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Abstract—Building a fully autonomous self-driving system has
been discussed for more than 20 years yet remains unsolved.
Previous systems have limited ability to scale. Their localization
subsystem needs labor-intensive map recording for running in a
new area, and the accuracy decreases after the changes occur
in the environment. In this paper, a new localization method is
proposed to solve the scalability problems, with a new method
for detecting and making sense of diverse traffic lines. Like the
way human drives, a self-driving system should not rely on an
exact position to travel in most scenarios. As a result, without HD
Maps, GPS or IMU, the proposed localization subsystem relies
only on detecting driving-related features around (like lane lines,
stop lines, and merging lane lines). For spotting and reasoning all
these features, a new line detector is proposed and tested against
multiple datasets.

Keywords—Self-driving; lane lines detection; traffic lines detec-
tion; visual localization; HD Maps

I. INTRODUCTION

Ziegler’s system [1] can drive full-autonomously over 100
kilometers without any interruptions in 2014. Despite these
early achievements, the industry leaders are still struggling to
pass the necessary tests according to [2]. It is critical to inspect
why the current self-driving system is hard to implement and
widely used. Current systems rely on HD Maps to produce
centimeter-level accuracy of position. Readers are referred
to [3] for more about typical system architecture. The big
question is whether accurate positions necessary?

Human drivers make driving decisions based on what they
see. They make sense of the environment around and decide
when to turn or keep the current driving direction. They cannot
mark the exact position of themselves on a map, but they know
how to travel through a complicated intersection based on the
knowledge of which way they should take. Likewise, a self-
driving system without accurate locations should be a viable
solution?

In this paper, a new perception centered self-driving system
is proposed and discussed in two driving scenarios: the cruising
scenario and the turning scenario. The cruising scenario is
when the vehicle cruises on parallel lanes. The turning scenario
is when the vehicle drives through free spaces (defined as the
drivable area outside of lanes, like intersections or parking
area).

The proposed system comes with several advantages in
these two scenarios. Firstly, it does not rely on HD Maps.
So it is easy to scale without recording new HD Maps.

Secondly, the proposed feature detection method is not based
on any specialized end-to-end deep learning solutions. Hence
it is easy to debug and visualize. Also, it does not need
additional time-consuming training process for scaling. Lastly,
it performs more robustly with a severely changed environment
(like seasons, weather or lighting condition).

Just like the human drivers, the system only involves with
related visual features (defined as traffic features, including
traffic lines, traffic lights and traffic signs). The workflow of
the detection and localization subsystem is shown in Fig. 1. In
the cruising scenario, only the first step is needed, including
1.1 and 1.2. In the turning scenario, all four steps must be done.
Note that the vehicle position from the localization subsystem
is based on the rebuilt scene rather than a global map. The
localization subsystem also projects the rebuilt scene onto a
digital map (like Google Map) to provide navigation instruc-
tions while crossing free spaces. The navigation instruction
leads the car to travel from one exit to the target entrance of
the free space. The path planning system and control system
also works on the rebuilt scene. Hence they are map unrelated.

The proposed system relies on traffic lines (including
curbs) for tracking the vehicle’s position. Hence, the lines
detector is the priority. A general lines detector for under-
standing complicated traffic lines on the road is vital. The
experiment covers several types of lines, including lane lines,
stop lines, curbs, merging and splitting lines and intersections
in a roundabout. For the popular lane lines detection problem,
the proposed new traffic lines detector performs as good as
other deep neural network supported approaches leveraging the
prior knowledge of lines position and angles with easy erosion
and clustering. This robust and straightforward method is then
generalized and successfully detected other kinds of lines as
well. After that, the process of localizing the position in the
rebuilt scene will be discussed with examples and limitations.
In that example, the system requires neither GPS signals nor
IMU signals nor 3D HD Maps to locate the vehicle.

II. RELATED WORK

What is a perception centered self-driving system? Most
self-driving systems are relying on a map-based localization
subsystem. They are categorized as localization centered sys-
tems because all other subsystems are working under the map
space from the localization subsystem. The perception centered
system uses a local scene, instead of a global map, as the
working space for all other subsystems. Limited research have
been done on this direction. One of the exceptions is [4]
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Fig. 1. The Workflow of the Proposed Perception Centered System.

by Bojarski from Nvidia. In this work, they tried to build
an end-to-end system from camera images to control signals
with the help of augmented learning. It is also map-unrelated.
However, this system only works for minimal lane-keeping
tasks in the cruising scenario. It is not compatible to work
with other subsystems, and the scalability is not tested for
more sophisticated roads or sensor settings.

