
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Presenting and Evaluating Scaled Extreme
Programming Process Model

Muhammad Ibrahim1, Shabib Aftab2, Munir Ahmad3, Ahmed Iqbal4, Bilal Shoaib Khan5
Muhammad Iqbal6, Baha Najim Salman Ihnaini7, Nouh Sabri Elmitwally8

Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan1, 2, 4
School of Computer Science, National College of Business Administration & Economics, Lahore, Pakistan2, 3, 6

Department of Computer Science, Minhaj University Lahore, Lahore, Pakistan5
Department of Computer Science, College of Science and Technology, Wenzhou Kean University, China7
Department of Computer Science, College of Computer and Information Sciences, Jouf University, KSA8

Department of Computer Science, Faculty of Computers and Artificial Intelligence, Cairo University, Egypt8

Abstract—Extreme programming (XP) is one of the widely
used software process model for the development of small scale
projects from agile family. XP is widely accepted by software
industry due to various features it provides such as: handling
frequent changing requirements, customer satisfaction, rapid
feedback, iterative structure, team collaboration, and small
releases. On the other hand, XP also holds some drawbacks,
including: less documentation, less focus on design, and poor
architecture. Due to all of these limitations, XP is only suitable
for small scale projects and doesn’t work well for medium and
large scale projects. To resolve this issue many researchers have
proposed its customized versions, particularly for medium and
large scale projects. The real issue arises when XP is selected for
the development of small scale and low risk project but gradually
due to requirement change, the scope of the project changes from
small scale to medium or large scale project. At that stage its
structure and practices which works well for small project
cannot handle the extended scope. To resolve this issue, this
paper contributes by proposing a scaled version of XP process
model called SXP. The proposed model can effectively handle
such situation and can be used for small as well as for medium
and large scale project with same efficiency. Furthermore, this
paper also evaluates the proposed model empirically in order to
reflect its effectiveness and efficiency. A small scale client
oriented project is developed by using proposed SXP and
empirical results are collected. For an effective evaluation, the
collected results are compared with a published case study of XP
process model. It is reflected by detailed empirical analysis that
the proposed SXP performed well as compared to traditional XP.

Keywords—Extreme Programming Process Model; XP;
modified XP; scaled XP; customized XP; empirical comparison;
empirical analysis

I. INTRODUCTION
Agile process models replaced the conventional and

traditional software development methodologies due to
effective features which were not available in conventional
models [34]. These features include: emphasis on customer
satisfaction, team collaboration and managing changing
requirements [20],[45],[50]. Agile models follow an iterative
and incremental way of development which delivers a high
quality software [2-3], [32],[46]. Agile process models are
backed by Agile Manifesto which is considered a parent

document of agile family. This document explains the
foundations of agile software development in the form of 12
basic principles and practices. These basic principles are about
frequent team communication, customer satisfaction,
managing frequent changing requirements even at later stages
of development and early delivery of partial working software
[1],[28],[31],[33],[35],[47],[48]. Many agile process models
are used by the software industry now a days such as: Extreme
Programming (XP), Scrum, Feature Driven Development
(FDD), and Dynamic System Development Method (DSDM)
[3],[5],[11],[37]. Extreme programming (XP) is one of
popular agile process models for the development of small
scale projects as well as widely used by the software industry
[5],[41],[42],[43],[51]. XP is a light weight approach for
software development, designed and developed by Kent Beck
in 2000 [6]. It develops a qualitative software in limited time
and lower cost by using some of the best engineering
practices, principles and values in a disciplined way. The XP
development life cycle (Fig. 1) has six phases: “Exploration
phase, Planning phase, Iteration to release phase,
Productionizing phase, Maintenance phase and Death phase”
[7],[12],[13],[38]. Exploration phase deals with the
requirement gathering and it is also responsible for the
selection of particular architecture for development. Project
planning phase deals with the overall planning, including:
number of iterations, no of requirements to be implemented in
each iteration, cost and time etc. Iteration to release phase
deals with the development of a workable software, this phase
may consists of one or more iterations. Productionizing phase
deals with the testing of developed module. Maintenance
phase deals with the addition of any new functionally (if
required) by keeping the old ones intact and finally death
phase deals with the completion of software as per client’s
requirement and ends with the release of software product. All
of these phases are backed by twelve best practices of
software engineering, including: “planning game, small
releases, metaphor, simple design, continuous testing,
refactoring, pair programming, collective ownership,
continuous integration, 40-hour work per week, on-site
customer and particular coding standards [8],[9],[10]. The
structure of XP process model along with the umbrella of
these 12 practices is best suited for small scale project and
also can handle frequently changing requirements very

