNN-IMU suggested in [12] which per-
forms convolutions in the temporal domain. The experiments

indicated that the parallel CNN architecture performed better
than the considered typical CNN. The rest of the paper is orga-
nized as follows: section II discusses previous work carried out
for activity recognition, section III presents an overview of the
dataset used, section IV presents the methodology of the paper;
the pre-processing steps and the discussion of the networks
used in the experiments, section V discusses the results for the
current work with a conclusion being provided in section VI
and future directions in section VII.

II. LITERATURE REVIEW

Activity recognition has been at the forefront of pervasive
computing research and the development of cyber physical
systems as this has enormous societal and economical impact
potential [13]. This section covers previous work in the direc-
tion of activity recognition using utilizing inertial measurement
sensors (IMUs).

Industrial activity recognition using IMUs has been tar-
geted by multiple research works for varying applications,
these include, wood shops [14], construction [15], assembly
line [16], process optimization [17]. An early work using
deep learning methods for activity recognition for industry was
suggested by [18] on the Skoda dataset [19]. Their network
consists of one convolutional layer, one pooling layer, two
hidden layers and one softmax layer for classification. More-
over, the convolutional layer contains several convolutional
blocks in parallel with partial weight sharing for the three axes
of accelerometer sensor values. The pooling layer also pools
convolutional blocks sharing their weights separately before
the outputs are passed on to the later layers.

An interesting approach for segmenting different types of
activities for health risk assessment in an order picking process
is presented in [20] who utilize angles of human body joints
from 17 IMUS placed on a workers body performing the
order picking activity. Joint angles between body limbs are
computed using an extended Kalman filter [21] and these are
used to segment the sub-activities within the picking process.
Risk assessment is performed using the rapid entire body
assessment (REBA) standard [22]. The authors in [23] propose
using accelerometer and gyroscope signal data to perform
activity recognition for worker performance assessment in the
meat industry. After extracting segments, they compute several
features from both sensors and test the performance of multiple
classifiers for determining output activity. Following from their
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work in [24], the authors in [25] combine video and inertial
measurement sensor data to determine grabbing actions in a
picking process. They do this by extracting various time and
frequency domain features from the IMU data as well as colour
and descriptor features from the video data and then passing
them on to three machine learning classifiers for prediction
purposes.

The approach suggested in [12] makes use of CNNs on the
data provided in [17]. They propose a CNN architecture called
CNN-IMU based on the CNN proposed in [26]. Their network
uses four CNN layers with parallel CNN blocks sharing their
weights for each IMU, two pooling operations, fully connected
layer before they are combined using a fully connected layer
followed by a softmax for classification. The motivation to
spread the network instead of making it deeper is that it
becomes more descriptive. The authors in [27] make use of
accelerometer sensor data in the dataset in [28] and CNNs to
differentiate between activities in the industry. They achieve
their best results when using raw signal data and sending it
to the CNN for classification. The authors in [29] use the
CNN-IMU on three different datasets of activity recognition,
two consisting of various different activities in daily life and
one of activities from a logistic scenario of order picking.
Their experiments involved comparing two different CNN
architectures, one a CNN-IMU and the other a baseline CNN
with the same layerwise make up as the CNN-IMU. For the
logistics scenario, their result indicates that the CNN-IMU
outperforms the typical CNN in nearly all experiments. Their
results indicate to the effectiveness of using wider networks
consisting of parallel layers instead of using deeper ones.
CNNs have also been used with other modalities for industrial
processes, in [30] semantic representations have been used for
activity recognition in a picking setup. Motion capture data
from the MoCAP dataset is used with the CNN architecture
described in [31]. The authors in [11] use the Logistics Activity
Recognition Challenge (LARa) dataset provided by them to
determine activities in a logistics scenario. They carry this
out by using a modified version of the t-CNN in [26] which
consists of four convolutional layers, two fully connected
layers followed by two separate softmax and sigmoid layers
to determine the sub-activity being performed and the attribute
from an activity attribute list on motion capture data from the
dataset.

