
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 11, 2020

463 | P a g e

www.ijacsa.thesai.org

Permission Extraction Framework for Android

Malware Detection

Ali Ghasempour
1
, Nor Fazlida Mohd Sani

2
, Ovye John Abari

3

Department of Computer Science, Universiti Putra Malaysia

43400 UPM Serdang, Selangor, Malaysia

Abstract—Nowadays, Android-based devices are more

utilized than other Operating Systems based devices. Statistics

show that the market share for android on mobile devices in

March 2018 is 84.8 percent as compared with only 15.1 percent

iOS. These numbers indicate that most of the attacks are

subjected to Android devices. In addition, most people are

keeping their confidential information on their mobile phones,

and hence there is a need to secure this operating system against

harmful attacks. Detecting malicious applications in the Android

market is becoming a very complex procedure. This is because as

the attacks are increasing, the complexity of feature selection and

classification techniques are growing. There are a lot of solutions

on how to detect malicious applications on the Android platform

but these solutions are inefficient to handle the features

extraction and classification due to many false alarms. In this

work, the researchers proposed a multi-level permission

extraction framework for malware detection in an Android

device. The framework uses a permission extraction approach to

label malicious applications by analyzing permissions and it is

capable of handling a large number of applications while keeping

the performance metrics optimized. A static analysis method was

employed in this work. Support Vector Machine (SVM) and

Decision Tree Algorithm was used for the classification. The

results show that while increasing input data, the model tries to

keep detection accuracy at an acceptable level.

Keywords—Malware detection; android device; operating

system; malicious application; machine learning

I. INTRODUCTION

In recent time, Android is the most famous platform for
mobile devices [1]. Saving and storing confidential data such
as banking information or contact numbers is part of every
mobile device. Hence providing a barrier between these
information and an attacker is highly needed. Nowadays
antiviruses are greatly developed and provide a wide range of
options based on user needs. However, studies show most
Android users do not rely on antiviruses to secure their phones
[2]. So, this can be a great motivation for the attacker to focus
on the Android platform. Kaspersky, which is one of the
biggest security solutions company released information
related to malicious activity on the Android platform in 2018.
Based on the statistics, 5,730,916 malicious packages were
detected by their lab [3]. Thus, protecting Android devices
from misuse or any malicious application is important and
needed.

Mobile malware can be classified into three (3) groups [4].
These are Malware, Grayware, and Spyware. The Malware
focuses on gaining access to personal data or damaging to the

hardware (mobile device). One of the main aims of Malware
attacks is unprivileged access to user personal information.
Malware attacks are SMS, Bluetooth, GPS, and Root attacks.
SMS attack is mostly related to phishing and adware. In
Bluetooth attack, an attacker can steal user personal
information or location services. GPS attacks can compromise
GPS devices on mobile phones to steal user location. In Root
attack, an attacker can get privileged access to the phone
operating system to install or remove applications. Grayware
is an attack that mostly focuses on the marketing side without
any damaging to phone or user data. Spyware is the most
frequent type of attack related to the mobile phone which
steals user data and sends it to an unwanted application rather
than the original one. Android malware can further be
specifically categorized into Worm, Trojan, Back-doors,
Botnet, Spyware and Ransomware [5].

To analyze the behavior of application in the Android
platform, two methods of analysis are commonly used. These
are Dynamic and Static analysis [5]. Behavioral or dynamic
focus on application behavior during run time. For example,
requested permissions while an application is running can
determine application intend. Additionally, a system call is
one of the main features which can be measure for application
behavior in runtime. To address why system call can be
named as dynamic analysis, an Android operating system is
based on Linux. A system call is provided by the application
to request specific resources whether hardware or library from
Linux kernel. Requesting irrelevant resources for an
application can be marked as suspicious activity. [6].

The static analysis is mostly applicable for analyzing
application by disassemble package and extracting source.
Like dynamic analysis, different approaches exist in static
analysis. Some researches focused on finding a sequence of
op-code that reflects the malicious activity. The reason why
op-code can be named as a feature is that every instruction in
the computer program follows a specific structure. In this
structure op-code determine the action of this instruction and
the rest is an address in memory. Malicious packages may
follow the same action in instruction, and so, op-code can be a
good classifier for detection.

Permission is a famous feature for Android malware
detection and it expose the exact intent of the application. It is
designed to protect user privacy on the Android platform.
Permission is requested by an application to authorize itself to
access specific hardware or software resource. For instance,
the sensitive user data (such as SMS or contacts) or system
features (such as a camera or internet). Based on application

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 11, 2020

464 | P a g e

www.ijacsa.thesai.org

nature, the system may grant permission or ask the user to
grant it. Basically, no application has the authorization to
access or read other application data, system files, and user
private data (such as SMS). Details related to permission are
discussed in the next section. Fig. 1 illustrates how Android
malware can be categorized based on different methods of
analysis.

In Malware detection, after the feature selection phase,
designing the model using real-world input sample data is the
next phase. In the design phase, different statistical and
mathematical techniques are used to prune unnecessary
features from input data as well as to highlight selected
features. A well-structured model can improve detection
accuracy. For the classification phase, existing works mostly
used machine learning, deep learning, and statistical methods
to carried out the classification. Although most of the
techniques are based on mathematics but the terms are
different.

Machine learning is one of the basis and famous
techniques used in the classification phase. It is a general term
and contains many different algorithms inside. The main idea
is to design a model based on known input data to predict
unseen input data. In Machine learning, we try to predict as
precious as possible for unknown input data which is called
test data. Most of the algorithm follows two steps; train and
test. In the training phase, the machine tries to make a relevant
model based on labelled input data and whereas, in the test
phase, the machine will predict based on its knowledge of
previous learning. Moreover, machines may work on an
unforeseen situation where the train phase does not exist.
Therefore, machines try to find a pattern to distinguish
between objects. Two main machine learning techniques are
classification (Supervised learning) and clustering
(Unsupervised learning) [7]. Supervised learning uses labelled
data for the classification. Here, the features need to be
defined by the operator, and results are described through the
mapping of input to output by rules that are provided by the
supervisor. Unsupervised learning focuses on finding a pattern
in unlabelled or not fully labelled data. The results mostly are
the grouped of input data. In clustering problems, machines
try to group data with the same features instead of classifying
them.

Fig. 1. The different Methods in Android Malware Detection.

Recently, deep learning has been used for classification. In
deep learning, instead of focusing on linear analysis, we target
multiple levels of abstraction. Data representation in each
layer transfers to the next level to achieve a more accurate
level of abstraction for input data. Also in this method, feature
selection is used to improve the accuracy [8]. However, one of
the drawbacks of the deep learning method is that it uses a lot
of resources and takes a long time due to the high level of
decomposition to complete the classification. The statistical
method is used for the classification and to differentiate
between applications. The statistical model uses less
computational resources than machine learning techniques [9].

