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Abstract—Climate change research is a discipline that 
analyses the varying weather patterns for a particular period of 
time. Rainfall forecasting is the task of predicting particular 
future rainfall amount based on the measured information from 
the past, including wind, humidity, temperature, and so on. 
Rainfall forecasting has recently been the subject of several 
machine learning (ML) techniques with differing degrees of both 
short-term and also long-term prediction performance. Although 
several ML methods have been suggested to improve rainfall 
forecasting, the task of appropriate selection of technique for 
specific rainfall durations is still not clearly defined. Therefore, 
this study proposes an ensemble learning to uplift the 
effectiveness of rainfall prediction. Ensemble learning as an 
approach that combines multiple ML multiple rainfall prediction 
classifiers, which include Naïve Bayes, Decision Tree, Support 
Vector Machine, Random Forest and Neural Network based on 
Malaysian data. More specifically, this study explores three 
algebraic combiners: average probability, maximum probability, 
and majority voting. An analysis of our results shows that the 
fused ML classifiers based on majority voting are particularly 
effective in boosting the performance of rainfall prediction 
compared to individual classification. 

Keywords—Ensemble learning; classification; rainfall 
prediction; machine learning 

I. INTRODUCTION 
Time-series forecasting has recently gained the research 

interest and has been explored in multiple domains like stock 
market, finance and climate change studies. Time-series 
forecasting refers to the analysis process of a sequence of data 
points containing successive measurements that are made 
within a specific time interval. The domains mentioned above 
are currently heavily reliant on time-series data [1-3] Climate 
change research is one of the domains that utilizes time-series 
forecasting to analyse the varying weather patterns statistically 
for a particular period [4]. The nature of climate change data 
representation across time is the key characteristic of climate 
change [5]. 

Weather forecasting is a subset of climate change research 
that predicts the atmosphere’s state at a future time and 
location [4]. An important application of weather forecasting is 
rainfall prediction, which is heavily used in various large-scale 
activities such as food production planning, water resource 
management and others that rely on water. It is therefore 
crucial to ensure that rainfall predictions can be further 
improved, especially with respect to their accuracy and 
predictive performance, so that the proper preparation and 

planning of large-scale activities can be worked out 
beforehand. 

Machine learning has made dramatic improvements and is 
a core sub-area of artificial intelligence. It also enables 
computers to discover themselves without being explicitly 
programmed. A set of machine learning algorithms can be used 
to obtain meaningful insights into the data that help make 
effective detection on phishing websites. However, it is still 
very far from reaching human performance. The machine still 
needs human assistance to predefine the algorithms on 
initialization. Several machine learning approaches for rainfall 
forecasting have been studied for various locations such as 
South Africa, China and other countries [6-9]. The classifiers 
that are used for rainfall prediction include the Naïve Bayes, 
decision tree, support vector machine, neural networks, random 
forest, genetic algorithm, support vector regression, M5 rules, 
radial basis neural networks, M5 model trees, and k-nearest 
neighbours [10-14]. 

This paper highlights the phishing webpage detection 
mechanism based on machine learning classification 
techniques. The rest of the paper is organized in the following 
manner: Section II presents the rainfall prediction 
methodology, Section III presents the utilization of machine 
learning classification techniques, Section IV presents the 
utilization of ensemble machine learning techniques, and 
Section V presents the experimental results gained after the 
implementation of the ensemble classification methods in the 
rainfall datasets. 

II. METHODOLOGY 
Machine learning is one of the most exciting recent 

technologies. Machine learning had been positioned to address 
the shortages of human cognition as well as information 
processing, specifically in handling large data, their relations 
and the following analysis [15-16]. In general, machine 
learning studies the research and algorithms construction that 
can learn from, and derive predictions about data [17-18]. 
Therefore, the machine learning approach is selected to predict 
the rainfall. 

The research methodology we used in our study can be 
segregated into four distinct phases. The first phase is the 
dataset phase, in which we manually identify the data for this 
study by analysing their sources, amount, and other details. 
Next, the pre-processing phase prepares the data for further 
processing by cleaning the data (i.e., addressing missing 
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values) and normalizing the data to limit the values to specific 
ranges. The pre-processed data are then used in the third phase 
to comparatively analyse the five ML techniques to identify the 
best technique from the five ML classifiers that are noted 
above. The fourth and final phase focuses on configuring the 
ensemble method to carry out assessment on the performance 
of the entire algorithm. Each of these four phases is described 
further in the subsections that follow. 

A. Dataset 
The dataset was obtained from the Drainage and Irrigation 

Department, and the Malaysian Meteorological Department. 
The dataset consists of 1,581 instances and was organized into 
two classes. The first is the ‘active rainfall’ class, containing 
428 instances, and the remaining instances are grouped as ‘no 
rainfall’. 

The obtained data on description and location are illustrated 
in Table I. The features displayed in the dataset include the 
relative humidity, rainfall, temperature, flow, and water level. 
The feature details are as described in Table II. Table III 
provides the detailed measurements for each feature. 