It can be observed from the literature review that convo-
lutional neural networks have proved to be very useful for
performing activity recognition in industrial scenarios. This
paper utilizes a convolutional neural network for performing
continuous activity recognition for logistics using inertial sen-
sor data from the LARa dataset. This paper compares the
performance of a modified version of the CNN-IMU network
presented in [26] and used in [11] to a typical CNN. The CNN
utilizes convolutions in the temporal axis to extract important
features from time series sensor data and is well suited for use
with inertial measurement sensor signals.

III. DATASET

The LARa dataset provides data of multiple modalities
from recordings in a logistics scenario. Video recordings,
Motion Capture data and data from inertial measurement
units is recorded from 14 people in the dataset. Each of

the participants is asked to perform three tasks which are
common in logistics operations, two of these are picking tasks
and the third is packing. Motion capture data was captured
using a Optical Marker-based Motion Capture (OMoCap)
system which resulted in markers for the movements of the
participants, moreover, several IMUs were used to record the
movement patterns too along with RGB videos of the activities
being performed. The total duration of the recorded data is
758 minutes which has been annotated in two ways, first, an
annotation is provided for each intra-activity that comprises
the picking and pacing tasks and second, binary semantic
representations of a different type of representation for the
picking and packing tasks. The first representation represents
the activities in terms of eight intra-activities and is used in
this work and the second type of representation as attributes
to describe the task recordings. The eight annotations are
standing, walking, cart (participant is walking with the cart),
handling upwards (participant has atleast one hand raised
upward to shoulder height), handling centered (participant can
handle things without bending, lifting their arms or needing to
kneel), handling downwards (participant has hands below his
knees while kneeling or otherwise), synchronization (waving
motion before each recording) and a set of samples which
were unrecognizable by the annotators and have been marked
as None.

This dataset provides the opportunity to develop algorithms
for both the picking and packing operations in logistics by
containing recordings of multiple modalities to researchers.
From these modalities, this paper focuses on the data from the
IMUs collected in these experiments. Three types of IMUs
were used in the trials with 14 people in total performing
the said tasks with data being collected from five points on
the body, both the arms, legs and the chest/mid-body. The
sampling frequency for the IMUs is 100 Hz. A summary of the
recordings present in the dataset are given in Table I. Readers
interested in more detail are referred to [11].

TABLE I. SUMMARY OF IMU MEASUREMENTS IN THE LARA DATASET

Subject ID Gender Age Scenario 1 Scenario 2 Scenario 3
S07 M 23 2 13 14
S08 F 51 2 13 14
S09 M 35 2 14 13
S10 M 49 2 13 12
S11 F 47 2 12 0
S12 F 23 0 6 14
S13 F 25 2 14 14
S14 M 54 2 14 14
Total 14 99 95

IV. METHODOLOGY

To perform continuous monitoring of activities in logistics,
we use a two step process. Segments are first extracted from
the IMU sensor data for each trial which are then passed to the
CNNs to test their performance. For the first two experiments,
segmentation is performed for all IMUs together whereas for
the last two experiments data segmentation takes place for each
of the five IMUs individually. These are then fed to the CNN
networks as inputs.

A. Preprocessing Stage

Windows of 100 samples are extracted from the recording
for each sensor and position with a step size of 25 samples
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(75% overlap) for successive windowed segments. An overlap
is used to ensure that enough samples are generated to develop
a large enough dataset for training of deep learning networks.
Furthermore, since the annotations in the dataset are present
on a sample by sample basis for each value of each sensor,
an extracted segment is assigned a segment annotation by
majority voting of the annotations of its samples. We then use
the segment annotations as the appropriate annotation labels,
a similar approach has been used in [29]. Once segments have
been extracted from all the trials for all subjects, the segments
belonging to the syncrhronization and None class are removed.
The rest of the segments are used for classification with the
convolutional neural network.

B. Classification

For classification, we make use of a modified version of the
convolutional neural network described in [12] named CNN-
IMU. They propose a network which utilizes four convolu-
tional layers, two max pooling layers, fully connected layer
and a softmax layer for determining the output class. Each of
the convolutional layers have multiple parallel convolutional
blocks sharing their weights which perform convolution oper-
ations along the time axis. The number of convolutional blocks
in each layer depends on the number of IMUs present in the
data, one block for each IMU. Input to the network is provided
as windowed segments of IMU sensor signal recordings over
the temporal domain. The output of each of these parallel
blocks and pooling layers is passed to a fully connected layer
individually for computing an intermediate feature representa-
tion. These representations are then combined using a fully
connected layer before being passed to the softmax layer
for classification. Dropout was applied to the fully connected
layers apart from the softmax layer.