In this work, the authors focused on permission as an input
feature. Because we have only one feature to analyse, the
model is designed based on binary classification. The
proposed model used different statistical techniques to boost
computation while keeping accuracy high. Permission Support
and Permission Ranking were used in the early steps of this
model. Principal Component Analysis (PCA) was used to find
different views of permission correlation. Dimensionally
reduction using Kaiser and Cumulative techniques was
implemented to select the most significant permissions.
Selected permissions were compared to the results of Li [10]
to select similar permission. Also, separate analysis has been
done on our method without any overlap with the existing
results. The last phase of this work focused on classification
where Supervised Machine Learning approaches (Support
Vector Machine and Tree-based algorithm) were used for the
classification because of their popularity. In summary, the
main contributions of this paper are as follows:

Proposed a multi-level permission extraction framework
that improved malware detection accuracy in Android devices.

The framework designed was able to handle a large
number of applications while keeping the performance metrics
optimized.

The organization of the paper is as follows. Section 2
presents the literature review or related work. Section 3 gives
the details about the methodology used. Section 4 gives the
details about the proposed framework. Section 5 is the
experiments setting and results. Section 6 gives a summary of
the paper.

II. LITERATURE REVIEW

The important concepts in the understanding of malware
detection in Android devices were discussed. The current
trend and techniques used to develop an Android based
malware detection model are also explained in this section.

A. Static based Analysis

The static based analysis includes the following methods.

 Source Code

[11] proposed a model to extract the source code of
application using machine learning and clustering. Firstly, the
authors extract the source code and then tokenized it with the
n-gram method and used a bag of words (BoW) algorithm,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 11, 2020

465 | P a g e

www.ijacsa.thesai.org

which is one of the NLP algorithms. Then they used both
supervised and unsupervised machine learning techniques to
get their result. The authors used ensemble learning by
repeating the experiment 10 times combining with other
methods and use the majority of results to make predictions.
With the SVM method, they achieved a 95% detection rate.
However, with the clustering method, they obtained only a
72% detection rate. Although the ensemble method showed
better result with 95.6% detection rate [11].

 Op-Code

[12] developed a Deep Android Malware Detection to get
a sequence of op-code and used a convolutional neural
network (CNN) in detecting malicious applications. They used
a rich dataset for the training of the model. The authors used a
one-layer convolutional neural network over three types of
datasets. For a small dataset, they achieved a 97% accuracy
and for the large and extra-large dataset, they got 78% and
86% accuracy respectively. Their results show that the model
produces better results as the dataset and training time are
increasing [12].

 Permission

[11] proposed a model for Android malware detection
using machine learning. The authors used the ensemble
technique to get more accurate results. The results for
classification with the SVM algorithm were 87.9% and using
ensemble learning with C.45, Random Forest, Random tree,
SVM, Logistic regression was 89.4%. Using the clustering
method, they achieved a 64.6% detection rate [11].

 Hardware and Permission

Multimodal learning is one of the neural network
techniques that use multi-input as network input. [13] applied
static analysis to extract features from android packages. The
features the authors considered in their work are permission
and hardware features. They two features were chosen
because the requested permission can define access to
sensitive data, and the hardware permission can access
physical resources in mobile devices such as cameras. The
authors used these features separately to achieve a higher
degree of accuracy. They further combined both features to
improve and obtain a better performance result. Grid search
was used over selected hyperparameters to optimize
performance value. The analysis demonstrates that the overall
accuracy achieved was 94.5%.

 API Tag and Permission

CENDroid was developed by [14] as a static-based
Android malware detection based on API tags and permission.
They formed a different combination of features for analysis
behaviour and set up five machine learning algorithms for the
classification. Afterward, three ensemble combination
techniques were used. CENDroid was based on the clustering
training dataset into an optimized number of clusters and then
used ensemble learning for each of them. Ensemble model
help to improve the performance as it can handle dissimilarity
due to misclassification. The proposed model was trained and
tested on different datasets and results revealed that linear
SVM achieved a higher degree of 96.13% accuracy as

compared to other classifiers. In ensemble learning, the
weighted majority voting method hits the highest accuracy of
97.38% as compared to the staking and majority voting [14].

B. Dynamic based Analysis

Th system call method in a dynamic based analysis is
discussed below.

 System Call

M0droid was proposed by [15] as a client/server
architecture for detecting the malicious application using
system call analysis. In this model, when an application is
installed on a phone, the client check hash of APK file with
his database to detect whether it is listed or not. If it is not
listed, the server will send the APK file to do further
investigation. The application will be run on an isolated
environment and all of the system calls will be captured. After
that, a vector that was normalized using z-score store how
many times the system call is repeated. A signature is made
from application and Spearman‘s rank correlation was used to
compare the database and labelled the application. After
setting the threshold value to 0.92, the result obtained was
60%.

C. Hybrid Analysis

[16] used a hybrid approach (a combination of analyzed
source code and getting the requested permission) to proposed
their model for malware detection. The developed model is
capable of extracting three items. First, meta-data of
application which contain permission of applications. Second,
the binary of Dex code and library used in APK. Third,
analysing the Dalivk assembly. A fuzzy fingerprint was used
to make DNA for each application. Further, the authors
proposed another malware detection, called ROAR for
comparing the mentioned feature from the new application.
Their framework is divided into three parts, family
fingerprinting, peer fingerprinting, and merged fingerprinting.
They achieved an accuracy rate of 95% on the last two
methods and 85% for family fingerprinting.

[17] proposed a model by extracting nine (9) features from
every application. The DroidBox is used to emulate the
application in a virtual environment. Cryptography material,
network operation, file operation, Dexclass load, information
leak, sent SMS, phone call, service start, receive reaction and
system call is used for malware detection. A Chi-Square
algorithm was applied for dimension reduction and further
used ensemble learning and combined different machine
learning techniques. The best success rate among the different
datasets and machine learning methods was 96.42%.

[18] discussed the importance of Android devices on the
current Internet of Things (IoT) space. It was revealed that
securing IoT devices that are running on Android is an issue.
The authors used Factor Analysis of Information (FAIR)
model to measure the risk associated with the IoT devices. In a
situation of threat, they considered Situational Awareness
(SA) to recognize the environmental elements. The proposed
model contains three layers. The first layer, using machine
learning, detect malicious behaviour of the attacker. The
second layer mapped the selected feature in the first layer to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 11, 2020

466 | P a g e

www.ijacsa.thesai.org

LEF factor of the FAIR model. The third layer, which is the
decision-making layer finalized the process. The results
demonstrate that with different machine learning techniques,
different degrees of accuracy can be achieved. Based on the
provided data, linear SVM has the highest accuracy of 99% as
compared to other methods.

Author in [19] focused on different features to differentiate
between Android applications and proposed a malware
detection model. Op-code and API calls are choosing as desire
features for analysing. The proposed model contains five
layers. After feature extraction from APK files, Op-codes are
tokenized by n-gram technique and API call by API frequency
vector. A Convolutional neural network (CNN) was used as
the main analyser in this model. Due to the high number of
dimensions, principal component analysis (PCA) was used to
distinguish significant features. The Neural network outputs
are passed to feature fusion to achieve a higher degree of
accuracy. SoftMax was used as the classification algorithm.
The results focus on achieving accuracy while keeping
runtime low. On 0.034 seconds, 95.1% accuracy achieved.