TABLE I. DETAILS OF THE DATASET 

Source Daily data Station 
number Station name 

Malaysian 
Meteorological 
Department 

24 hour mean 
temperature 48650 KLIA Sepang 

24 hour mean 
relative humidity 2917401 Sungai Langat at 

Kajang Selangor 

Daily total rainfall 2917112 Kajang at Hulu 
Langat 

Daily means water 
level 2917401 Sungai Langat at 

Kajang Selangor 

TABLE II. FEATURE DETAILS 

Feature Valid records Missing values 

Temperature 1581 0 

Relative humidity 1572 9 

Flow 1464 117 

Rainfall 1569 12 

Water level 1464 117 

TABLE III. MEASUREMENT FEATURE DETAILS 

Attribute name Attribute type Attribute metre 

Temperature Continuous °C 

Humidity Continuous Percentage of relative 
humidity, % 

Rainfall Continuous mm 

River flow Continuous m3/s 

Water level Continuous ms 

Class Nominal Rainfall – yes 
Rain off - no 

B. Pre-processing 
As noted above, the pre-processing phase ensures that the 

available data are prepared for further processing in subsequent 
phases. Here, raw data are usually negatively impacted by 
noise or incomplete information. The pre-processing phase is a 
crucial stage in enhancing the improvement of the prediction 
process by ensuring the data are regularized and filtered 
beforehand [15], [19]. Therefore, we applied two rather 
common pre-processing subtasks: cleaning and normalization. 
In this study, Waikato Environment for Knowledge Analysis 
(Weka) is used as a tool to perform the pre-processing task. 
Weka is java-based machine learning software that is 
developed by the University of Waikato, New Zealand, and it 
has various types of machine learning algorithms and operates 
on an open source license. It also provides various visualization 
tools for data analysis as well as predictive modelling. 

C. Cleaning 
In the cleaning task, the data obtained are found to contain 

missing values, which are represented by characters such as 
‘?’and ‘*’. In fact, such missing values can cause errors in the 
prediction process. Therefore, these missing values must be 
addressed. Table IV illustrates a sample of data containing 
missing values. A mean average mechanism is then used to 
populate the missing values. The mean average functions are 
obtained by summing all instances of an attribute that is 
selected and then dividing the sum by the number of records. in 
the second attribute (humidity), for example, the missing 
values are filled by firstly adding all instances (87.6, 88.9, 84.7, 
85.2, 88.3, and 84.2), and then dividing the results by the total 
number of instances, which in this case is 6. Table V shows the 
mean average for each attribute. 

TABLE IV. DATA WITH MISSING VALUES 

Temperature Humidity Rainfall Flow Water level 

27.9 85.3 ? 3.94 22.37 

27.3 86.2 ? 3.82 22.36 

27.8 83.6 * 3.67 22.34 

27.7 * * 10.68 22.54 

27.3 84.2 11.4 11.93 22.61 

27.4 82.8 40 14.6 22.69 

27.3 82.3 8.9 20.24 22.89 

26.8 85.8 7.7 14.04 22.68 

27.3 81.4 * 11.1 22.57 

24.7 90.3 * 10.62 22.54 

26.0 86.2 * 10.23 22.53 

27.7 -1.1 * 8.73 22.45 

28.6 73.4 ? ? ? 

29.3 68.3 ? ? ? 

29.1 67.8 5.7 ? ? 

28.8 67.9 11.3 ? ? 

28.9 64.1 10.9 ? ? 
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TABLE V. AVERAGE FEATURES 

Attribute  Average 

Humidity  27.528 

Rainfall  81.265 

River flow  5.477 

Water level  11.837 

D. Normalization 
In the normalization task, values are limited within a 

specific interval, in which the interval facilitates the prediction 
since the values are reduced into specific ranges. 
Normalization is crucial for particular algorithms like ANN 
and SVM. Table VI illustrates values prior to normalization. 
As shown in Table VI, the values are found to vary greatly, 
although these values are seen to decompose around the 20s 
and 80s for the first two features and around the 10s for the 
remaining three features. To unify these values, we chose an 
interval range of -1 to +1 and use the normalization mechanism 
that was introduced by [20] as defined in (1): 

𝛾 = (𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛)×(𝑥−𝑥𝑚𝑖𝑛)
(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)

+ 𝑦𝑚𝑖𝑛            (1) 

In Eq. (2.1), x is the data that requires to be normalized. 
Xmin is the minimum value for all data, and Xmax refers to the 
maximum value of all the input data. On the other hand, Y is 
the normalized data, while Ymin is the ideal minimum value. 
Ymax refers to the desired maximum value. Following the 
normalization task, all values for the five features are converted 
to be in the range of -1 to +1. As illustrated in Table VII, the 
data have been normalized to prepare for further processing. 

TABLE VI. VALUES BEFORE NORMALIZATION 

Temperature  Humidity Rainfall Flow Water level 

22.3  87.6 2.31 2.78 2.79 

26.4  88.9 5.74 4.29 5.74 

22.9  84.7 1.68 6.78 1.25 

27.8  85.2 5.03 5.46 4.56 

24.1  88.3 5.03 4.29 4.56 

26.5  86.4 5.03 4.29 4.56 

26.9 86.4 2.69 1.64 6.47 

29.3 84.2 10.4 2.14 8.46 

21.2 86.4 5.03 4.65 4.56 

TABLE VII. NORMALIZATION TASK 

Temperature Humidity Rainfall Flow Water level 

-0.728  0.446 -0.855 -0.556 0.572 

0.283  1 -0.068 0.031 0.245 

-0.580  -0.756 -1 1 -1 

0.629  -0.512 -0.392 1 -1 

-0.283  1 -0.392 0.760 -1 

0.308  1 -0.392 0.760 -1 

0.407  1 -1 -1 -0.02 

E. Evaluation Metrics 
For the purpose of evaluating the method proposed, the 

common information retrieval metrics are employed. The 
evaluation is carried out through the use of the common 
information retrieval metrics of recall, F-measure, and precision. 
Our model predicts 2 classes (rain or not), so sensitivity or 
recall can reflect the ratio of rain and no-rain correctly 
identified by the model. The R2, SSE, and MSE are better for 
continuous values, while our model does not predict such an 
output. Precision evaluates the true positives (TP) that are 
classified correctly and the false positives (FP) that are entities 
classified incorrectly, which could be computed using (2): 