A. Localization

For most localization centred systems, all decision making
and path planning are based on a centimetre level localization
accuracy from their localization subsystem. Using GPS, with
the aid of IMU, is a popular solution and provides accuracy
better than 20 centimetres with SLAM over an HD Map
[5]. The problem of GPS is that the signals are not always
available, and the result tends to drift accidentally. For quite
a long time, SLAM is considered as the key to solving
the localization problem for self-driving cars. The SLAM
algorithm uses visual features stored in the HD Map to match
features extracted from the live camera on the self-driving cars.
Visual features are usually organized as bags of features (BoF)
in the descriptor space. Without HD Maps or IMU, researchers
can hardly reach the centimetres level accuracy like [6] and
[7].

However, two problems of the SLAM based localization
approach are tricky to solve. Firstly, the performance decreases
once the environment changes. Light angle changes might
cause different shadow shapes and season changes cause
massive appearance changes on the trees and grass. These
changes yield new visual features which cannot be matched
with the recorded ones on the HD Map. This problem requires
routine labour-intensive map recording once after the changes
occur. Secondly, the localization result tends to drift after a
long-range driving, and the error will accumulate with growing
driven distance, as discussed in [5]. The intrinsic reason of
these problems is that the original SLAM algorithm is designed
for indoor localization problems where dramatic environment
changes or long-distance moving is not considered. Hence
these problems are hard to eliminate.

Recent researchers, like Ma [8], started to use as less visual
features as possible for localization. Besides saving the storage

for the BoF of these features, using fewer features decrease the
risk of being affected by the environment changes [9].

This trend brings the idea of using minimal features for
localization. The LaneLoc system proposed by Schreiber [10]
tried to use the exact appearance of lane markings for matching
from pre-recorded maps. This approach could be seen as
counting the number of dashed fragments the vehicle travelled
to localize the car itself. This approach still has several
limitations. Firstly, it will not work on a solid line situation
and ends up with only relying on IMU without any visual aids.
Secondly, the exact appearance will eventually change one day
in the future. Think about the time when those dashed lines
were repainted or worn out, which are both prevalent cases.
Thirdly, the performance is very fragile. Slight turbulence,
like occlusions or heavy shadows, will make the system omit
one or more fragments and yield a steady error as a result.
Lastly, the labelling process is both complicated and hard to
finish accurately, as discussed by Schreiber in their paper. The
proposed system solved these limitations by abstracting line
features further to types and directions by the proposed lines
detector.

B. Traffic Line Detection

The traffic line detection, or the lane detection which is
a narrower problem, was the essence of many early driving
assistant systems [11] like Lane Departure Warning System
(LDWS) and Lane Keeping Assist System (LKAS). Many
researchers, like Kim [12], used Convolutional Neural Net-
work (CNN) to reduce noise and get the segmentation of
the markings of those lines. Wang [13] used shape extracted
from OpenStreetMap (OSM) as prior knowledge to help detect
the lanes. Some problems remain for the CNN supported
approaches.

Firstly, they still can not solve the long-tail challenging
situations because CNNs heavily relies on the distribution
of the training dataset. As a result, CNN generally works
terribly in rare situations. Secondly, the segmentation result
of the CNN approaches often cause blurry edges when it is
not confident about the prediction. These blurry edges come
with difficulty for the following algorithms when they try to
form a line from these ambiguous pixels. Lastly, CNNs are
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significantly dataset related. They tend to work well only on
the dataset they have been trained on [14]. This limitation
is because that different datasets and sensor settings tend to
create distinctive patterns of noise in the images. For example,
in the KITTI dataset [15], the same line marks show different
appearances in different locations under the BEV space. Lines
far from the camera shows clear artifacts caused by the
BEV transformation. The self-driving related datasets are often
covering just one type of the available camera settings. A vast
and comprehensive dataset like MS-COCO [16] for the object
detection task does not exist for now.