D. Significant Permission Identification

To achieve malware detection with high certainty, the
Significant Permission Identification is used to achieve a high
detection rate with the lowest possible permissions for
analysing. This method focuses on permission which has a
high chance to labelled as malware and omit permissions with
low effect on our detection. To implement, three-layer data
filtering is used for analysing real-time data. These are: (1)
permission ranking with negative rate, (2) support based
permission ranking and (3) permission mining with
association rules. After applying these permissions, a
supervised machine learning model is trained to detect further
application.

 Data Pruning

The first step for analysing is to eliminate the necessity of
considering all of the permissions for analysing. Due to the
high number of applications in our dataset and each
application consist of many permissions, it takes time to
analyse all of them. We use Multi-Level Data Pruning
(MLDP) to detect the most affectable permissions. The
following are discussions about MLDP solution.

1) Permission Ranking with Negative Rate (PRNR): In

every application, any requested permission reflects the need

of the application. As far as we know the malicious

application follows a specific subset of permission, then there

will be no need to study all of the permissions. The algorithm

only focuses on dangerous permissions and frequently

requested permissions. Also, it can separate malicious

applications from the benign applications with rare

permissions requested by malware applications. For increasing

the detection rate, the algorithm is omitting the same

permission requested by both classes. To come up with one

solution, permission ranking with negative rate is used to

distinguish not only high-risk permission but also the

permission used by benign applications. The goal is to

differentiate normal and malware attacks.

We define two matrices, M and B. M is defined as the list
of permission used by malicious application and B is the list
of permission used by the benign application. Mij says
whether permission j

th
is used by the i

th
malicious application

or not. If the answer is yes then 1 otherwise 0. The same goes
for Bij for benign applications.

In the first step, we need a balance between malicious
applications and benign applications. In this work, the size of
the benign application is 310926 while malicious is only 5494
applications, which caused skew in our model. Therefore, it is
used in the equation 1 to find the support of each permission
in a larger dataset and then scale down that permission to
match smaller datasets. In this case number of benign B is
more than malicious M.

 ()
∑

 ()
 () (1)

Pj describes j
th

permission and SB(Pj) is the support of j
th

permission in the B matrix. After rescaling, we can deploy
PRNR in the equation 2:

 ()
∑ ()

∑ ()
 (2)

The R(Pj) shows the rate of j
th

permission. The range for an
answer could be from [-1, 1] which 1 shows the permission Pj
exists in the malicious dataset, so it can be categorized as
danger permission. Also, if it is -1, it means that permission
exists in the benign dataset which is low-risk permission. If 0,
it means that it doesn‘t have a special impact on the detection.
After that, two lists are generated from R(Pj) in a form of
ascending or descending order. To continue, the Permission
Incremental System (PIS) is proposed for getting top
permission from the benign and malicious list with the
following metrics: True Positive, False Positive, Precision,
recall, accuracy and F-measure. The aim is to find out those
permissions which have much effects on the whole of the
datasets. For the 310926 benign applications and 5494
malicious applications, all of the requested permissions are
135 and decreased to 95 with PRNR.

2) Support Based Permission Ranking (SPR): To narrow

the result of PRNR and support each permission is considered

that we focus on how many times one permission is repeated

in the whole of the dataset or if permission exists only on a

specific dataset. Therefore, we can omit permission with the

lowest support. To implement this, the Permission Incremental

System (PIS) is used to find the most supported permission.

Our results show that 25 permission out of all the permissions

is supportive.

3) Permission Mining with Association Rule (PMAR):

After two steps pruning data, we get 25 most significant

permission. To look closer to these permissions, it seems that

some of the permissions are formatted as pairs. As an

example, permission WRITE_SMS always comes with

READ_SMS and so, we can consider them as one. To find

this association between permissions, we used association

rules. These rules are used for discovering relations between

entities in the dataset. It only focused on high confidence

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 11, 2020

467 | P a g e

www.ijacsa.thesai.org

permissions. The algorithm which is used for detecting

permissions is Apriori [20], which is one of the famous

algorithms in association rules. With 96.5% confidence and

10% minimum support, 3 permission were found which can be

removed due to its relative to another permission. Finally, 22

permissions were left as the most important permissions as

shown in Table I.

 Machine Learning on Significant Permission

For the detection, a supervised machine learning method
was used. Support Vector Machine (SVM) was applied to
small data to test the Multi-Level Data Pruning model. SVM
needs two classes from the training dataset to differentiate its
hyperplane. One class is map to the malicious and the other
class to the benign while the input data would be to unknown
application. The application is then mapped to vector space to
decide whether it is benign or malicious.

To check the applicability of MLDP, 67 machine learning
techniques were used. The results of the learning algorithm
over the original dataset were compared and applied
algorithms on the MLDP dataset. Also, tree base techniques
like decision tree have better result but due to high features
among the data, this method consumed a lot of memory and
thus greatly reduce the accuracy of the results.

Functional tree (FT) and Random Forest are more likely to
have better Recall than the other algorithms. However,
Random Forest consumes more memory and time to analyse
data. One of the main issues with this algorithm is that while
the number of datasets increasing, FPR and other performance
metrics are slightly decreasing. Table II shows that as we
moved from 2650 to 54694 applications, the false positive rate
increases to 4.85%, and this is really high.

E. Comparison between Different Techniques

In this section, we conclude that each method has its own
advantages and disadvantages. These pros and cons can be
shown in terms of the accuracy of detection or overhead on
computational resources. Therefore, there is no specific best
method for investigation in the area of Android. Fig. 2
illustrates the comparison between different techniques in
terms of accuracy.

TABLE I. MOST SIGNIFICANT PERMISSION BY MLDP

MLDP

22 Permissions

ACCESS_WIFI_STAT

CAMERA
CHANGE_NETWORK_STATE

CHANGE_WIFE_STATE

DISABLE_KEYGUARD
GET_TASKS

INSTALL_PACKAGES

READ_CALL_LOG
READ_CONTACTS

READ_EXTRERNAL_STORAGE

READ_HISTORY_BOOKMARKS

READ_LOGS

READ_PHONE_STATE
READ_SMS

RECEIVE_BOOT_COMPLETE

RESTART_PACKAGES
SEND_SMS

SET_WALLPAPER

SYSTEM_ALRERT_WINDOW
WRITE_APN_SETTING

WRITE_CONTACTS

WRITE_SETTINGS

TABLE II. RESULTS FOR DIFFERENT DATASETS

Num_of_Malapp 2650 5494 54694

Precision

Recall
FPR

FM
ACC

98.83%

94.4%
1.17%

94.97%
96.47%

97.54%

93.62%
2.36%

95.54%
95.63%

95.15%

92.17%
4.85%

93.63%
93.67%

Fig. 2. Comparison between the different Methods in Android Malware

Detection.

III. METHODOLOGY

Here, we discussed the simulation environments, data
collection, and research methodology.