Precision = |𝑇𝑃|
|𝑇𝑃|+|𝐹𝑃|

             (2) 

The recall parameter is used in assessing the true positives 
(TP) with respect to the false negatives (FN), which are 
unclassified entities. This evaluation is calculated as shown in 
(3): 

Recall = |𝑇𝑃|
|𝑇𝑃|+|𝐹𝑁|

              (3) 

Lastly, the average of the recall and precision, which is the 
F-Measure is computed as follows: 

F-measure = 2 ⋅ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

            (4) 

III. MACHINE LEARNING MODELS 
Numerous learning methods are selected in this study to 

benchmark the rainfall prediction performance. These are NB, 
C4.5, SVM, ANN, and RF, which are all supervised learning 
methods. A notable aspect of the supervised machine learning 
methods is that they select suitable methods together with 
parameters and features that are deemed suitable [21-25]. Two 
main experiments were carried out in order to evaluate the 
performance of the classifiers. The first identifies the best 
parameterization set of each classification model to be 
employed, since the model has a few alternatives as well as 
options, which would affect the method’s success. Different 
tuning parameters are used to tune every classifier in order to 
yield highly accurate results. A series of experiments were 
carried out to obtain the optimal values of each classifier. The 
performances between the five classifiers are then evaluated 
and compared. The second experiment analyse the true 
performance of the classifiers for rainfall prediction. 

A. C4.5 Algorithm 
In this section, the J48 decision tree, which is included in 

Weka, is formed based on the C4.5 decision algorithm. C4.5 is 
one of the most effective classification methods [26]. 
Table VIII shows the pseudo code of the algorithm. A decision 
tree is generated by C4.5 in which every node splits the classes 
with reference to the information. Splitting criteria is selected 
based on the attribute having the highest normalized 
information gain. For example, our dataset contains 
temperature, humidity, rainfall, river flow, and water level. The 
C4.5 techniques first explores these features to determine 
which feature is the best for splitting data (a feature with high 
information). The feature is then used to split the data into the 
next feature until it reaches the last destination. 
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TABLE VIII. C4.5 PSEUDO CODE 

Input: Dataset D  
1. Tree = {a}6  
2. If D is ‘pure’ OR other stopping criterion met then  
3. Terminate  
4. End if  
5. For all attribute a ϵ do  
6. Compute information-theoretic criterion if split on a  
7. End for  
8. 𝑎𝑏𝑒𝑠𝑡= Best attribute according to above computed criterion  
9. Tree = Create a decision node that tests 𝑎𝑏𝑒𝑠𝑡 in the root  
10. 𝐷𝑢= Induced sub-datasets from D based on 𝑎𝑏𝑒𝑠𝑡 
11. For all 𝐷𝑢do  
12. 𝑇𝑟𝑒𝑒𝑢= J48 (𝐷𝑢)  
13. Attach 𝑇𝑟𝑒𝑒𝑢to the corresponding branch of Tree  
14. End for  
15. Return Tree 

The evaluation was performed using confidence factor, 
MinNumObj, and Numfolds parameters. The splitting 
mechanism splits the dataset into 60% for training and 40% for 
testing, and the evaluation was performed with the use of the 
common information retrieval metrics of the recall, precision, 
and F-Measure. Table IX illustrates the algorithm results. As 
shown in Table IX, several parameter values are used. The best 
results are achieved when the parameters are (confidence factor 
= 0.5, MinNumObj = 4, and Numfolds = 5), which results in a 
precision of 71.3%, a recall of 74.2% and 72.7% F-Measure. 

B. Naïve Bayes 
Naïve Bayes is classified as supervised machine learning 

method that belongs to the probabilistic classifiers family 
which applies Bayes theory to the independence assumption 
between features [27]. As a matter of fact, Naïve Bayes 
identifies the probability of every feature by calculating the 
assumptions. Table X depicts the pseudo code of the Naïve 
Bayes algorithm. 

This section evaluates the Naïve Bayes technique being 
applied using Weka. For every known class value, NB 
computes every attribute conditional probability on the class 
value. Later, it obtains the joint conditional probability for the 
attributes using the product rule. This process is followed by 
the use of Bayes rule to obtain the class variable’s conditional 
probabilities. After completing this process for each class 
value, the class having the highest probability is reported. 