163 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

effectively [4],[39],[40],[44]. However the structure of XP
cannot handle medium, complex and large scale projects
[13],[36],[49],[52]. To handle this issue, many researchers
have introduced improved versions of XP process models.
However real issue arises when XP is selected for the
development of small scale project and gradually the scope of
the project extends to medium or large scale project due to
clients requirements. To resolve this issue, this paper presents
Scaled Extreme Process (SXP) Model. The proposed model
can be used as an effective alternative of XP which can handle
small as well as medium and large scale projects. Moreover, in
the situation of sudden change in requirements and extension
of the scope of small scale project to medium or large scale
project, SXP can be effective as well. This research also

evaluates the proposed SXP with an empirical case study in
which a real time client oriented project is developed and
results are compared with another published case study where
XP is used for the development of client oriented small
project. Comparative analysis reflects the effectiveness of
proposed SXP process model.

This paper is further organized in the following sections.
Section II highlights and discusses some of the related studies.
Section III elaborates the problem definition. Section IV
presents the proposed SXP process model. Section V
empirically evaluates the proposed SXP. Section VI presents
the critical analysis on results. Section VII finally concludes
the paper.

Fig. 1. XP Process Model.

II. RELATED WORK
Many researchers have proposed modified versions of XP

process models to reduce its limitations, some of the related
studies are discussed here. Researchers in [14], customized the
conventional XP process model in order to resolve: design,
documentation and quality related issues. The proposed
customized model performs the activities regarding non-
functional requirements in a separate iteration. The proposed
version of XP has some drawbacks including the need of extra
staff members to refine each deliverable in each phase.
Moreover, this process model is not good for that project
which has higher interdependencies among subsystems. This
research also lacks the empirical validation of proposed
model. In [15], the researchers, proposed an extended iterative
maintenance life cycle using XP practices for software
maintenance. This approach uses RC (Request for Change)
stories and old software as an input and performs all the
phases & produce upgraded software. This study is validated
through academic projects. However, academic projects are
less complex than real-time oriented projects. In [16], the
researchers proposed a hybrid model named DXPRUM by
combining three agile process models DSDM, XP, and Scrum.
The DXPRUM is proposed in order to achieve various
features in one framework including: business solution,
project management, agile team management, and core
engineering practices. The proposed model is validated

through the empirical case study in [17]. The DXPRUM
process model performed much better as compared to DSDM.
Researchers in [18], adopted XP for the development of large
scale distributed project and introduced some new practices
such as: stand-up meetings, code control, visual indicators,
adaptive planning, XP project management, and code gallery.
In [19], the authors proposed a new solution for development.
It is a combination of seven principles of SOA and XP
practices. The proposed solution did not resolve the issue of
SOA complexities and did not sustain the agility of XP. In
addition, the proposed solution has lacked empirical proof. In
[20], the authors used Analytical Hierarchy (AHP) for the
CRC cards prioritization process. The APH helps the
developer to identify the most significant classes for simple
designs. However, the proposed model is not evaluated on real
time test cases. In [21], the author studied 40 different teams
that use extreme programming for the development of small
scale projects. This study provided comprehensive factors and
practices which provide positive effects on team performance
including: release planning, planning game, on-site customer,
small releases, and stand-up meeting. On the other hand the
researchers have also highlighted that unit testing, acceptance-
testing, test-first design (using TTD), pair programming, and
refactoring impacts negatively. In [22], the authors proposed
an integrated XP process model. This model has the best
engineering practices & management practices of XP, Scrum

164 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

and DSDM process model. They suggested a new role named
“Technical Writer”, who writes effective documentation that
enhances understandability and future maintenance. In [23],
the authors customized the XP process model for medium and
large scale projects. This proposed solution is appropriate for
parallel and incremental project development. Extended-
extreme programming is Omni-direction in nature and it has
five phases including the risk management phase. However,
this study did not provide statistical proof regarding large
scale project about parallel development. In [24], the author
proposed an optimization model that assists in the activity of
release planning in XP. The proposed solution essentially
supports the development team of XP and the client in the
release planning phase. In this model, the release plan is
developed based on stories and their relations along with the
priorities. However, it consumes a lot of time for data
collection which ultimately loses the agility.

In [25], the authors presented a controlled empirical case
study of XP and Waterfall methodology. Same project was
developed multiple times over five years. The purpose of this
research work is to evaluate the efficiency of the XP and
Waterfall process models. This research shows unexpected
same results of both process models. However, this research
has a lack of diversity of data source and data characteristics.
In [26], the researchers proposed a hybrid process model
named eXRUP for small to medium scale projects by
integrating XP and RUP. The proposed solution has been
validated through a controlled case study. However, the
proposed eXRUP has minimal interaction of programmers
with customers and needs higher management. In [27], the
authors proposed tailored extreme programming (TXP), a
simple version of the XP process model. The author removed
unnecessary practices and phases of the XP model to modify it
for small teams and small projects with predefined
requirements. In [29], the authors identified the need of
software process improvement (SPI) in small firms. These
small firms face the same SE challenges as large software
industries face about SPI. This research develops an SPI
structure for small firms by using XP process model. In [30],
the researcher introduced a modified XP for medium and large
scale projects with large team size. The proposed solution
extends the capability of the conventional XP by resolving the
design, and documentation related issues. A new phase named
“Analysis and risk management” is also introduced to handle
failure risks. The new XP model is validated through two case
studies on two independent software houses.