This CNN-IMU network is used in two different variants
in this work based on the results of [29] and [11]. The first
network follows the network construction as described in [12]
which includes the max pooling operations of the network. The
second variant of the network skips the pooling operations
as was used in [11] which were found to affect network
performance negatively in [31]. Both these variants require
that data from the IMUs be segmented individually as separate
parallel inputs. Furthermore, to compare the performance of
the two CNN-IMU architectures to typical CNNs utilizing
temporal convolutions, typical CNNs that do not make use of
parallel convolutional blocks for different IMUs but consist of
the same layer-wise structure are used to perform classification
as well. These networks require that the segments be extracted
for all five IMUs as one frame/segment. The details of the
networks are provided in Table II and the architectures are
illustrated in Fig. 1. The pooling layers have been shown with
a dotted border to indicate the absence of these operations in
the network variations considered in this research work.

The data from the sensors was split in to train, validation
and test sets and the network was trained using an Adam
Optimizer with cross entropy as the loss function. A learning
rate of 1x10-6 was used along with a batch size of 400.
Moreover, training was performed for 12 epochs with early
stopping utilized to retain the best model.

TABLE II. DETAILS OF CNN ARCHITECTURES

CNN Architecture Number of Layers
Convolutional Pooling FC + Softmax

Typical CNN-1 4 2 3
Typical CNN-2 4 0 3
CNN-IMU-1 4 (Five blocks/ layer) 2 3
CNN-IMU-2 4 (Five blocks / layer) 0 3

V. EXPERIMENTATION, RESULTS AND DISCUSSION

In order to test the efficacy of the four CNNs considered
in this work, we perform experiments for each of the four
networks individually and report on the results obtained. The
results for each experiment are reported in terms of the
Precision, Recall and F1 score for each activity class.

A. Experiment with Typical CNN-1

In this experiment we used the typical CNN-1 architecture
that consists of 4 convolution layers, 2 max pooling layers, 2
fully connected layers and one softmax layer. The input to this
network were segments/ frames consisting of the combined
information from all the IMUs together. The results for the
classification are provided in Table III. It can be observed from
the table that the CNN has performed poorly for the activities
Hand up and Stand. Moreover, as can be observed, the best
performing activities were Cart and Hand Center.

TABLE III. SUMMARY OF RESULTS: TYPICAL CNN-1 (WITH
MAX-POOLING)

Activity Precision (%) Recall (%) F1 (%)
Stand 38.73 61.96 47.66
Walk 71.27 70.76 71.01
Cart 82.44 86.31 84.33
Hand up 45.61 79.48 57.96
Hand Center 91.87 80.75 85.95
Hand Down 71.93 76.44 74.12

B. Experiment with Typical CNN-2

For the second experiment, we use the typical CNN-2 ar-
chitecture consisting of 4 convolution layers, 2 fully connected
layers and one softmax layer. The input to this network too
were segments/ frames consisting of the combined information
from all the IMUs together. The results of the classification are
presented in Table IV. It can be observed that the performance
for this network is very similar to the Typical CNN-1 network
of experiment 1 which used maxpooling layers, there has been
some degradation in performance for some activities. In this
experiment too, the network was able to best recognize the
activities of Cart and Hand Center while poor performance
was observed for the activities of Stand and Hand up.

TABLE IV. SUMMARY OF RESULTS: TYPICAL CNN-2 (WITHOUT
MAX-POOLING)

Activity Precision (%) Recall (%) F1 (%)
Stand 39.06 47.95 43.05
Walk 57.04 81.01 66.94
Cart 80.38 85.42 82.83
Hand up 34.99 79.03 48.51
Hand Center 92.21 78.99 85.09
Hand Down 71.23 77.04 74.02
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Fig. 1. CNN Architectures used in this Work (a) Typical CNN (b) CNN-IMU.
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C. Experiment with CNN-IMU-1

This experiment involved the usage of the CNN-IMU-
1 network to determine activity classes. This architecture
consists of four convolutional layers with five convolutional
blocks, one for each IMU data and these blocks share their
weights. The IMU segments are individually fed to the blocks
resulting in the classification scores shown in Table V. This
network has also been able to recognize the activities of
Hand Center and Cart well but the activity Stand is still the
worst performing activity among the six activity classes being
considered.