The parameter tuning experiment was carried out in 
identifying the best parameters from a few different options 
available. There are two parameters that affect the performance 
of the NB classifier: debug and use Kernel Estimator. In this 
study, debug and use Kernel Estimator are tested on two 
different values (True and False) for choosing the optimal 
parameter of the NB classifier. When use Kernel 
Estimator=True, it means the NB model employs a kernel 
estimator for numeric attributes as opposed to a normal 
distribution. Moreover, if the debug parameter is set to False, it 
means that the classifier may not output any extra information 
to the console. As shown in Table XI, the best outcomes are 
attained when the parameter (debug = False, use Kernel 
Estimator = True) obtains 65.5% precision, 71.5% recall and 
65.5% F-Measure. 

TABLE IX. RESULTS FOR THE C4.5 PARAMETER TEST 

C4.5 Parameter 
Precisio
n 

Result
s 
Recall 

F-
Measur
e 

Confidenc
e factor 

MinNumOb
j 

Numfold
s 

0.25 2 3 70.1% 73.4% 70.1% 

0.5 4 5 71.3% 74.2% 72.7% 

0.7 6 7 70% 73.4% 71.3% 

TABLE X. NAÏVE BAYES PSEUDO CODE 

Input: Dataset D  

For each Feature f  
Compute the assumptions of f values based on class label 1  
End for  
For each Feature f  
Compute the assumption of f values based on class label 2  
End for  
Prediction class = Maximum (assumption label 1, assumption label 2)  
Repeat for all features  

TABLE XI. RESULTS FOR THE NAÏVE BAYES PARAMETER TEST 

NB Parameter 
Precision Recall F-measure 

debug Use Kernel 
Estimator 

False True 65.5% 71.5% 65.5% 

False False 62.9% 68.4% 64.4% 

C. Support Vector Machine 
This section discusses the evaluation of the support vector 

machine method by using the libSVM package in Weka. Some 
parameters have to be fitted to the data to avoid errors due to 
the SVM being very sensitive to the presence of any 
inappropriate parameters. The support vector machine is a 
method that divides data into two sections with the use of a 
hyperplane12. This division process independently addresses 
every class label, and this could be carried out through 
classifying the data into class x and not class x, and then further 
categorizing the data into class y and not class y, where x and y 
are the two class labels. The classification is carried out by 
calculating the distance between every data point and the 
hyperplane’s margin. Table XII contains the description of the 
algorithm. 

TABLE XII. SUPPORT VECTOR MACHINE PSEUDO CODE 

Initialize 𝑦𝑖 = 𝑦1 for iϵI 
Repeat  
Compute SVM solution w, b for dataset with imputed labels  
Compute outputs 𝑓𝑖= (w, 𝑥𝑖) + b for all 𝑥𝑖in positive bags  
Set 𝑦𝑖= sgn(𝑓i) for every i𝜖𝐼 and 𝑦1 = 1 
For (every positive bag Bi)  
If (∑ 1+𝑦𝑖

2
 = 0 Bi

𝑖∈𝐼 ) 
Compute I = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖𝜖𝐼𝑓𝑖 
Set 𝑦𝑖 = 1 
End 
End 
While (imputed labels have changed) 
Output (w, b) 
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The SVM algorithm uses a kernel that is a set of 
mathematical functions to allow for data classification in a 
higher dimensional space when such data could not be linearly 
separated in a lower dimensional space. Various kernel 
functions are available to govern the above, like linear, 
polynomial, nonlinear, radial basis function (RBF) and 
sigmoid. The SVM can be further classified into two 
categories, namely, the C SVM and the nu SVM. C and nu 
refer to the regularization of the parameters that aids in 
implementing a penalty on the misclassifications that happen 
when the classes are separated. C ranges from 0 to infinity and 
nu is always between 0-1. 

The parameter evaluation was performed using the SVM 
type and kernel type parameters. The default parameter value 
for the SVM type is set as nu-SVC, which uses a range 
between 0 and 1 to represent the lower and upper bounds of the 
number of examples that are support vectors which lie at the 
wrong side of the hyperplane. Moreover, a number of different 
parameterization combinations are tested under the kernel type. 
Here, each kernel type parameter is changed one at a given 
time while SVM type is remained the same consistently so that 
any differences due to the kernel type parameter change can be 
recorded. Four techniques have been established in the 
literature already, namely, the linear, radial basis function 
(RBF), polynomial, and sigmoid, and these four are extensively 
tested in our experiments. Table XIII illustrates the results of 
the algorithm. The best results are reported when the 
parameters are (SVM type = nu-SVC, kernel type=RBF), 
where the precision is reported to be 71.1%, the recall is 72.8% 
and the F-Measure is 69.1%. 

D. Neural Networks 
Neural networks were originally motivated by modelling 

machines that replicate the brain's functionality. Every neural 
unit is linked to many others. Links could either be inhibitory 
or enforcing in nature, with regards to their activation state 
effect of the connected neural units. Every individual neural 
unit could have a summation function combining its input 
values [28]. This algorithm is used in regression, classification, 
prediction and clustering [28]. Table XIV depicts the pseudo 
code of the algorithm. 

There are two parameters that significantly affect the neural 
network performance classifiers: the number of hidden layers 
and the value of learning rate. To get the optimal hidden layer 
value, a range of values are tested from 2 to 10 (at an increment 
of 2), and the learning rate is tested on five different values 
from 0.02 to 0.10 (at an increment of 0.02). As shown in 
Table XV, the best outcomes are attained when the parameters 
(learning rate = 0.02 and the hidden layer =4) obtain 72.7% 
precision, 74.5% recall and 73.2% F-Measure. Therefore, the 
optimal parameters of the ANN are set as the learning rate = 
0.02 and the hidden layer=4. The parameter evaluation was 
performed with 100 iterations. 