III. PROBLEM DEFINITION
XP process model was designed for small teams to

develop small scale projects having limited scope. In XP, the
collection of good engineering practices and simple SDLC
steps help to produce high quality software product within
scheduled time but with limited scope (small project). Many
researchers have explored the capabilities of XP and
customized its practices for various projects types (such as
medium and large) and nature (simple and complex) [30]. XP
is ideal for small scale project however issue arises when the
requirements of client constantly changes with the gradual
passage of time which increases the scope of project from
small to medium and large scale projects. In such cases, the

features of XP like simple design, less documentation and
limited testing and absence of proper change management
activities can create hurdles to manage the quality as well as
delivery of the product within specified time. To handle such
issue, this research presents Scaled XP process model which
works well for small scale to medium and large scale projects.
Proposed SXP can tackle the issue of change management in
such cases where project starts with limited scope but
gradually extends to medium and large scale projects due to
client’s frequently changing and increasing requirements.

IV. PROPOSED SOLUTION
This research proposes a customized XP process model

called Scaled Extreme programming (SXP) for small to
medium and large scale projects. The proposed solution is
equally suitable for small, medium and large scale software
projects, unlike the conventional XP process model. The SXP
personalized the current practices of XP model to eliminate its
limitations without effecting its agility. These limitations are
eliminated by adding new phases and practices in SXP. Some
effective activities which are included in the proposed model,
include: managing the Risk Register, addition of UML
artifacts, Effective Testing Mechanism, Formal Refinement
Techniques and a formal procedure of Requirement Change
Management (RCM). The RCM provides management
support to the development team and customers to produce
software products in a controlled & monitored environment.
The workflow of SXP consists of seven phases as shown in
Fig. 2. These phases are named as: Start Phase, Planning &
Analysis Phase, Design Phase, Development phase,
Acceptance Phase, Refinement Phase, and Release Phase.

A. Start Phase
The first phase of the SXP model is similar to the first

phase of XP Model. In this phase, requirements are gathered
from the clients by writing user stories. Writing story card is a
very effective XP practice. User stories provide a high-level
summary of the requirements for the desired system, and these
are used as a primary input into estimating and scheduling.
However, these user stories do not contain any technical detail
of the desired software. In addition, Non Functional
Requirements (NFR) are also explored with customer by
keeping in view the Functional Requirements.

The extraction of NFR is also vital to the success of the
project as these are extracted in order to get rid of undesirable
results like unsatisfied client, as well as schedule & budget
overruns, etc.

B. Planning and Analysis Phase
This phase consists of very important activities for the

initiation of project and initiates with the input of detailed
requirements which are further explored to estimate the risk,
time, cost, budget and effort. Essential decisions regarding
planning are made & documented including: Iteration plan,
team size, estimation of cost, budget & effort. Activities of
RCM are assigned to a team. Identification of the potential
risk, Monitoring the risk and perform any actions required to
mitigate the risk are included in the activities of RCM. Risk
registers are used to document the complete actions during the
process of risk management.

165 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Fig. 2. Scaled Extreme Programming.

C. Design Phase
The design phase of SXP initiates with the development of

UML diagrams including: Use Case, Sequence, and Class.
These diagrams aim to help the developers to understand the
functionalities of system in an easy way. These diagrams also
help in change management activity. Moreover, by keeping in
view the developed UML diagrams, test planning is
completed. During test planning, test classes are written that
verifies whether the certain pieces of code & classes are
properly working or not.

D. Development Phase
In this phase, designed artifacts are transformed into

working software or modules. The UML artifacts and test
classes are the input of this phase. The design artifacts help
developers to code in object oriented languages. The basic
activities performed in this phase include: Coding, Functional
Testing, and Integration & Integration Testing. After
completion of each component, functional testing is performed
to check and analyze the working of that developed
component. If the developed component is working fine then
it is integrated with previously developed component and then
integration testing is performed in order to check whether the
integrated components are working fine or not.

E. Acceptance Phase
It is a short phase in which testing is done by the tester in

the presence of customer. The tester is a member of the
development team who is assigned the task of testing the
product externally. Black-Box testing is performed to examine
the functionality and features of the system to meet client
requirements. If the tester found any error during the test then
this phase is aborted and refinement phase is initiated.