As a result, CNN was not used for lines detection in
this paper. The proposed lines detector leverages the lines
information from a topology map, similar to what Wang did
in [13] from the OSM, as prior knowledge to help. The
proposed lines detector separates different line types to boost
the performance even more by using different lines detector
for each type of lines (solid or dashed lines, straight or curved
lines). It also used a sliding window to detect and connect
traffic lines, similar to what Tsai did in [17]. The sliding
window approach is proved to be both robust and easy to
visualize for debugging.

III. SYSTEM DESIGN

The overall workflow is shown in Fig. 1. In the cruising
scenario, the detection subsystem will finish the part 1.1 and
1.2 to give the current lane number of the vehicle, and that is
enough for generating a driving path and control signal without
involving the localization system at all. However, the detection
system needs to continuously detect the traffic features for
the next traffic part (could be another lane ahead or a free
space connected with an exit). The order of the series of traffic
features are based on the topology map.

The topological map, being used as the descriptor space
for matching with the digital map and the rebuilt scene, is the
center and the relationship is shown in Fig. 2. The topology
map should be drawn before the system can run on a new area.
The topology map also provides lane information helping lines
detection as prior knowledge and helps the vehicle to change
to a preferred lane in advance. The topology map contains the
following information:

• Lanes information: (1) the lines information on both
sides (like straight yellow lines on the left and straight
curb on the right), (2) ending information (like ends
with a stop line or merges with other lanes on the
left), (3) direction information (like starting direction,
turning angle limitation for each window), (4) neigh-
bour lanes used for lane changing while cruising,
(5) connected entrance and exit numbers, (6) traffic
rules metadata (like speed limits), (7) status (like
normal, under maintenance or closed under specific
time windows)

• Entrance and exit: (1) position, (2) direction, (3) the
relationship (an N to N relationship) with each other.

• Free spaces: (1) detectable traffic features used for lo-
calization (including stop lines, crosswalk lines, traffic
lights, traffic signs, lines of adjacent lanes) and their
relative position in a real-world scale, (2) adjacent

Fig. 2. The Left is a Digital Map used for Navigation, the Middle is the
Topology Map, the Right is the Rebuilt Scene

entrance and exit numbers, (3) traffic rules (like speed
limits), (4) status

A. Matching digital map with topology map for navigation

Each turning point on the digital map is used for finding a
nearest entrance-exit pair which have the correlated directions.
Define T = {(λt, φt), αt, βt} as the set of all turning points on
the digital map, where λt and ϕt is the latitude and longitude
of turning point t, αt is the direction before the turning and
βt is the direction after the turning. Din = {(λd, φd), βd} and
Dout = {(λd, φd), αd} are the set of all entry points and all
exit points. The score function f is the multiplication of g and
h, as equation 1, where g is the Euclidean distance between
two points and h is the difference of two angles, defined as
g = ‖din, t‖ + ‖dout, t‖ and h = |αt, αin| + |βt, βout|. The
P = {(din, dout)} is the set of all legal pairs of entrance and
exits. All legal pairs should connect with a same free space
and follow the traffic law. For example, the exit on the end of
a right turning lane cannot pair with the entrance ahead with
the same direction. The optimal pair for a minimal f score is
the matched result with the condition of (d∗in, d

∗
out) ∈ P . This

method assumes the turning point on the digital map is the
center point of the target exit and the target entrance.

f(din, dout, t) = g(din, dout, t) ∗ h(din, dout, t) (1)

The data of P and D are manually initialized as part
of the topology map. These data usually do not need to be
changed unless the traffic features are changed. For example,
an intersection was updated with an additional right changing
lane or new construction on the road updated the lane changing
rules temporarily. The maintenance of the topology map is easy
and fast since the only parts need to be changed in the sets of
P and D are the data of the lanes.

B. Matching Topology Map with Perception Scene for Local-
ization

Lanes form two kinds of lane sets: driving lane sets and
detectable lane sets. The driving lane sets provide information
about lane changing behaviour and traffic laws, like speed
limits. Two examples of driving lane sets are illustrated in
Fig. 3. The vehicle can change to other lanes within the same
driving lane set. The target lane and original lane information
will be passed towards other following subsystems to act and
finish the changing maneuver while lane changing.
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Fig. 3. An Illustration of Lane Sets under Two different Situations
Overlapping on a Satellite Map, the Left is on Highway Exit, the Right is a
Complicated Lane Topology near a Roundabout, the Red and Green arrows

Represent Entrances and Exits of those Lanes.