E. Random Forest 
Random forest is a method employed for many purposes, 

including regression, classification, and prediction. This 
method is an ensemble of decision trees aiming to construct, 
within the training data, a multitude of decision trees and 

generate the class as the output. Table XVI depicts the 
algorithm’s pseudo code. 

The random forest classifier is tuned using the maximum 
depth of the tree (Max Depth) and the number of features to 
randomly investigate (Num Features) and the number of tree 
(Num Tree) parameters. The Max Depth, Num Feature and 
Num Tree is tested on three different values which are (1, 5 
and 10), (0, 3 and 5) and (10, 12 and 15), respectively. 
Experimental outcomes reveal the classification performance 
of the RF classifier is increased when the depth, the number of 
features and the number of tree increase. The obtained 
parameter tuning result is reported in Table XVII. The best 
results are reported when the parameters are (Max Depth=10, 
Num Feature=5, Num Tree=15), where the precision is 
reported to be 71.3%, the recall is 74.4% and the F-Measure is 
70.7%. Thus, the optimal values are Max Depth=10 Num 
Feature=5 and Num Tree=15. 

TABLE XIII. RESULTS FOR THE SUPPORT VECTOR MACHINE PARAMETER 
TEST 

SVM parameter 
Precision Recall F-Measure 

SVM type Kernel type 

nu-SVC Linear 53% 71.8% 61.3% 

nu-SVC Polynomial 53% 68% 61.3% 

nu-SVC RBF 71.1% 72.8% 69.1% 

nu-SVC sigmoid 69.5% 70% 65.2% 

TABLE XIV. NEURAL NETWORKS PSEUDO CODE 

1. For iteration = 1 to T  
2. For e = 1 to N (all examples)  
3. X = input for example e  
4. Y = output for example e  
5. Run x forward through network, computing all {𝑎𝑖 }, {𝑖𝑛𝑖 }  
6. For all weights (j, i)  
7. Compute ∆𝑖= �(𝑦𝑖 −  𝑎𝑖) × 𝑔,(𝑖𝑛𝑖) 𝑔,(𝑖𝑛𝑖)∑ 𝑤𝑖,𝑘  ∆𝑘 𝑖

𝑘 �  
8. Repeat 

TABLE XV. RESULTS FOR THE NEURAL NETWORKS PARAMETER TEST 

ANN Parameter 
Precision Recall F-

measure Learning rate Hidden Layer 

0.02 2 72.7% 74.5% 73.2% 

0.04 4 72.3% 73.6% 72.8% 

0.06 6 72.3% 73.3% 72.7% 

0.08 8 72.4% 73.3% 72.6% 

0.10 10 72.4% 73.5% 72.9% 

TABLE XVI. RANDOM FOREST PSEUDO CODE 

1. For simple Tree T  
2. For each node  
3. Select m a random predictor variable  
4. If the objective function achieved (m=1)  
5. Split the node  
6. End if  
7. End for  
8. Repeat for all nodes  
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TABLE XVII. RESULTS FOR THE RANDOM FOREST PARAMETER TEST 

RF Parameter 
Precision Recall F-Measure Max 

Depth 
Num 
Feature 

Num 
Tree 

1 0 10 68% 69.9% 68.7% 

5 3 12 53% 72.8% 61.3% 

10 5 15 71.3% 74.4% 70.7% 

F. The Performance Evaluation of Different Classifiers 
Extensive parameterization tests were performed in 

quantifying each parameter’s influence for the optimization of 
the classification models. Numerous parameters crucial to 
maximizing the model's performance are selected from the 
tests. Whereas, other parameters are classified as less sensitive. 
Based on the finalized parameters, the classification models are 
properly executed to quantify their performance on rainfall 
prediction. Five machine learning methods are identified in the 
study. They are the Naïve Bayes (NB), C4.5, neural network 
(ANN), support vector machine (SVM), and random forest 
(RF). This phase quantifies the performance of the mentioned 
machine learning methods and determines the best overall 
methods for rainfall prediction. From the observations during 
the predictive studies, the results revealed the most effective 
classification to be the ANN and that the NB yielded the 
weakest result. Hence, the ANN this time is benchmarked 
against the ensemble method. Table XVIII shows the 
comparison of the five classifiers. 

TABLE XVIII. RESULTS FOR THE CLASSIFICATION MODELS 

Name of Classifier Precision Recall F-Measure 

SVM 71.1% 68% 69.1% 

C4.5 71.3% 74.2% 71.3% 

ANN 72.7% 74.5% 73.2% 

NB 65.5% 71.5% 65.5% 

RF 71.3% 74.4% 70.7% 

The performance levels of ML-based predictions vary 
between the studies, although a neural network classification 
technique has a slight performance advantage compared to 
other classifiers. With individual ML classifier techniques for 
rainfall predictions already extensively documented, the fusion 
of various ML classification techniques based on an ensemble 
methodology presents an opportunity to tap any possibility to 
improve prediction performance. Apart from that, the varying 
performance levels of such techniques create space for 
improvement through the combination of various methods or 
improving techniques. 