However, if the tester passes the software then, the product is
ready for the acceptance testing which is performed by the
customer. This activity is essential and crucial in order to
satisfy the customer. Moreover in this phase, the feedback is
collected on the software and if the new request or
dissatisfaction is reflected by the customer then it will be
further handled and catered through RCM.

F. Refinement Phase
The phase initiates if the issues are found in Black-Box

testing. The refinement starts with a formal meeting in which
a detail review is performed to check the stories, developed
artifacts, test classes, and codes in order to identify the issues.
At the end of review meeting, identified issues are
documented and resolved through an implementation plan.
RCM takes necessary action against the refinement decision.
In addition, some important documents are also updated by
RCM like, Risk register, Change request register and design.

G. Release Phase
This is the last phase, in this stage software is ready to

release or deliver to the client. The team moves to this stage
when all user stories are implemented, and the customer is
satisfied with the software. In addition, training, and
documentation are provided to the client after deployment.

H. Role and Responsibilities of RCM
Requirement Change Management (Fig. 3) is a supporting

framework of SXP. It is introduced to cater the change
requests properly without dropping the team productivity. The
RCM can consist of one or more team members.

166 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Fig. 3. Requirement Change Management.

Some key duties of RCM are as follows.

• It directly interacts with the customer and the team.

• It collects requirements from the customers in case of
change request or requirement for new feature.

• It provides support to the customer and the
development team in the entire project cycle.

• It records in change request register if 1) client wants
new features 2) clients want to change existed features
2) client is not satisfied by acceptance testing.

• If errors are found in the acceptance phase by tester
then it records the changes in change request register.

V. EMPIRICAL EVALUATION OF PROPOSED SXP
This research proposed a modified version of XP process

model named SXP in order to resolve the issues of

conventional XP. To analyze the performance of proposed
model, an empirical case study is conducted in which a real
time client oriented project is developed by using the proposed
SXP. The case study was conducted in a software house
situated in Karachi, capital of Sindh Province, Pakistan. All of
the team members, who participated in the case study have
higher degrees in computer science discipline (BS or MS)
along with software development experience of at least one
year. During the development, data of various software
metrics are collected for empirical analysis. For effective
evaluation, the results of SXP case study are compared with
another case study presented in [26], where conventional XP
process model was used to develop a small scale project.
Characteristics of both the case studies are reflected in Table I.

XP case study was conducted by the students of computer
science programs of BS and MS level with no or little
knowledge of agile development. However a training session
of 10 days was organized before the development. The reason
of choosing the XP case study for comparison with the case
study of proposed SXP is to critically analyze the performance
of SXP with empirical data, so that any gap or deficiency can
further be identified for further improvement. This study
compares the proposed SXP with XP process by providing
detailed empirical results of all of the iterations as per the
guidelines provided by [10]. Both of the case studies (SXP
and XP) are empirically compared in Table II. First column of
the table shows the serial no whereas second column reflects
the particular metrics for which the data was collected during
the development for comparison. These metrics include:
development time, cost, productivity etc. All of these
measures are considered as an effective way to analyze the
quality of any process model. The columns (Release 1 to
Release 4) shows release wise measures/values of the
attributes of column 2 and finally the last columns reflect the
aggregated/average values of all the releases.

TABLE I. SELECTED CASE STUDIES

Characteristics SXP XP

Product Type Social Media platform Real Estate Management

Size Small Small

Iterations 4 3

Programming Approach Object Oriented -

Language JavaScript PHP

Documentation Ms Office & JS Doc MS Office

Testing Desktop & Mobile browser testing -

Project Complexity Type Average Average

Team Size 4 Members 3 Members

Development Environment Visual Studio, Ionic SDK & SQL Macromedia Dream Viewer and Net Beans