The detectable lane sets provide information about how
to detect these lanes. Lanes with either the same travelling
direction or opposite ones can be grouped into the same set.
Each detectable lane sets has left and right line types, lane
width (used as detection aid, but restrictions), dashed line
intervals, suggested detection window size and other metadata
which can be added at one’s convenience. A detectable lane
set must have at least two sides of lines information used
for tracking lanes. The lane width follows the priority of (1)
the width between two detected lines, (2) the width of other
detected lanes within the same detectable lane sets, (3) equally
divided width if two lines (probably are curbs) of the whole
set are detected, (4) the default lane width of the detectable
lane sets. For example:

• When there are two lanes travelling in opposite direc-
tions, and there is no middle line to separate these two
lanes, if both sides are detected, the space in between
will be divided by two for the width of each lane. If
the vehicle only detected the right side (assume under
right-hand driving condition), the lane width for the
current lane is the default lane width of the lane set.

• When there are four lanes travelling in opposite direc-
tions by two groups of two lanes, the middle line is
a solid line, and the line between two same direction
lanes is a dashed line. The number one lane (counting
from the right) is the space between the curb and the
dashed line, and the number two lane is the space
between the middle solid line and the dashed line. If
the vehicle cannot detect the curb to get the lane width
of lane number one, the width of number two will be
used for the width of lane number one.

For the cruising driving scenario, there are two questions:
(1) which lane set the self-driving cars are in (to prepare for the
next exit) and (2) which is the ego lane from the lane set. For
these two questions, the system relies on either initializing the
lane number at the beginning of the currently running period or

Fig. 4. How the Vehicle Locate itself using Lines Detection Results. The
Yellow Triangle is a Weak Anchor and the Red Triangle is a Strong Anchor.

initializing the lane number after driving through a free space
through a specific entrance. The detection system verifies and
corrects the current lane set and lane number by matching
detected types of lane lines with the ones from the topology
map. The detection system provides four line detectors for
each type of lines: (1) solid straight line, (2) solid curve, (3)
dashed straight line, (4) dashed curve. In the remainder of this
paper, curbs are considered as the same as traffic lines without
further clearance.

The changes of the types of lane lines usually represent an
end of the current lane. If is possible that there will be multiple
types of lines in one side of a lane, the system uses the detector
for the highest level type, because they are more complicated
and can handle the task of detecting low-level types. These
levels (one is the highest level and four is the lowest) are: (1)
Dashed curves, (2) Solid curves, (3) Dashed straight lines, (4)
Solid straight lines.

For the turning scenario, the detection subsystem only
needs to detect one pair of non-parallel lines to form an
anchor to rebuild the scene. For example, under the intersection
scenario shown in Fig. 4, the middle lane line and the stop
line are enough for a strong anchor to rebuild the scene based
on the given relative position from the topology map. The
target entrance on the right side can be predicted and used for
path planning. Once the vehicle has driven into the free space
passing the stop line which will no longer be detected, the stop
line of the target lane will be detected and provide a strong
anchor to follow up. The starting point of the target lane will
form a weak anchor as additional clues for localization.

The detection of anchors might be effected by occlusions
caused by other objects on the road. In other situations, there
is a chance when the vehicle is crossing a large intersection,
the vehicle will have no available anchor in sight in some
area. The target lane direction and the current drivable area,
as a backup, will aid the vehicle to finish the turning. The
free space situation ends with positive detection of the next
detectable lane set. If there are multiple lines parallel with
each other nearby, the system assumes the detected one is the
nearest one based on the current lane level position.

The system needs to be initialized at the beginning of each
run based on GPS signals and the current driving direction
from the gyroscope to tell the system which lane the vehicle
is on. The GPS signal does not need to be centimetre-level
accurate, and the detection subsystem will update the lane
number, relying on counting the line numbers between the
vehicle and the detected curbs.
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This paper does not cover behaviour decision among
crossing lanes because this can be considered as a separated
and solved problem thanks to previous research like [1].
This behaviour decision includes behaviours, like yielding to
vehicles coming out from other merging lanes. These rules are
universal and consistent.