IV. ENSEMBLE METHODS FOR MODEL PREDICTION 
The combination of multiple classifiers that result in one 

subsequent model is known as the ensemble model. Recently, 
ensemble techniques have been increasingly utilized to 
improve the prediction performance of classification tasks [29]. 
In general, there are three common issues faced in most single 
classification techniques that can be improved when using 
multiple classifier instances. 

1) Statistical reasoning: In the event the training data 
amount is not sufficient, a learning algorithm extracts a weak 
hypothesis. The combinations of many classifiers, however, 
have a tendency to find a stronger hypothesis. 

2) Computational reasoning: An appropriate hypothesis 
for an individual classifier (such as neural networks) may be 
more difficult as well as time consuming. Combining multiple 
classifiers (experts) with an appropriate parameterization 
(considering speed, efficiency and accuracy) may provide a 
better hypothesis while reducing the computation time through 
the enforcement of each classifier’s strength in this case. 

3) Representational reasoning: An individual classifier at 
times could not represent true hypothesis in the hypothesis 
space. In the case of ensemble methods, the formation of 
weighted sum of the hypotheses from the hypothesis space 
expands the hypothesis space in providing a hypothesis that is 
more presentable [29]. 

Ensemble methodology basically works by weighting 
numerous individual classifiers and later combining them in 
order to obtain a new classifier that theoretically outperforms 
their individual instances. The use of different classifiers from 
various different learning algorithms is an effective method in 
addressing the diversity among classifiers since it has the 
potential in minimizing errors or increasing the prediction 
performance by basing on diverse approaches [29]. The 
purpose of ensemble methodology is therefore to build a 
predictive model through the integration of multiple models. 

Various fields of study have reported successful outcomes 
from the use of the ensemble method, such as in healthcare, 
information retrieval and statistics. Research of the ensemble 
method has greatly increased from the 1990s onwards. In order 
to improve the single model’s predictive performance. Based 
on the suggestion [30], an ensemble of neural networks 
configured similarly. Reference [31] laid out the foundations 
for the award-winning AdaBoost. Reference [31] and [32] 
algorithm revealed that through the combination of weak 
classifiers, a strong classifier in the probably approximately 
correct (PAC) sense can be generated. Reference [33] proposed 
a novel ensemble health care decision support method to assist 
an intelligent health monitoring system that utilizes a Meta 
classifier voting system made up of three base classifiers, 
which are the C4.5, random forest and random tree algorithms 
[32]. Reference [32] employed the ensemble neural network 
for breast cancer diagnosis, where the researchers combined 
several neural network outputs that are fused to construct an 
ensemble output using the simple averaging algorithm. From 
the study, they found that the ensemble neural network 
improved the generalization with less false positive malignant 
diagnoses while accelerating the learning process. 
Furthermore, [34] adapted multiple neural networks as a 
method to improve the robustness of predictions. They used 
several methods such as linear combinations and stacked 
generalizations to combine member networks. From the study, 
they found that two combination methods, i.e., selective 
combination and network combination with various structures, 
are the best performers that greatly improved model 
performance. 
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Rainfall forecasting gained the attention of many 
researchers’ as it has interesting challenges represented by the 
complexity that lies beneath predicting specific factors that are 
linked to rainfall like wind and humidity [21-23], [35-36]. 
Current techniques for rainfall prediction utilize only 
individual classifiers such as neural networks [21], the k-
nearest neighbours [22], support vector machine [22] and 
others. Based on encouraging results from the ensemble 
methods application in various fields, the ensemble 
classification technique is applied to rainfall prediction by 
leveraging three linear algebraic combiners: majority voting, 
average probability, and maximum probability. Since there 
have not been any applications of the ensemble method for 
rainfall forecasting in Malaysia, this research should serve in 
addressing numerous supervised learning methods for the 
above case. 

To assess the performance of our ensemble classification 
for rainfall prediction, we first fused all five machine learning 
models (i.e., the Naïve Bayes, C4.5, neural network, support 
vector machine, and random forest). Their combinations are 
based on three linear algebraic combiners, which are majority 
voting, average probability, and maximum probability. 
Equation (7), (8) and (9) describe their mathematical 
derivations. Voting is essentially the general blueprint for 
combining classifiers into ensembles. Voting schemes are 
divided into unweighted as well as weighted voting schemes. 
Unweighted schemes are including maximum probability, 
minimum probability, the product of probabilities, majority 
voting, and the average of probabilities. Whereas, weighted 
schemes encompass simple weighted voting, best–worst 
weighted voting, rescaled weighted voting, and quadratic best–
worst weighted voting [32-34]. 

This study only focuses on unweighted voting schemes. In 
principal, the k base classifier's binary outputs are being 
combined such that the output of the ensemble is chosen based 
on the highest number of votes. Any of the unweighted 
schemes are used to guide the classifiers. Equation (5) 
highlights the basic form of the classification ensemble 
calculation. 

𝐻(𝑋) = 𝑎𝑟𝑔𝑖 = 1 …𝑛 𝑚𝑎𝑥�𝐿𝐶𝑖(𝑋)�           (5) 

Here, 

i = 1..., n is the number of classes and 

J = 1...,m is the number of classifiers that are contained in 
ensemble method. 

LCi(X) is thus represented as any combination scheme in 
determining the final output of the classifier ensemble. 