Other Tools MS Visio MS Visio

167 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

TABLE II. EVALUATION OF XP AND SXP PROCESS MODEL

No Parameters
Release 1 Release 2 Release 3 Release 4 Total

XP SXP XP SXP XP SXP SXP XP SXP

1 Completion time (Week) 2 1 1 1 1 1 1 4 4

2 Number of Modules 2 8 1 5 1 7 3 4 23

3 No of User Stories 17 1 13 2 11 2 2 41 7

4 Budget Effort in (h) 240 128 120 128 120 128 128 480 512

5 Actual Effort in (h) 210 120 90 120 90 96 120 390 456

6 No. of user Interface 2 2 1 3 1 2 2 4 9

7 No of class designed 46 10 34 8 30 4 4 110 26

8 Total Line of Code 4500 5300 3200 3900 3300 2900 3200 11000 14700

9 KLOC 4.5 5.3 3.2 3.9 3.3 2.9 3.2 11 14.7

10 No of integration 20 14 12 12 12 18 6 44 50

11 Post Release Defects 2 3 2 1 4 2 1 8 7

12 Post Release Defects per KLOC 0.44 0.56 0.62 0.25 1.212 0.68 0.31 0.727 0.47

13 Productivity=
LOC / Actual effort 21.4 44.1 35.6 32.5 36.7 30.2 26.6 28.2 32.2

14 No of prerelease change requests 3 2 2 3 2 1 3 7 9

15 Total change requests per KLOC 0.66 0.37 0.62 0.76 0.60 0.34 0.93 0.636 0.61

16 Time to implement changes in hour 4 2 3 2 1 1 5 8 10

VI. CRITICAL ANALYSIS
Some significant differences are reflected in the

performance of both models (XP and SXP) in Table II.
Complexity level of both the projects is different as reflected
by: KLOC, No of code integration, No of modules, and No of
interfaces. “KLOC” and “Actual Effort” both are considered
as important software metrics to analyze the performance of
software process models. KLOC developed during SXP case
study and XP case study is reflected in Fig. 4. Actual Effort
(h) in both the case studies is reflect in Fig. 5. Release wise
Actual Effort in both the case studies is also shown in Fig. 6.
In XP project, 11 KLOC were produced with 390 hours of
actual effort. However during the development of SXP
project, 14.7 KLOC were produced with 456 hours of actual
effort. It can be seen that the proposed SXP model slightly
performed better in these metrics as 3.7 more KLOC were
developed with 66 more hours of actual effort as compared to
XP. However, it should also be noted that in XP project, there
were 3 team members whereas in SXP, there are 4 team
members.

During XP case study, 41 requirements were implemented
however in SXP case only 7 requirements are implemented
(Fig. 7). It should also be noted here that no of modules
designed and developed during the implementation of 41
requirements of XP case study were only 4 as compared to 23
in SXP case study. Moreover, 4 interfaces were developed in
XP case study as compared to 9 in SXP. Another important
metric which should be discussed along with “No of
implemented requirements” is the “No of code integrations”.
There were 44 integrations in XP as compared to 50 in SXP.
So it can be analyzed that only the no of requirements
implemented in a project cannot reflect the performance of a

model as client can write only one requirement which might
have many modules, interfaces and backend integrations. The
performance of SXP is better in all of these metrics as the
team of SXP done more work as compared to the team of XP.

The “No of designed classes” is also an important software
metric to analyze the performance of teams especially when
this metric is analyzed along with developed KLOC. In XP
case study, 110 classes were designed as compared to 26 in
SXP (Fig. 8). As the development approach in SXP was object
oriented so the very less no of classes with higher no of KLOC
is justified. Object oriented principles used in SXP case study
is also one of the reasons of good performance as it increases
the re usability of code with an effective and efficient way.

The defects which are discovered by the client after the
release is an important quality parameter which also reflects
the customer satisfaction. The software application developed
with XP reflected 8 defects as compared to 7 in SXP case
study (Fig. 9). This metric raises the questions on the quality
assurance activity and particularly the testing strategy of
software process model. In SXP, efforts are made to produce
the quality software even it performed better than XP
(reflected from the implemented case study) but 7 defects after
the release are not acceptable. However, this issue can be
raised if the testing mechanism of the model is not
implemented properly by the team.

Software productivity is a crucial metric to analyze the
performance of any software process model. It reflects the
effort of whole development team during the project. It shows
the amount of effort, the team has put to complete the project
within defined time. However in order to analyze the
effectiveness and efficiency of the model, this single
parameter is not enough, instead all of the software metrics

168 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

shown in Table II collectively reflect the performance of
model. The team of XP reflected the productivity 28.2 as
compared to 32.2 in SXP (Fig. 10, Fig. 11). The SXP model
produced more lines of code in less time. If the Productivity is
analyzed by keeping in view the complete list of parameters in
each of the given iterations then it can be said that the
proposed SXP performed well.

Fig. 4. KLOC.

Fig. 5. Actual Work Effort.

Fig. 6. Releasee Wise Actual Work Effort.

Fig. 7. User Stories.

Fig. 8. No of Classes.

Fig. 9. Post Release Defects.

The projects implemented in both the case studies were
same in nature (web based) but different in complexity level.
The project implemented with SXP was complex as compared
to XP project. Moreover development language, project size
and no of team members were also different. Results of all the

169 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

quality parameters reflect the effectiveness of proposed SXP
model however 7 defects after the release of complete
software product raises the question on quality assurance
activities. There might be other reasons of these defects
including the human error of testing personnel or lack of
quality test cases etc.

Fig. 10. Productivity.