C. General Lines Detector

The proposed lines detector in the detection subsystem can
detect diverse types of lines. The code for lane lines detection
for the KITTI dataset can be found on this repository. These
types of lines were tested: (1) lane lines, (2) curbs, (3) stop
lines, (4) merging or splitting points of two lines (pair of lines),
(5) special lane lines or curbs (which are not parallel to the
current ego lane). The lines detection problem was dissected
by tracing back to the most significant visual feature of the
lines, which is their long and narrow appearance. A sliding
window was used to follow possible lines. All noise without
this narrow feature was eliminated by applying these methods:

• Region Restriction: The detection subsystem leverage
a given prior knowledge about the starting points to
eliminate noise in unrelated regions. This knowledge
comes from either previous lines detection results or
predicted by the positive detection results of neighbour
lines with given lane width from the topology map.
For dashed lines, the sliding window moves at a step
size of dash segment intervals given from the topology
map to make sure optimal detecting position for each
segment. The system tolerates minor errors for this
interval distance. The more knowledge about the lines
are available, the smaller window for detection can
be used. A smaller region of interest gives better
resilience for challenges, helps the segment normalize
better and speeds up the lines detection process.

• Special Convolution Kernel: The system uses a special
kernel, as shown in Fig. 5. This proposed kernel helps
to produce a cleaner result in the Hough space for
the next steps with less noise. Also, this kernel is
more friendly for detecting curves, merging lines and
splitting lines than the simple vertical kernel.

• Directional Erosion: The system uses a special direc-
tional erosion structuring element to erode noise which
is not spanning through a specific direction (A 	 B,
A is the pixels in the window and B is a 5 by 1
narrow structuring element), as illustrated in Fig. 6.
The direction of the target lines is given from the
topology map. In a sliding window, the line segment
can be considered as a straight line. Sharp turning
lines or circles will also be eroded into small segments
which will be filtered out. Though there are some other
more complicated ways to leverage the information
of direction for lines detection [18], the directional
erosion is the simplest and it works.

• Types of Lines: The system leverages prior knowledge
of the types of the lines to get a better performance.
For curves in each detection window, the turning
angles are restricted to the thresholds, which is usually
very small given from the topology map. For straight
lines, a much narrower window for detection can be

Fig. 5. Four Results for different Convolution Kernels. The First One is the
Proposed One and the Last One is a Typical Square Edge Detection Kernel.
The Result on the Left is more Smooth and Cleaner than the Ones on the

Right in the Noisy Area.

Fig. 6. Directional Erosion Eliminates Strong Noise in the Red Circles while
Detecting Stop Lines.

used. For dashed lines, the marks which are too long
or too short will be filtered out, as shown in Fig. 7.
The topology map gives the length of segments of the
dashed lines.

The proposed lines detector uses the Y channel from the
YUV color channels since it was proved to perform better by
Lin in [19]. The system works on the Bird-Eye-View (BEV)
space since the prior knowledge of those lines can be leveraged
without predicting the camera pose or estimating the vanishing
point (VP) [20]. More about the homography transformation
from the camera image to a BEV space with a given camera
pose can be found in [21].

For the feature detection on the Hough space, a low-high-
low kernel was widely used by [22], [23] and [24]. A new low-
middle-high kernel was used and then mirrored to make the
detection on the left and right side separately. So merging and
splitting points and their directions (merging from / splitting to
the left or the right) can be detected by comparing the lengths
of these two lines detection results. For example, at the place
a line is splitting to the right, the line detection from the right
side will break coming with a shorter length of the line than the
left side, as shown in Fig. 8. To separate splitting and merging,
two additional windows will be created facing upwards and
downwards. Positive result of lines in the upwards window
means splitting and positive result in the downwards window
means merging.

Lastly, the procedure for stop lines detection is as follows.
After the detection of a window, if the line is broken in the
upper end, two side windows will be created. A horizontal
line detection, using horizontal convolution kernel and erosion
structure, will be applied to detect the stop lines. If the result
is positive, then this lane line is marked as finished, and no
window will be created above.
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Fig. 7. An Example of how Length Information Helps to Filter Noise within
a Single Window.