A. Simulation Environment

In this work, Python 3.6.1 is used as the base scripting
language. Python provides a wide range of libraries and
functions. Additionally, there are a lot of Android packages
analysis tools that are written in Python. Operating systems
vary during different phases of analysis. Windows 10 is our
base operating system in this analysis but however in some
cases, Linux CentOS 6.8 is used.

The data extraction platform needs strong computational
power for the early stage of the study. Because of the high
number of input data set, it is good to use a high-frequency
CPU to extract specific data from APK files. In our work, we
used two different platforms. First, to only inspect a small
amount of test data in making the machine learning model, we
run it on Intel i7-7500U, 2.70 GHz, 16 GB RAM. Second,
most of the computation is conducted on Intel Xenon L5640
2.70 GHz, 10 GB RAM.

B. Datasets Collection

The scope of Android malware detection only focuses on
real applications. These applications can be collected from
different common markets like Google play store. Over the
years, researchers collected some labelled datasets to ease
their researches. Some of these datasets are kept confidential
with related to specific projects and accessing them requires
special permission. But some of these datasets are accessible
for researchers.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 11, 2020

468 | P a g e

www.ijacsa.thesai.org

In this research, M0droid project dataset [21] with overall
410 labelled applications is used. This dataset contains 200
malware applications and 210 normal applications. The other
dataset used was collected from different projects in the
University of Brunswick [22]. This dataset is highly
categorized and labelled. Number of applications in this
dataset is over 5000 and Android packages with 2000 normal
applications and 3000 malware applications.

Also, the AndroZoo dataset [23] has granted permission to
this research to use their dataset. This dataset is made up of
about 8,000,000 applications. Android PRAGuard Dataset
[24] is another dataset that was used with almost 10479
applications. Most of the applications are labelled. Android
Malware Dataset (AMD) [6], is one of the largest malware
datasets in Android. It contains 24553 applications that are
grouped into 135 different groups. Up to 71 malware families
have been seen in this dataset.

C. Android Packaging File (APK)

Application in the Android platform is delivered by APK
file format. The focus of this study is on the APK file. Fig. 3
describes the architecture of the APK file. The META-INF
includes manifest file, lib contain compiled code for any
processor the device is using, res contains the non-compiled
file, assests include application asset, AndroidManifest.xml is
used for the identification of applications and classes.dex
contains the source code in dex format [25]. Dex files are only
usable by Dalvik or ART compiler on Android devices. The
APK file is compressed with ZIP format so we can get the
desired file from unzipping the package. Different tools can be
used to extract desire information.

D. Android Permission Structure

The proposed framework stands on Android permission.
Permission is designed to add another level of security to
protect user sensitive data such as SMS or contacts. In
Android security architecture, no application by default has
access to any action related to the operating system, other
applications, or user private files. Permissions with low risk
are automatically granted to the application. If application
request high risk permission such as CAMERA, user
acceptance is required to grant permission.

Dangerous permission can be asked in two methods:

1) Install time request: the system asks to grant all

requested permission.

2) Runtime request: whenever services needed by an

application, request permission from the user.

Permissions are highlighted by ‗uses-permission‘ in the
Android manifest file. Some permissions are related to
specific hardware feature and therefore, developer needs to
mention ‗uses-feature‘ in the manifest file. This option helps
the application runs on devices without the requested
hardware. Google defined three protection levels for
permission: normal, signature, and dangerous. These are
discussed below.

 Normal Permission

Normal permission is a permission that is requested by
application for accessing data or resources out of its box.
Mostly, these permissions are granted by the system when the
application is installed. According to Google on Android 9,
the following as shown in Table III are normal permissions:

 Signature Permission

The system grants these permissions but the permissions
need to be signed by the same application that requests
permission. Table IV contains the list of signature
permissions.

 Dangerous Permission

Dangerous permission is the type of permission that is
requested to access user‘s private data or system files. When
permission is declared as dangerous, user approval is
necessary for allocating requested resources or data. Table V
shows the dangerous permissions.

Fig. 3. APK File Structure.