Fig. 11. Release wise Productivity.

VII. CONCLUSION
XP is considered as one of the widely used agile process

model by the software industry for the development of small
scale projects. Its practices include: quick response to
changing requirements, customer satisfaction, rapid feedback,
team collaboration, and small releases. However, besides the
featured practices, XP has a major drawback as well and that
is: its ability to handle only small projects. To resolve this
issue many researchers have proposed its customized versions
specifically to handle medium and large scale projects.
However real problem arises when the conventional XP
process is selected for a small scale and low risk project but
with the gradual passage of time, the frequently changing
requirements due to modern business change drags the scope
of project from small scale to medium or even large scale. At
this stage, some characteristics of conventional XP don’t let its
life cycle to handle medium or large projects. The
characteristics include: poor architectural structure, lack of
documentation, less focus on design and absence of proper
change management procedure. This research has proposed a

scaled version of XP process model which can handle such
situations very effectively. Moreover, the proposed model can
be equally effective for small, medium and large scale
projects. In the proposed model, more focus is given on
designing, testing and particularly on change management
procedure. Due to these features, SXP can handle any
extension in the scope of the project. An empirical evaluation
is also performed in order to analyze the effectiveness of
proposed SXP. For this purpose, a case study is conducted in
which a real time client oriented project is developed.
Empirical results of software quality metrics are collected
during the development and then compared with another
published case study in which XP was used for the
development of a client oriented project. A detailed empirical
analysis is performed and it is observed that the proposed SXP
performed well almost in every important quality parameter.
However to further evaluate the proposed model, medium or
large complex project should be chosen for development.

REFERENCES
[1] S. Ashraf and S. Aftab, “Latest Transformations in Scrum: A State of

the Art Review,” Int. J. Mod. Educ. Comput. Sci., vol. 9, no. 7, 2017.
[2] L. Williams, “Agile software development methodologies and

practices,” in Advances in computers, vol. 80, pp. 1–44, 2010.
[3] C. R. Kavitha and S. M. Thomas, “Requirement gathering for small

projects using agile methods,” IJCA Spec. Issue Comput. Sci. Dimens.
Perspect. NCCSE, 2011.

[4] J. Newkirk, “Introduction to agile processes and extreme programming,”
in Proceedings of the 24th International Conference on Software
Engineering. ICSE 2002, 2002, pp. 695–696.

[5] A. Begel and N. Nagappan, “Usage and perceptions of agile software
development in an industrial context: An exploratory study,” in First
International Symposium on Empirical Software Engineering and
Measurement (ESEM 2007), pp. 255–264, 2007.

[6] K. Beck, Extreme programming explained: embrace change. addison-
wesley professional, 2000.

[7] F. Anwer, S. Aftab, S. S. M. Shah, and U. Waheed, “Comparative
Analysis of Two Popular Agile Process Models: Extreme Programming
and Scrum,” Int. J. Comput. Sci. Telecommun., vol. 8, no. 2, pp. 1–7,
2017.

[8] M. N. Swamy, L. M. Rao, and M. P. KS, “Component Based Software
Architecture Refinement and Refactoring Method into Extreme
Programming,” architecture, vol. 5, no. 12, 2016.

[9] S. Ashraf and S. Aftab, “Scrum with the Spices of Agile Family: A
Systematic Mapping,” Mod. Educ. Comput. Sci., vol. 9, no. 11, 2017.

[10] S. Aftab, Z. Nawaz, F. Anwer, M. Ahmad, A. Iqbal, A. A. Jan, and M.
S. Bashir, “Using FDD for small project: An empirical case study,” Int.
J. Adv. Comput. Sci. Appl., vol. 10, no. 3, pp. 151–158, 2019.

[11] J. A. J. Builes, D. L. R. Bedoya, and J. W. B. Bedoya, “Metodología de
desarrollo de software para plataformas educativas robóticas usando
ROS-XP,” Rev. Politécnica, vol. 15, no. 30, pp. 55–69, 2019.

[12] T. Saeed, S. S. Muhammad, M. A. Fahiem, S. Ahamd, M. T. Pervez, and
A. B. Dogar, “Mapping Formal Methods to Extreme Programming
(XP)–A Futuristic Approach,” Int. J. Nat. Eng. Sci., vol. 8, no. 3, pp.
35–42, 2014.

[13] F. Anwer and S. Aftab, “SXP: Simplified Extreme Programing Process
Model,” Int. J. Mod. Educ. Comput. Sci., vol. 9, no. 6, p. 25, 2017.

[14] M. R. J. Qureshi and J. S. Ikram, “Proposal of Enhanced Extreme
Programming Model,” Int. J. Inf. Eng. Electron. Bus., vol. 7, no. 1, p.
37, 2015.