Fig. 8. Illustrate when Lines Splits, Left Side and Right Side Line Detection
Result will not Agree with each other.

The overall process of lines detector is shown as follows:

1) Initialize the first window
2) Cut pixels in the window
3) Rotate the window
4) Commit Convolution
5) Cluster pixels
6) Form lines for all candidates
7) Filter and get the result for the current window
8) Slide the window up
9) If the window is not out of the image, go to step 2

For special lines which are not parallel to the current ego
lines, an initial position for the sliding window to start will
not be available to use. However, the system can still use
the direction information from the topology map. Spotting the
anchors from the target entrance while turning in free spaces
is one of the situations which requires detecting special lines,
as shown as in Fig. 4. The process is a little different, shown
as follows:

1) Rotate the image
2) Commit Convolution
3) Commit Directional Erosion
4) Get valid pixel blocks
5) Form valid blocks into windows
6) Cut pixels into windows

a) For each window, cluster pixels
b) Form lines for all candidates
c) Filter short lines out

7) Connect and merge similar lines
8) Return the longest detection result

IV. RESULTS

The earlier part of this chapter shows the proposed general
lines detector is robust to typical noise on the road, works well
under different lighting conditions and detect multiple types of

Fig. 9. The First Row is some of the Detection Results of KITTI-UM. The
Second Row is some of the Detection Results of Cityscapes. The Red is the

Converted Ego Lane based on Lines Detection.

lines. The later part of this chapter shows how the localization
method helps the vehicle travels through an intersection in the
turning scenario.

For lane lines detection, the method was tested on KITTI
[15] and Cityscapes [25]. For general traffic lines detection,
The proposed method was tested on the Berkeley deep drive
(BDD 100k) [26], KITTI and a self-recorded video. These
results of general lines detection cannot be compared to other
methods due to lacking metrics. At last, the BDD 100k dataset
and images from a self-recorded video are used for testing the
localization method while passing free spaces.

A. Lane Lines Detection

The proposed lines detector, ECPrior (Erosion and Cluster
with prior knowledge), perform as good as other deep neural
network supporting approaches [27] [28] [29] [30] based on the
KITTI behaviour evaluation [31] metric. The result is shown
in Table I. Some of the detection results are shown in the
first row of Fig. 9. The proposed detector does not include
object detection; hence it will be affected by other cars close
to the lines. A typical object detector can be added before
to get a better result, like Satzoda did in [32]. The object
detection is usually a separate module, and the same feature
should not be implemented again in the lines detection module.
The proposed lines detector works equally fine on Cityscape
showing its scalability, as shown in the second row of Fig. 9,
despite they have very different object aspect ratio from the
aspect ratio of images from KITTI.

TABLE I. KITTI (UM LANE) LANE LINES DETECTION RESULT

Method HR-30 PRE-40 F1-40
CyberMELD 97.55 % 94.57 % 89.66 %

RBNet 95.92 % 95.56 % 87.21 %
RoadNet3 95.57 % 94.57 % 83.72 %

ECPrior (Mine) 93.96 % 96.70 % 91.86 %
Up-Conv-Poly 93.14 % 90.11 % 83.72 %
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Fig. 10. Two Fail Cases in each Row: (1) the First Image is the Ego Lane
Result and the Second is the Lines Detection Result of the Right Side Curb;

(2) the Middle Image is the Gradience showing Clear Manifests and the
Lines Detection Results shown in the Right Image.

The limitations of ECPrior are:

• Like all other methods, ECPrior relies on a stable
and accurate BEV transformation. The transformation
is hard to be accurate when the ground is not flat.
Although the deep neural networks can learn to avoid
this for a specific dataset, it is still hard to scale
over different datasets. When it comes to non-flat
surfaces, the width of a lane might shrink, as shown
in the first fail case in Fig. 10. Dynamic adjustment of
the window width can avoid windows from merging.
ECPrior can tolerate minor distortion of the BEV
transformation.

• Because ECPrior is for general cases, the input images
should not have special manifests which would disturb
the detector, as shown in the second fail case in Fig.
10. For KITTI, these manifests are mainly caused by
the BEV transformation over low quality areas.