TABLE III. NORMAL PERMISSION

ACCESS_LOCATION_EX

TRA_COMMANDS
ACCESS_NETWORK_STATE

ACCESS_NOTIFI

CATION_POLICY
ACCESS_WIFI_STATE BLUETOOTH

BLUETOOT

H_ADMIN

BROADCAST_STICKY CHANGE_NETWORK_STATE
CHANGE_WIFI_S

TATE

CHANGE_WIFI_MULTIC

AST_STATE

DISABLE_KEYG

UARD

EXPAND_ST

ATUS_BAR

FOREGROUND_SERVICE GET_PACKAGE_SIZE
INSTALL_SHORT
CUT

INTERNET
KILL_BACKGRO
UND_PROCESSES

MANAGE_O
WN_CALLS

MODIFY_AUDIO_SETTIN

GS
NFC

READ_SYNC_SE

TTINGS
READ_SYNC_STATS

RECEIVE_BOOT_

COMPLETED

REORDER_T

ASKS

REQUEST_COMPANION_

RUN_IN_BACKGROUND

REQUEST_COMPANION_US

E_DATA_IN_BACKGROUND

REQUEST_DELE

TE_PACKAGES

REQUEST_IGNORE_BAT

TERY_OPTIMIZATIONS
SET_ALARM

SET_WALLP

APER

SET_WALLPAPER_HINTS TRANSMIT_IR
USE_FINGERPRI
NT

VIBRATE WAKE_LOCK
WRITE_SYN
C_SETTINGS

https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_LOCATION_EXTRA_COMMANDS
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_LOCATION_EXTRA_COMMANDS
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_NETWORK_STATE
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_NOTIFICATION_POLICY
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_NOTIFICATION_POLICY
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_WIFI_STATE
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH_ADMIN
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH_ADMIN
https://developer.android.com/reference/android/Manifest.permission.html#BROADCAST_STICKY
https://developer.android.com/reference/android/Manifest.permission.html#CHANGE_NETWORK_STATE
https://developer.android.com/reference/android/Manifest.permission.html#CHANGE_WIFI_STATE
https://developer.android.com/reference/android/Manifest.permission.html#CHANGE_WIFI_STATE
https://developer.android.com/reference/android/Manifest.permission.html#CHANGE_WIFI_MULTICAST_STATE
https://developer.android.com/reference/android/Manifest.permission.html#CHANGE_WIFI_MULTICAST_STATE
https://developer.android.com/reference/android/Manifest.permission.html#DISABLE_KEYGUARD
https://developer.android.com/reference/android/Manifest.permission.html#DISABLE_KEYGUARD
https://developer.android.com/reference/android/Manifest.permission.html#EXPAND_STATUS_BAR
https://developer.android.com/reference/android/Manifest.permission.html#EXPAND_STATUS_BAR
https://developer.android.com/reference/android/Manifest.permission.html#FOREGROUND_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#GET_PACKAGE_SIZE
https://developer.android.com/reference/android/Manifest.permission.html#INSTALL_SHORTCUT
https://developer.android.com/reference/android/Manifest.permission.html#INSTALL_SHORTCUT
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://developer.android.com/reference/android/Manifest.permission.html#KILL_BACKGROUND_PROCESSES
https://developer.android.com/reference/android/Manifest.permission.html#KILL_BACKGROUND_PROCESSES
https://developer.android.com/reference/android/Manifest.permission.html#MANAGE_OWN_CALLS
https://developer.android.com/reference/android/Manifest.permission.html#MANAGE_OWN_CALLS
https://developer.android.com/reference/android/Manifest.permission.html#MODIFY_AUDIO_SETTINGS
https://developer.android.com/reference/android/Manifest.permission.html#MODIFY_AUDIO_SETTINGS
https://developer.android.com/reference/android/Manifest.permission.html#NFC
https://developer.android.com/reference/android/Manifest.permission.html#READ_SYNC_SETTINGS
https://developer.android.com/reference/android/Manifest.permission.html#READ_SYNC_SETTINGS
https://developer.android.com/reference/android/Manifest.permission.html#READ_SYNC_STATS
https://developer.android.com/reference/android/Manifest.permission.html#RECEIVE_BOOT_COMPLETED
https://developer.android.com/reference/android/Manifest.permission.html#RECEIVE_BOOT_COMPLETED
https://developer.android.com/reference/android/Manifest.permission.html#REORDER_TASKS
https://developer.android.com/reference/android/Manifest.permission.html#REORDER_TASKS
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_COMPANION_RUN_IN_BACKGROUND
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_COMPANION_RUN_IN_BACKGROUND
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_COMPANION_USE_DATA_IN_BACKGROUND
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_COMPANION_USE_DATA_IN_BACKGROUND
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_DELETE_PACKAGES
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_DELETE_PACKAGES
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_IGNORE_BATTERY_OPTIMIZATIONS
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_IGNORE_BATTERY_OPTIMIZATIONS
https://developer.android.com/reference/android/Manifest.permission.html#SET_ALARM
https://developer.android.com/reference/android/Manifest.permission.html#SET_WALLPAPER
https://developer.android.com/reference/android/Manifest.permission.html#SET_WALLPAPER
https://developer.android.com/reference/android/Manifest.permission.html#SET_WALLPAPER_HINTS
https://developer.android.com/reference/android/Manifest.permission.html#TRANSMIT_IR
https://developer.android.com/reference/android/Manifest.permission.html#USE_FINGERPRINT
https://developer.android.com/reference/android/Manifest.permission.html#USE_FINGERPRINT
https://developer.android.com/reference/android/Manifest.permission.html#VIBRATE
https://developer.android.com/reference/android/Manifest.permission.html#WAKE_LOCK
https://developer.android.com/reference/android/Manifest.permission.html#WRITE_SYNC_SETTINGS
https://developer.android.com/reference/android/Manifest.permission.html#WRITE_SYNC_SETTINGS

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 11, 2020

469 | P a g e

www.ijacsa.thesai.org

TABLE IV. SIGNATURE PERMISSION

BIND_ACCESSIBILITY

_SERVICE
BIND_AUTOFILL_SERVICE

BIND_CARRIER_SE

RVICES

BIND_CHOOSER_TARGET_S

ERVICE

BIND_CONDITION_PROVID

ER_SERVICE

BIND_DEVICE_ADMI

N
BIND_DREAM_SERVICE

BIND_INCALL_SER

VICE
BIND_INPUT_METHOD

BIND_MIDI_DEVICE_SERVI

CE

BIND_NFC_SERVICE
BIND_NOTIFICATION_LISTE

NER_SERVICE

BIND_SCREENING_

SERVICE

BIND_TELECOM_CONNECTI

ON_SERVICE
BIND_TEXT_SERVICE

BIND_TV_INPUT
BIND_VISUAL_VOICEMAIL_S
ERVICE

BIND_VOICE_INTE
RACTION

BIND_VPN_SERVICE
BIND_VR_LISTENER_SERVI
CE

BIND_WALLPAPER CLEAR_APP_CACHE
MANAGE_DOCUM

ENTS
READ_VOICEMAIL

REQUEST_INSTALL_PACK

AGES

SYSTEM_ALERT_WIN

DOW
WRITE_SETTINGS

WRITE_VOICEMAI

L
* *

TABLE V. DANGEROUS PERMISSION

CALENDAR
READ_CALENDAR

LOCATION
ACCESS_FINE_LOCATION

SMS

SEND_SMS

WRITE_CALENDAR ACCESS_COARSE_LOCATION RECEIVE_SMS

CALL_LOG

READ_CALL_LOG MICROPHONE RECORD_AUDIO READ_SMS

WRITE_CALL_LOG

PHONE

READ_PHONE_STATE RECEIVE_WAP_PUSH

PROCESS_OUTGOING_CALLS READ_PHONE_NUMBERS
STORAGE

READ_EXTERNAL_STORAGE

CAMERA CAMERA CALL_PHONE WRITE_EXTERNAL_STORAGE

CONTACTS

READ_CONTACTS ANSWER_PHONE_CALLS * *

WRITE_CONTACTS ADD_VOICEMAIL * *

GET_ACCOUNTS USE_SIP * *

RECEIVE_MMS SENSORS BODY_SENSORS * *

IV. PROPOSED FRAMEWORK

The proposed framework contains different layers for data
processing. It is called a multi-level permission extraction
framework. The multi-level permission extraction framework
contains methods from the previous researches as well as a
novel method to improve the accuracy of the detection model.
The general overview of the proposed framework is shown in
Fig. 4.

A. Permission Extraction from APK Files

The first step in our framework is to extract permissions
from APK files. As described previously, permissions exist in
the Android manifest file. To read and extract desire
information, specific tools are required which is discussed in
the experimental section. After extracting permissions from
both malware and benign datasets, data are mapped into a
matrix. This matrix is called a feature matrix.

B. Feature Matrix

The feature matrix represents the existence of permission
in the applications. In the feature matrix, each application‘s
permissions are defined by Boolean variables. We defined two
matrices, M and B. Matrix M is the list of permission used by
the malicious application and matrix B is the list of permission
used by the benign application. Mij says whether permission j

th

is used by the i
th

malicious application or not. If the answer is
yes then 1 otherwise 0. The same goes to Bij for benign
applications. Table VI is the sample matrix from the malware
dataset.

Fig. 4. Proposed Multi-Level Permission Extraction Framework.