TABLE V. SUMMARY OF RESULTS: CNN-IMU-1 (WITH MAX-POOLING)

Activity Precision (%) Recall (%) F1 (%)
Stand 27.68 66.85 39.15
Walk 69.42 67.03 68.20
Cart 87.95 79.67 83.61
Hand up 43.62 60.18 50.58
Hand Center 90.34 80.04 84.88
Hand Down 71.93 75.68 73.76

D. Experiment with CNN-IMU-2

In this experiment we used the CNN-IMU-2 architecture
which consists of four convolution layers, two fully connected
layers and one softmax layer. The input to this network
were segments/ frames consisting of the individual IMUs. The
classification results are presented in Table VI. The omission of
the pooling layer has impacted network performance positively
as was observed in other works. Similar to the previous cases,
this network produces the best results for the activities Cart
and Hand Center.

TABLE VI. SUMMARY OF RESULTS: CNN-IMU-2 (WITHOUT
MAX-POOLING)

Activity Precision (%) Recall (%) F1 (%)
Stand 40.07 47.11 43.31
Walk 49.08 82.73 61.61
Cart 81.79 83.40 82.59
Hand up 26.04 73.36 38.43
Hand Center 91.87 77.88 84.29
Hand Down 71.46 75.37 73.37

Following from the experiments conducted in this work
with the considered CNN architectures, the most suitable
network for continuous activity recognition from inertial sensor
data was found to be the Typical CNN-1 architecture which
involves pooling operations. The best scores are achieved for
the activities Cart and Hand Cent whereas the worst scores
have been produced for the activities Hand Up and Stand, this
was the case for all the networks considered in this research
work. The F1 scores for each of the networks for the six
activities are listed in Table VII.

VI. CONCLUSION

This paper explores the usage of temporal convolutions in
a CNN for the problem of continuous activity recognition in a
logistics scenario using inertial measurement sensor data. Data
from the LARa dataset which consists of video, OMOCap and
IMU signal recordings from seven different people performing
three different tasks concerning picking and packing has been
used in this work. To accomplish the aims of this work, four

TABLE VII. SUMMARY OF RESULTS (F1 SCORE [%] FOR EACH
CONSIDERED NETWORK)

Activity F1 (%)
Typical CNN-1 Typical CNN-2 CNN-IMU-1 CNN-IMU-2

Stand 47.66484 43.05043 39.14759 43.30519
Walk 71.01347 66.94491 68.20405 61.60714
Cart 84.32787 82.82695 83.60756 82.589
Hand up 57.95574 48.50575 50.57692 38.43329
Hand Center 85.95271 85.0872 84.8763 84.29462
Hand Down 74.11908 74.01961 73.76058 73.36562

CNN architectures, have been tested which take windowed
segments of IMU recordings. From the experiments conducted,
the typical CNN-1 architecture involving pooling operations
was found to be the best performing model. High scores were
achieved for the activities Hand Cetner and Cart; however,
scores for the activity Stand and Hand Up weren’t satisfactory.
While satisfactory performance was achieved for the former
activities, the performance of the considered networks for the
latter activities was poor. Therefore, modifications need to be
made for improvement of the network for such activities.

VII. FUTURE WORK

This work presents experimental work for the continuous
recognition of activities for logistics using the LARa dataset. In
this paper, only CNN architectures have been considered, for
future attempts at this task, other deep learning architectures
could be considered to improve activity recognition such as
Recurrent Neural Networks with attention, etc. Moreover,
sensor fusion could also be used, especially OMOCap data
from LARa dataset could be fused with IMU data and used
with various deep learning networks to check for performance.
Video data could also combined to create a multimodal solu-
tion for activity recognition as suggested in [25]. Dependable
activity recognition systems will help in the optimization of
industrial processes as well as be used for health assessment
purposes.
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