[15] J. Choudhari and U. Suman, “Extended iterative maintenance life cycle
using eXtreme programming,” ACM SIGSOFT Softw. Eng. Notes, vol.
39, no. 1, pp. 1–12, 2014.

[16] M. Fahad, S. Qadri, S. S. Muhammad, and M. Husnain, “Software
Quality Assurance of Medium Scale Projects by using DXPRUM
Methodology,” Int. J. Nat. Eng. Sci., vol. 8, no. 1, pp. 42–48, 2014.

170 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

[17] M. Fahad, S. Qadri, S. Ullah, M. Husnain, R. Qaiser, S. Ahmed, W. A.
Qureshi, and S. S. Muhammad, “A Comparative Analysis of DXPRUM
and DSDM,” IJCSNS, vol. 17, no. 5, p. 259, 2017.

[18] E. Abdullah and E.-T. B. Abdelsatir, “Extreme programming applied in
a large-scale distributed system,” in 2013 International Conference On
Computing, Electrical And Electronic Engineering (Icceee), 2013, pp.
442–446.

[19] F. Carvalho and L. G. Azevedo, “Service agile development using XP,”
in 2013 IEEE Seventh International Symposium on Service-Oriented
System Engineering, pp. 254–259, 2013.

[20] S. Alshehri and L. Benedicenti, “Prioritizing CRC cards as a simple
design tool in extreme programming,” in 2013 26th IEEE Canadian
Conference on Electrical and Computer Engineering (CCECE), 2013,
pp. 1–4.

[21] S. Wood, G. Michaelides, and C. Thomson, “Successful extreme
programming: Fidelity to the methodology or good teamworking?,” Inf.
Softw. Technol., vol. 55, no. 4, pp. 660–672, 2013.

[22] S. Sultana, Y. H. Motla, S. Asghar, M. Jamal, and R. Azad, “A hybrid
model by integrating agile practices for pakistani software industry,” in
2014 International Conference on Electronics, Communications and
Computers (CONIELECOMP), 2014, pp. 256–262.

[23] M. R. J. Qureshi, “Agile software development methodology for
medium and large projects,” IET Softw., vol. 6, no. 4, pp. 358–363,
2012.

[24] G. van Valkenhoef, T. Tervonen, B. de Brock, and D. Postmus,
“Quantitative release planning in extreme programming,” Inf. Softw.
Technol., vol. 53, no. 11, pp. 1227–1235, 2011.

[25] F. Ji and T. Sedano, “Comparing extreme programming and Waterfall
project results,” in 2011 24th IEEE-CS Conference on Software
Engineering Education and Training (CSEE&T), 2011, pp. 482–486.

[26] G. Rasool, A.Shabib, H.Shafiq, and S.Detlef, "eXRUP: A Hybrid
Software Development Model for Small to Medium Scale Projects.",
Journal of Software Engineering and Applications, vol. 6, pp. 446-457,
2013.

[27] F. Anwer, S. Aftab, and I. Ali, “Proposal of Tailored Extreme
Programming Model for Small Projects,” Int. J. Comput. Appl., vol.
171, no. 7, pp. 23–27, 2017.

[28] S. Alam, S. Nazir, S. Asim, and D. Amr, “Impact and Challenges of
Requirement Engineering in Agile Methodologies: A Systematic
Review,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 4, pp. 411–420,
2017.

[29] M. Y. Al-Tarawneh, M. S. Abdullah, and A. B. M. Ali, “A proposed
methodology for establishing software process development
improvement for small software development firms,” Procedia Comput.
Sci., vol. 3, pp. 893–897, 2011.

[30] M. R. J. Qureshi, “Estimation of the New Agile XP Process Model for
Medium-Scale Projects Using Industrial Case Studies,” Int. J. Mach.
Learn. Comput., vol. 3, no. 5, pp. 393–395, 2013.

[31] S. Ashraf and S. Aftab, “Pragmatic Evaluation of IScrum & Scrum,” Int.
J. Mod. Educ. Comput. Sci., vol. 10, no. 1, pp. 24–35, 2018.

[32] F. Anwer, S. Aftab, U. Waheed, and S. S. Muhammad, “Agile software
development models tdd, fdd, dsdm, and crystal methods: A survey.”
Int. J. Multidiscip. Sci. Eng., vol. 8, no. 2, pp. 1–10, 2017.

[33] S. Aftab, Z. Nawaz, M. Anwar, F. Anwer, M. S. Bashir, and M. Ahmad,
“Comparative Analysis of FDD and SFDD,” Int. J. Comput. Sci. Netw.
Secur., vol. 18, no. 1, pp. 63–70, 2018.

[34] S. Ashraf, “IScrum: An Improved Scrum Process Model,” Int. J. Mod.
Educ. Comput. Sci., vol. 9, no. 8, pp. 16–24, 2017.