C. Multi-Level Permission Extraction

Multi-level permission extraction level is the proposed
framework. In this framework, different levels of permission
pruning are applied to achieve the most significant
permissions. The proposed framework contains four main
phases; data skew correction, permission ranking, principal
component analysis, and two different statistical algorithms

https://developer.android.com/reference/android/Manifest.permission.html#BIND_ACCESSIBILITY_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_ACCESSIBILITY_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_AUTOFILL_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_CARRIER_SERVICES
https://developer.android.com/reference/android/Manifest.permission.html#BIND_CARRIER_SERVICES
https://developer.android.com/reference/android/Manifest.permission.html#BIND_CHOOSER_TARGET_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_CHOOSER_TARGET_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_CONDITION_PROVIDER_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_CONDITION_PROVIDER_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_DEVICE_ADMIN
https://developer.android.com/reference/android/Manifest.permission.html#BIND_DEVICE_ADMIN
https://developer.android.com/reference/android/Manifest.permission.html#BIND_DREAM_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_INCALL_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_INCALL_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_INPUT_METHOD
https://developer.android.com/reference/android/Manifest.permission.html#BIND_MIDI_DEVICE_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_MIDI_DEVICE_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_NFC_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_NOTIFICATION_LISTENER_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_NOTIFICATION_LISTENER_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_SCREENING_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_SCREENING_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_TELECOM_CONNECTION_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_TELECOM_CONNECTION_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_TEXT_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_TV_INPUT
https://developer.android.com/reference/android/Manifest.permission.html#BIND_VISUAL_VOICEMAIL_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_VISUAL_VOICEMAIL_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_VOICE_INTERACTION
https://developer.android.com/reference/android/Manifest.permission.html#BIND_VOICE_INTERACTION
https://developer.android.com/reference/android/Manifest.permission.html#BIND_VPN_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_VR_LISTENER_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_VR_LISTENER_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_WALLPAPER
https://developer.android.com/reference/android/Manifest.permission.html#CLEAR_APP_CACHE
https://developer.android.com/reference/android/Manifest.permission.html#MANAGE_DOCUMENTS
https://developer.android.com/reference/android/Manifest.permission.html#MANAGE_DOCUMENTS
https://developer.android.com/reference/android/Manifest.permission.html#READ_VOICEMAIL
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_INSTALL_PACKAGES
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_INSTALL_PACKAGES
https://developer.android.com/reference/android/Manifest.permission.html#SYSTEM_ALERT_WINDOW
https://developer.android.com/reference/android/Manifest.permission.html#SYSTEM_ALERT_WINDOW
https://developer.android.com/reference/android/Manifest.permission.html#WRITE_SETTINGS
https://developer.android.com/reference/android/Manifest.permission.html#WRITE_VOICEMAIL
https://developer.android.com/reference/android/Manifest.permission.html#WRITE_VOICEMAIL

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 11, 2020

470 | P a g e

www.ijacsa.thesai.org

for identifying the most valuable permissions in the dataset.
This framework hired some techniques from one of the states
of arts research in Android malware detection [10].

 Data Skew Correction

In data analysis research, it is necessary that data in every
category balanced to avoid any wrong or incorrect results.
However, providing the same amount of data for every
category is not possible. In this research, we used different
sources for our datasets. The malware dataset size is around
25000 APK files as compare to 15000 APK files for the
normal datasets. Also, we have around 8,000,000 APK files in
both malware and benign dataset. This unbalances in malware
and normal data category may lead to inaccurate results in the
final steps.

In data skew correction layer, we used equation 3 to find
support for each permission in the larger datasets and then
scale down that permission to match smaller dataset. In this
case, the number of malicious applications is more than the
benign applications.

 ()
∑

 () (3)

Where Pj describes j
th

permission and SM(Pj) is the support
of j

th
 permission in the malware matrix.

 Permission Ranking

In this step, permission ranking scheme has been used to
hold the most frequent permissions in the dataset. Some
permissions only happened in the context a few times, and
hence these permissions have less support as compare to the
common permissions. This scheme provides a more accurate
view on what each permission represents in the datasets.

Term-Frequency Inverse Document Frequency (TF-IDF)
technique is used to indicate the importance of each
permission in all of the datasets. Term weighting methods are
commonly grouped into supervised and unsupervised
methods. The unsupervised or traditional term weighting
methods are originated from the information retrieval field.
The supervised weighting methods used the prior information
of the training documents in predefined categories. The weight
of a feature with respect to a class represent the
discriminating ability of towards normal and attack classes.
The higher the weight, the stronger the discriminating power
of this feature in identifying the anomaly instances. Because
permission-based Vector is by nature a bag of permission in
the form of a vector, the tf-idf weighting method, where,
 is the weight of the feature with regards to
permission is the product of and [26] and this is

show mathematically in equation 4.

 (4)

The matrices from the previous layer are passed into this
layer and the value of all the rows is summed in one row. The
new row represents how many times one permission is
requested in a specific dataset. Then, the TF-IDF is applied to
determine the impact of permission in the dataset. The
weighting scheme result will omit the less frequent

permissions and show the significant permissions in both
datasets.

 Principal Component Analysis

Data transformation is required to come up with an
efficient method to analyse a large amount of data. This
method helps to reduce the dimension of the feature matrix to
increase the efficiency of the model. Principal component
analysis (PCA) is a statistical model which reduce large
feature sets into smaller one while keeping most of the
information intact. It transforms correlated features into some
uncorrelated features called the principal component. This
method is closed to a correlation technique that is applied to
data with a wide difference of variance. PCA algorithm is
mainly used for the algorithm with common share variance
and focuses on a linear combination of a variable to extract
maximum possible variance. In the PCA algorithm,
eigenvector and eigenvalue are considered. The eigenvector
shows a common variance and unique variance for producing
correlation. Eigenvalue is the measure of all variance for a
specific factor.

 Kaiser and Cumulative

The last layer of the proposed framework is to select the
most significant permissions based on the eigenvalues and
eigenvectors variables. Factor analysis is used in this step.
Factor analysis is a statistical model to check variability
between observed and unobserved factors. Kaiser‘s method
sets a threshold between the maximum and minimum margin
for the eigenvalue of 1. It means each eigenvalue above 1
demonstrates the desired factor and those below are not
selected [27]. In this study, we applied Kaiser‘s method on the
PCA results to find the most significant permissions.

Besides Kaiser, the cumulative technique was also used.
Unlike Kaiser, there is no specific threshold for cumulative
technique. Rather than a threshold, a percentage has been
suggested. In most of the existing models, when 90% of the
variance is reached, the model stopped. In our case, we also
set the variance percentage to be 90% and applied the
cumulative method on the PCA results to distinguish the most
important permissions [28].

We compared Kaiser and cumulative results to obtain
similar permission from the list. Similarly, this comparison
has been done with Li [10] and Google dangerous permission
list. The Final selected permissions are obtained from the
intersection of all the results.

 Significant Permission Matrix

In the final step of the data processing, the desired feature
matrix with the most significant permissions is formed. Also,
the data label is added to the model to be used for
classification in the machine learning and detection part.

V. EXPERIMENTAL SETTING AND RESULTS

This section summarily discussed how the data are
extracted and processed, the implementation that is done using
machine learning approaches and the discussion on the
evaluation of the proposed framework using some standard
metrics.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 11, 2020

471 | P a g e

www.ijacsa.thesai.org

A. Data Extraction

Permissions exist in the Android manifest file. To access
permissions, extracting Android packages is required. For
APK files in ZIP format, accessing them directly is not
possible. There are two main methods to access the manifest
file. First, extracting files manually and decoding
AndroidManifest.xml file, and second, using a tool to extract
them. In this work, the Androguard tool has been used.
Androguard is a tool that extracts details from APK files [29].
When using this tool, we only need the permission extraction
part. Thus, we extract all the required permissions and mapped
them into the desired feature matrix to begin the data
processing phase. The feature matrix store permissions as
columns and applications as a row. The sample of the
extracted data from the datasets is displayed in Table VIa.