A. Majority Voting 
A classification of unlabelled instances is performed in this 

combining scheme based on the class having the highest (the 
most frequent) number of votes. This method is employed most 
of the time as a combination technique to compare newly 
proposed techniques [37]. The majority voting is defined by (6) 
as follows: 

𝐻(𝑋) = 𝑎𝑟𝑔 𝑖 = 1 …𝑛 𝑚𝑎𝑥  {𝑆𝑖 = ∑ 𝐼(ℎ𝑖(𝑋)) = 𝑌 𝑚
𝑗=1       (6) 

B. Average of Probabilities 
Every classifier output a probability distribution vector over 

all classes that are relevant in the probabilistic approach, as 
shown by (7). The individual probability values are averaged 
(or summed) by all classifiers for every class, and the class that 
yields the maximum value is chosen at last [32]. 

𝐿𝐶𝑖(𝑋) = 1
𝑚
∑ 𝑃𝑗(𝑤𝑖 ∨ 𝑋)𝑚
𝑗=1             (7) 

C. Maximum Probabilities 
The maximum probability approach is almost identical to 

the average probability approach described above [32]. Here, 
the only difference is in the selection of a probability with the 
maximum value, as highlighted in (8) below: 

𝐿𝐶𝑖(𝑋) = 𝑚𝑎𝑥𝑗 = 1 …𝑚{𝑃𝑗(𝑤𝑖 ∨ 𝑋)}           (8) 

V. RESULTS AND DISCUSSION 
Table XVIII shows the comparison of the five classifiers 

using the three metrics based on the test dataset. From the 
table, the neural network outperforms the other techniques with 
a precision of 72.7%, a recall of 74.5%, and an F-Measure of 
73.2%. The predictive results obtained from the neural network 
will be compared to the ensemble rainfall prediction approach. 

We further discuss the experimental results that are 
obtained by applying the ensemble method with the three 
unweighted combiners (majority voting, average probability, 
and maximum probability) for rainfall prediction. This 
combination can be used to combine any of the five classifiers 
(Naïve Bayes, C4.5, support vector machine, neural networks, 
and random forest). The ensemble model works by combining 
classifiers from both groups of ‘weak’ and ‘strong’ classifiers, 
thereby forming an ensemble. Thus, in ensemble terms, the 
classifiers are weak learners, while the ensemble model is a 
strong learner. The evaluation of the ensemble methods is 
performed by the use of common information retrieval metrics 
as follow: recall, precision and F-Measure. The outcomes are 
based on a similar splitting mechanism for the dataset of 60% 
as training data and 40% as testing data. 

Tables XIX, XX and XXI highlight the test data results 
from multiple combinations and the three ensemble methods 
based on the selected metrics. The single ANN classifier is also 
included in the comparison for benchmark purposes. For the 
precision metric, Table XIX demonstrates that the combination 
of the SVM, C4.5 and ANN methods via the majority voting 
scheme yielded the highest precision accuracy at 76%. This 
result is followed closely by the same combined ML tools but 
with the average probability scheme close to 75% accuracy. 
There is generally a 2% to 3% increase in precision accuracy if 
the best ensemble methods are to be compared to the single 
ANN classifier. On the other spectrum, the full or 4 ML tool 
combination that was tested resulted in disappointing precision 
accuracy for most of the weighting schemes, and was far below 
the 73% threshold that was posed by the single ANN classifier, 
except for the full combined ML tools with the maximum 
probability ensemble scheme, which scored an unusual 71% 
accuracy for such combinations. 
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TABLE XIX. COMBINATION OF TOOLS AND ENSEMBLE RESULTS BASED ON 
PRECISION METRIC 

Combination 
Precision 

Majority 
Voting 

Average 
Probability 

Maximum 
Probability 

Combination of 
(SVM, ANN, NB, C4.5, 
and RF) 

53% 53% 71% 

Combination of  
(ANN, NB, C4.5, and RF) 53% 53% 53% 

Combination of  
(SVM, C4.5, and ANN) 76% 75% 71% 

Combination of  
(SVM, C4.5, and NB) 74% 73% 71% 

Combination of (NB and 
ANN) 70% 67% 67% 

Single classifier (ANN) 73% 

For the recall accuracy, Table XX highlights a similar 
pattern to the precision metric, whereby the combination of the 
SVM, C4.5 and ANN tools and the use of the majority voting 
and average probability schemes scored the highest recall 
accuracy at 77%. This is a 2% increase from the single ANN 
classifier, which was 75%. Except for the two combination or 
ensemble schemes that were mentioned above, the remaining 
combination or ensemble schemes all performed slightly worse 
than the ANN classifier. Table XXI highlights the F-Measure 
accuracy for the employed classifiers and combiners. Again, 
the same combination of the SVM, C4.5 and ANN tools based 
on both the majority voting and average probability ensemble 
schemes yield the best accuracy as compared to the other 
classifiers. It is noted that the remaining fusion classifiers and 
ensemble schemes scored well below the 73% of the ANN 
classifier. 