B. General Lines Detection

ECPrior can solve the problem caused by shadows or short
breaks for general lines detection. ECPrior is also proved to
be robust with different lighting conditions. For stop lines,
images from the BDD 100k was used for testing. The result
is shown in Fig. 11. The upper case in that image is under a
lightly snowing daylight environment, and the lower case in
that image is in a night lighting environment. In both cases,
ECPrior successfully detects the stop lines ahead.

ECPrior also detects special lines well. A self-recorded
video was used for testing. An example in Fig. 12 shows the
ability to detect special lines under a turning scenario travelling
into a roundabout. In this situation, ECPrior needs to detect
the rear inner side of the roundabout. The left side curb of
the current lane and the inner side curb of the roundabout can
then form a strong anchor used to rebuild the scene of the free
space for localization.

Fig. 11. Stop Lines Detected Results on BDD 100K Dataset. Blue Pixels are
the Detected Stop Line and Green Pixels are the Guiding Lane Line of that

Stop Line.

Fig. 12. Detecting the Inner Side of the Roundabout is an Example of
Detecting a Special Line with only its Direction Given. The Top 2 Results

are shown as Red and Blue in the Last Image in the Red Box.

ECPrior uses intense erosion and threshold so that only
a small portion of target lines will be detected at the pixel
level. Hence the ECPrior detector is not a pixel-level detector.
ECPrior, as an intact line detection module, provides lines
detection result using regression for dash line segments and
straight lines and using Spline for the others. ECPrior in-
evitably relies on an accurate BEV transformation to leverage
the prior knowledge of the lines. Distortion due to camera
behind the windshield or problematic camera settings also
cause a narrower efficient area for general lines detection, at
that situation only lines lie in the middle of the front can be
detected. As an example, the detector failed to detect the left
side of the inner curb due to distortion in Fig. 12.

C. Localization

Based on these results from previous examples, strong and
weak anchors can be established to locate the vehicle in the
turning scenario. The proposed localization approach relies on
neither GPS nor IMU for vehicles to travel through urban
areas. The system provides a stable and accurate position based
on the rebuilt scene for path planning and control subsystems
in the turning scenario. For the cruising scenario, the detection
system gives a lane level localization result (which lane the
vehicle is on) which is enough for the following subsystems.

There are several limitations for using the naive approach
of my proposed system for localization. Firstly, the proposed
localization method relies on visual clues of specific traffic
features. Heavy occlusion blocking most of the target traffic
lines will affect the location result in some degree. In one
situation, the vehicle was approaching the intersection with
heavy traffic ahead, blocking most of the coming stop lines.
The localization system did not spot anchors until when the
vehicle was very close to the stop lines, producing a short
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reaction time to stop for the following subsystems. In another
situation, the vehicle was about to turn right into a small allay
based on the navigation. Several parking vehicles blocked the
view of the right side curb. Hence the detection subsystem did
not detect the right turning feature for the allay and make the
vehicle miss the target turning.

In the first situation, the behaviours of other vehicles can
be exploited as an input for the localization subsystem, like
the way Gao leveraged the position of other vehicles in [33].
For example, when the system detects a line of stopping
vehicles, it can assume the position of the first stopping car is
indicating the position of the stop line to form a prediction to
extend the reaction time for the following subsystems. In the
second situation, a more comprehensive drivable area analysis
will show a right side road extension indicating the allay.
Additionally, the localization subsystem is compatible with
traffic lights, traffic signs and GPS as pieces of additional
information to help.

V. CONCLUSIONS

This paper proposes a new perception centered self-driving
system and focuses on testing the proposed general lines
detector, ECPrior, and the localization method on several urban
cases. The proposed system design is a skeleton and a starting
point with all potentials to work with additional modules to
get better performance. For example, users can try to apply
the method by Hillel in [34] to get rid of the lens flare
to make the detection of ECPrior more robust when driving
towards the sunshine. The potential is much more promising
than other deep neural networks based detection methods. And
diverse types of scenes rebuilding can be discussed in future
works. Places like indoor parking area without GPS signals
will heavily rely on the rebuilt scene to localize the vehicle.
Hence they should be prioritized.

In the end, I appeal to the community to reconsider the
necessity of using SIFT like visual features for localization,
as well as the need for relying on deep neural networks for
traffic lines detection in the context of self-driving.
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