B. Data Processing

Python is the main programming language used for the
implementation. Scikit learn library is used for the PCA,
Kaiser, and cumulative layers of our framework. Table VII
shows the sample correlation among features. The main
diagonal is 1 because the relation of each permission with
itself is 1. Based on this matrix, each correlation variable is
higher declared and these two permissions have much impact
on the datasets.

C. Machine Learning

We used Scikit learn library to implement the malware
detection model using SVM and decision tree algorithms. We
used 80% of the datasets to train the model and 20% for the
testing.

D. Experimental Results

We report the selected permission based on the multi-level
permission extraction framework and its effectiveness on large
datasets. To align with the main objective of this research, we
are able to achieve a better optimized solution for large
datasets as compared to the existing works.

 Significant Dangerous Permission

From our results, 16 permissions were highlighted as
dangerous permissions. Table VI shows the list of high-risk
permissions based on the proposed framework.

 Evaluation Metrics

The evaluation metrics considered in this research are
precision, recall, and F-measure. Precision is the number of
correct positive results by the number of positive predicted
results. A recall is the number of correct positive results by the
number of all datasets. F-measure is the balance between
precision and recall rate. This rate tries to determine the
accuracy of the classification. Mathematically, these metrics
are defined in equations 5, 7, and 8.

 (5)

 (6)

 (7)

Tables VIII and IX show the measurement metrics for our
framework based on 20 selected permissions. From the tables,
the input applications considered are 10000, 25000, and
60000. Although, the available datasets are higher than the
number of applications, but we are able to get our desire
threshold at 60000 based on the results.

Table VIII shows the performance metrics based on the
SVM and Table IX contains the results based on the decision
tree algorithm.

TABLE VI. DANGEROUS PERMISSION

CAMERA RECEIVE_BOOT_COMPLETE

READ_CALL_LOG ANSWER_PHONE_CALL

READ_CONTACTS RECORD_AUDIO

READ_EXTERNAL_STORAGE WRITE_SETTING

READ_PHONE_STAT WRITE_EXTERNAL_STORAGE

READ_SMS CHANGE_WIFI_STAT

WRITE_CONTACT DISABLE_KEYGUARD

WRITE_SMS SET_WALLPAPER

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 11, 2020

472 | P a g e

www.ijacsa.thesai.org

TABLE VIa : SAMPLE FEATURE MATRIX

TABLE VII. CORRELATION BETWEEN PERMISSIONS

ACCESSOR

Y_FRAME

WORK

ACCESS_CO

ARSE_LOCA

TION

ACCESS_F

INE_LOCA

TION

ACCES

S_KEY_

APP

ACCESS_LOCATI

ON_EXTRA_COM

MANDS

ACCESS_M

OCK_LOCA

TION

ACCESS_N

ETWORK_S

TATE

ACCESS_

WEB_PA

GES

ACCESSORY_FR

AMEWORK
1 0.099614 0.097472 -0.00485 -0.01303 -0.00688 0.019474 -0.00485

ACCESS_COARSE

_LOCATION
0.099614 1 0.717591 -0.04873 0.267477 0.141218 0.195498 -0.04873

ACCESS_FINE_L

OCATION
0.097472 0.717591 1 -0.0498 0.205232 0.138181 0.199795 -0.0498

ACCESS_KEY_AP

P
-0.00485 -0.04873 -0.0498 1 -0.01303 -0.00688 0.019474 -0.00485

ACCESS_LOCATI

ON_EXTRA_COM

MANDS

-0.01303 0.267477 0.205232 -0.01303 1 -0.01848 0.052291 -0.01303

ACCESS_MOCK_

LOCATION
-0.00688 0.141218 0.138181 -0.00688 -0.01848 1 0.027608 -0.00688

ACCESS_NETWO

RK_STATE
0.019474 0.195498 0.199795 0.019474 0.052291 0.027608 1 0.019474

ACCESS_WEB_PA

GES
-0.00485 -0.04873 -0.0498 -0.00485 -0.01303 -0.00688 0.019474 1

TABLE VIII. PERFORMANCE METRICS BASED ON SVM

Number of applications 10000 25000 60000

Precision

Recall

F-measure

98.20%

95.80%

96.98%

97.16%

93.75%

95.42%

95.17%

92.86 %

94.00%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 11, 2020

473 | P a g e

www.ijacsa.thesai.org

TABLE IX. PERFORMANCE METRICS BASED ON DECISION TREE

Number of applications 10000 25000 60000

Precision

Recall

F-measure

98.99%

96.10%
97.53%

96.10%

93.20%
94.68%

92.11%

91.10 %
91.60%

From the above tables, we say that the SVM performs
better than the decision tree in all the measurement metrics.
SVM shows promising results in false positive rate of 3.89
with 60000 applications. This is also shown in Fig. 5.

Fig. 5. False Positive Rate in SVM and Decision Tree.

 Discussion

Android malware detection is a crucial research area for
the current digital world. Most of the handphones are running
on Android. Due to the availability and wide usage of this
platform, many attacks are carried out to take advantage of the
user‘s personal data. Permission in Android is the main source
of investigation on developer intent. Permission can be named
as double edge blade which can be dangerous or helpful for
users. In most cases users need to decide whether permission
is granted or not. This decision is crucial when it comes to a
wide range of applications on mobile phones. Google as the
main developer of Android tried to facilitate this decision by
adding extra labels to some permissions, however this barrier
is still not enough.

The proposed framework successfully increased the
detection rate by using only permissions. Although some
researchers like [30] used an ensemble of features for
detection but this method is complex and inefficient in a real-
world implementation. In the work of [1], permission is used
as the only feature for identification but their results show that
as the data increases, the detection accuracy keep reducing. To
maintain the detection accuracy when using a large number of
datasets and one feature, we used different factor analysis
methods such as Kaiser and cumulative to aggregate the
significant permissions. Our results are compared with the
results of [1] in Table X.

TABLE X. COMPARISON BETWEEN LI FRAMEWORK AND THE PROPOSED FRAMEWORK

Performance metrics Li Framework Proposed Framework

 No. of Applications Results No. of Applications Results

Precision

2650 98.83% 10000 98.20%

5494 97.54% 25000 97.16%

54694 95.5% 60000 95.17%

Recall

2650 94.4% 10000 95.80%

5494 93.62% 25000 93.75%

54694 92.17% 60000 92.86%

F-measure

2650 94.97% 10000 96.98%

5494 95.54% 25000 95.42%

54694 93.63% 60000 94.00%

False positive rate

2650 1.17% 10000 1.46%

5494 2.36% 25000 2.11%

54694 4.85% 60000 3.89%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 11, 2020

474 | P a g e

www.ijacsa.thesai.org

During the analysis, some problems were faced. Some
applications do not follow normal patterns. This anomaly can
be code obfuscation or APK encryption. Some attackers
encode the Android manifest file which makes it inaccessible
for analysis. In this case, analysing the pattern of application
in terms of network connection or requested permission while
the application is running can help to distinguish malicious
applications. But in most cases, this analysis is costly in terms
of resource and time.