From the experiments, the fusion of the classifiers was 
shown to generally boost prediction diversity without 
compromising the individual prediction strengths of the 
individual classifiers. However, care needs to be considered, as 
not every fusion strategy works at improving performance over 
single classifiers. This is demonstrated by the fact that in all 3 
performance metrics tests, the fusion of the 4 classifiers and all 
classifiers degrade the performance accuracy regardless of the 
ensemble scheme that is chosen. On the other hand, the 
selected fusion classifiers based on the majority voting scheme 
are superior to the single classifiers. Particularly, a combination 
of three tools with the minimum presence of the SVM and 
C4.5 algorithms ensure that superior performance can be 
achieved. Table XXII illustrates the confusion matrix for a 
two-class classifier (i.e., Rain and No Rain). The matrix is a 
summary of the prediction results that are obtained from the 
best ensemble method (i.e., majority voting) for the rainfall 
classification problem on the test dataset (i.e., 632 instances). 
In the context of our study, the entries in the confusion matrix 
carry the following meaning: true positive (TP) indicates the 
number of instances that correctly predict that it will rain, 
which is equivalent to 438 days; true negative (TN) shows the 
number of instances that correctly predict that it will not rain, 

which is equivalent to 39 days; and false positive (FP) shows 
the number of instances that incorrectly predict that it will rain, 
which is equivalent to 133 days. FP is also known as false 
positive predictions. Finally, false negative (FN) indicates the 
number of instances that incorrectly predict that it will not rain, 
which equivalent to 22 days and is otherwise known as false 
negative predictions. 

TABLE XX. COMBINATION OF TOOLS AND ENSEMBLE RESULTS BASED ON 
RECALL METRIC 

Combination 
Recall 

Majority 
voting 

Average 
probability 

Maximum 
probability 

Combination of 
(SVM, ANN, NB, C4.5, and 
RF) 

73% 73% 68% 

Combination of 
(ANN, NB, C4.5, and RF) 73% 73% 73% 

Combination of 
(SVM, C4.5, and ANN) 77% 77% 68% 

Combination of 
(SVM, C4.5, and NB) 76% 73% 68% 

Combination of 
(NB and ANN) 73% 72% 72% 

Single classifier 
(ANN) 75% 

TABLE XXI. COMBINATION OF TOOLS AND ENSEMBLE RESULTS BASED ON 
F-MEASURE METRIC 

Combination 
F-Measure 

Majority 
voting 

Average 
probability 

Maximum 
probability 

Combination of 
(SVM, ANN, NB, C4.5, and 
RF) 

61% 61% 69% 

Combination of 
(ANN, NB, C4.5, and RF) 61% 61% 61% 

Combination of 
(SVM, C4.5, and ANN) 76% 75% 69% 

Combination of 
(SVM, C4.5, and NB) 63% 73% 69% 

Combination of 
(NB and ANN) 70% 68% 68% 

Single classifier 
(ANN) 73% 

TABLE XXII. CONFUSION MATRIX ON MAJORITY VOTING WITH 40% TEST 
SET 

Number of instances = 632 
Predicted 

Class:  
No rain 

Class: 
Rain Total 

Actual Class: No rain 39 133 172 

 Class: Rain 22 438 460 

 Total 61 571 632 
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VI. CONCLUSIONS 
Rainfall forecasting is a process to predict potential rainy 

locations by considering numerous factors like humidity, wind 
speed, level of water, and temperature. The common methods 
employed in rainfall forecasting are supervised machine 
learning methods in which predefined example data are first 
trained and then followed by the prediction using the testing 
data. The key challenge of these methods is in identifying 
suitable mechanisms, the sensitivity of the objective functions, 
and the dependency on treating features. These differences lead 
to inconsistent performances, making the selection process of a 
suitable method for rainfall prediction a task that is 
challenging. This paper proposes an improved method to 
develop long-term (i.e., monthly) and short-term (i.e., daily) 
weather forecasting models for rainfall predictions using the 
ensemble technique. Therefore, this paper proposes an 
improved method to develop long-term (i.e., monthly) and 
short-term (i.e., daily) ensemble weather forecasting models 
for rainfall predictions by using three linear algebraic 
combiners (i.e., majority voting, average probability and 
maximum probability) for combining five rainfall prediction 
models (i.e., the Naïve Bayes, C4.5, neural network, support 
vector machine, and random forest). By leveraging daily 
meteorological data in Selangor, Malaysia, over a period of 6 
years (from 2010 to 2015), 1581 instances were obtained and 
organized into two classes. The first is the ‘active rainfall’ class 
containing 428 instances, while the remaining instances are 
grouped as ‘no rainfall’. We have experimented a group of 
base algorithm models including the NB, SVM, ANN, RF and 
C4.5. From the analysis, all five ML techniques that were 
mentioned are shown to perform very well, although the ANN 
technique in particular is generally found to perform the best, 
while the NB technique is relatively the weakest. The study 
further explored the ensemble’s potential for further upper-
bound improvements in the rainfall prediction model. The 
ensemble experiment analysis revealed that the rainfall 
prediction is indeed enhanced using the ensemble method. 
Particularly, the ensemble method based on majority voting is 
shown to provide better predictive performance with high 
precision, recall, and F-Measures compared to other 
experimented algebraic combiners. Overall, the combiners 
have been demonstrated to be superior to single classification 
methods. Such results complement previous findings on ML 
methods in rainfall prediction and hence, our recommendation 
is to use ensemble ML algorithms as an effective approach for 
the above. It is hoped that the outcomes of this study may help 
to find suitable machine learning techniques that improve the 
performance of rainfall forecasting predictions. 
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