[35] Z. Nawaz, S. Aftab, and F. Anwer, “Simplified FDD Process Model,”
Int. J. Mod. Educ. Comput. Sci., vol. 9, no. 9, pp. 53–59, 2017.

[36] S. Aftab, Z. Nawaz, F. Anwer, M. S. Bashir, M. Ahmad, and M. Anwar,
“Empirical evaluation of modified agile models,” Int. J. Adv. Comput.
Sci. Appl., vol. 9, no. 6, pp. 284–290, 2018.

[37] F. Anwer and S. Aftab, “Latest Customizations of XP: A Systematic
Literature Review,” Int. J. Mod. Educ. Comput. Sci., vol. 9, no. 12, pp.
26–37, 2017.

[38] F. Anwer, S. Aftab, M. S. Bashir, Z. Nawaz, M. Anwar, and M. Ahmad,
“Empirical Comparison of XP & SXP,” Int. J. Comput. Sci. Netw.
Secur., vol. 18, no. 3, pp. 161–167, 2018.

[39] M. R. J. Qureshi, “Empirical Evaluation of the Proposed eXSCRUM
Model-Results of a Case Study,” Int. J. Comput. Sci. Issues, vol. 8, no.
3, pp. 150–157, 2011.

[40] Z. Mushtaq and M. R. J. Qureshi, “Novel Hybrid Model: Integrating
Scrum and XP,” Int. J. Inf. Technol. Comput. Sci., vol. 4, no. 6, pp. 39–
44, 2012.

[41] M. R. J. Qureshi, “An Evaluation of the Improved XP Software
Development Process Model,” Strategy, vol. 20, no. 2, pp. 79–82, 2008.

[42] S. Kazi, M. S. Bashir, M. M. Iqbal, Y. Saleem, M. R. J. Qureshi, and S.
R. Bashir, “Requirement change management in agile offshore
development (RCMAOD),” Sci. Int., vol. 26, no. 1, pp. 131–138, 2014.

[43] M. R. Jameel Qureshi, “Evaluating the Quality of Proposed Agile
XScrum Model,” Int. J. Mod. Educ. Comput. Sci., vol. 9, no. 11, pp. 41–
48, 2017.

[44] A. I. Khan, M. R. J. Qureshi, and U. A. Khan, “A Comprehensive Study
of Commonly Practiced Heavy & Light Weight Software
Methodologies,” no. February, 2012.

[45] M. R. J. Qureshi and S. A. Hussain, “An Improved XP Software
Development Process Model,” SCIENCE INTERNATIONAL-
LAHORE, vol. 20, no. 1, 2012.

[46] M. R. Jameel Qureshi and M. Kashif, “Adaptive Framework to Manage
Multiple Teams Using Agile Methodologies,” Int. J. Mod. Educ.
Comput. Sci., vol. 9, no. 1, pp. 52–59, 2017.

[47] R. J. Qureshi, M. O. Alassafi, and H. M. Shahzad, “Lean Agile
Integration for the Development of Large Size Projects,” Int. J. Mod.
Educ. Comput. Sci., vol. 11, no. 5, pp. 24–33, 2019.

[48] R. J. Q. M and Z. Abass, “Long Term Learning of Agile Teams,” Int. J.
Softw. Eng. Appl., vol. 8, no. 6, pp. 01–18, 2017.

[49] M. R. J. Qureshi and A. Barnawi, “Kinect Based Electronic Assisting
System to Facilitate People with Disabilities Using KXPRUM Agile
Model,” Life Sci. J., vol. 11, no. 10, pp. 56–62, 2014.

[50] M. Rizwan Jameel Qureshi, “Comparison of Agile Process Models to
Conclude The Effectiveness for Industrial Software projects,” Sci. Int.,
vol. 28(5), no. November-December, pp. 5119–5123, 2016.

[51] M. R. J. Qureshi and S. A. Hussain, “A reusable software component-
based development process model,” Adv. Eng. Softw., vol. 39, no. 2, pp.
88–94, 2008.

[52] S. U. Nisa and M. R. J. Qureshi, “Empirical Estimation of Hybrid
Model: A Controlled Case Study,” Int. J. Inf. Technol. Comput. Sci.,
vol. 4, no. 8, pp. 43–50, 2012.

171 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work
	III. Problem Definition
	IV. Proposed Solution
	A. Start Phase
	B. Planning and Analysis Phase
	C. Design Phase
	D. Development Phase
	E. Acceptance Phase
	F. Refinement Phase
	G. Release Phase
	H. Role and Responsibilities of RCM

	V. Empirical Evaluation of Proposed SXP
	VI. Critical Analysis
	VII. Conclusion