VI. CONCLUSION

Due to high demand and availability, the Android has
become a famous platform for malicious activity. There are
existing algorithms developed to avoid malware attacks on
this platform but these algorithms are inefficient. Static,
dynamic, and hybrid analysis are the three main techniques
used to investigate malicious applications. The authors
proposed a multi-level permission extraction framework to
identify significant permissions to differentiate between
normal and malicious applications in Android devices. The
method used is based on static analysis as the researchers‘
focus is on the Android packaging file (APK) in a static
environment. Permission was used as a feature to develop the
proposed model and the model is able to achieve a better
detection accuracy as compared to the existing works. To
prune out unnecessary permissions, the researchers employed
different mathematical steps in the proposed framework. The
SVM and decision tree algorithms were used for the
classification with different number of datasets. The results
obtained are promising as with 60,000 applications, the model
achieved 94% accuracy. This result is better when compared
to other existing models. Hybrid method (a combination of
static and dynamic permission analysis) would be adopted to
see if better results can be achieved. Adding more features
from applications and increasing the datasets will also be
considered in our future work.

ACKNOWLEDGMENT

The authors would like to acknowledge the Universiti
Putra Malaysia for supporting this research.

REFERENCES

[1] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, ―Significant
Permission Identification for Machine-Learning-Based Android
Malware Detection,‖ IEEE Trans. Ind. Informatics, Vol. 14, No. 7, Pp.
3216–3225, 2018, Doi: 10.1109/Tii.2017.2789219.

[2] J. Walls and K.-K. R. Choo, ―A Review of Free Cloud-Based Anti-
Malware Apps for Android,‖ in 2015 IEEE Trustcom/BigDataSE/ISPA,
2015, pp. 1053–1058, doi: 10.1109/Trustcom.2015.482.

[3] Roman Unuchek, ―Mobile malware evolution 2017,‖ 2018.

[4] L. Dua and D. Bansal, ―TAXONOMY: MOBILE MALWARE
THREATS AND DETECTION TECHNIQUES,‖ pp. 213–221, 2014,
doi: 10.5121/csit.2014.4522.

[5] R. Zachariah, M. S. Yousef, and A. M. Chacko, ―Android Malware
Detection A Survey,‖ no. Iccs, 2017.

[6] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, ―Deep Ground Truth
Analysis of Current Android Malware,‖ Springer, Cham, 2017, pp. 252–
276.

[7] E. Alpaydin, Introduction to machine learning. MIT Press, 2010.

[8] Y. LeCun, Y. Bengio, and G. Hinton, ―Deep learning,‖ Nature, vol. 521,
no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.

[9] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, ―Statistical and
Machine Learning forecasting methods: Concerns and ways forward,‖
2018, doi: 10.1371/journal.pone.0194889.

[10] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, ―Significant
Permission Identification for Machine Learning Based Android Malware
Detection,‖ IEEE Trans. Ind. Informatics, vol. 3203, no. c, 2018, doi:
10.1109/TII.2017.2789219.

[11] N. Milosevic, A. Dehghantanha, and K. K. R. Choo, ―Machine learning
aided Android malware classification,‖ Comput. Electr. Eng., vol. 61,
pp. 266–274, 2017, doi: 10.1016/j.compeleceng.2017.02.013.

[12] N. McLaughlin et al., ―Deep Android Malware Detection,‖ Proc.
Seventh ACM Conf. Data Appl. Secur. Priv. - CODASPY ‘17, pp. 301–
308, 2017, doi: 10.1145/3029806.3029823.

[13] J. Mcgiff, W. G. Hatcher, J. Nguyen, W. Yu, E. Blasch, and C. Lu,
―Towards Multimodal Learning for Android Malware Detection,‖ 2019
Int. Conf. Comput. Netw. Commun. ICNC 2019, pp. 432–436, 2019,
doi: 10.1109/ICCNC.2019.8685502.

[14] S. Badhani and S. K. Muttoo, ―CENDroid—A cluster–ensemble
classifier for detecting malicious Android applications,‖ Comput. Secur.,
Apr. 2019, doi: 10.1016/J.COSE.2019.04.004.

[15] K.-K. R. C. &Ramlan M. Mohsen Damshenas, Ali Dehghantanha, ―No
Title,‖ J. Inf. Priv. Secur., vol. 11, no. 3, pp. 141–157, 2015.

[16] E. M. B. Karbab, M. Debbabi, and D. Mouheb, ―Fingerprinting android
packaging: Generating DNAs for malware detection,‖ DFRWS 2016
USA - Proc. 16th Annu. USA Digit. Forensics Res. Conf., vol. 18, pp.
S33–S45, 2016, doi: 10.1016/j.diin.2016.04.013.

[17] P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma, ―A novel dynamic android
malware detection system with ensemble learning,‖ IEEE Access, vol. 6,
pp. 30996–31011, 2018, doi: 10.1109/ACCESS.2018.2844349.

[18] M. Park, J. Han, H. Oh, and K. Lee, ―Threat Assessment for Android
Environment with Connectivity to IoT Devices from the Perspective of
Situational Awareness,‖ Wirel. Commun. Mob. Comput., vol. 2019, pp.
1–14, Apr. 2019, doi: 10.1155/2019/5121054.

[19] J. Zhang, Z. Qin, H. Yin, L. Ou, and K. Zhang, ―A feature-hybrid
malware variants detection using CNN based opcode embedding and
BPNN based API embedding,‖ Comput. Secur., vol. 84, pp. 376–392,
2019, doi: 10.1016/j.cose.2019.04.005.

[20] R. Agrawal and R. S&ant, ―Fast Algorithms for Mining Association
Rules,‖ 20th VLDB Conf. Santiago, Chile, 1994.

[21] M. Damshenas, A. Dehghantanha, K.-K. R. Choo, and R. Mahmud,
―M0Droid: An Android Behavioral-Based Malware Detection Model,‖
J. Inf. Priv. Secur., vol. 11, no. 3, pp. 141–157, 2015, doi:
10.1080/15536548.2015.1073510.

[22] A. Mahindru and P. Singh, ―Dynamic Permissions based Android
Malware Detection using Machine Learning Techniques,‖ in
Proceedings of the 10th Innovations in Software Engineering
Conference on - ISEC ‘17, 2017, pp. 202–210, doi:
10.1145/3021460.3021485.

[23] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, ―AndroZoo,‖ in
Proceedings of the 13th International Workshop on Mining Software
Repositories - MSR ‘16, 2016, pp. 468–471, doi:
10.1145/2901739.2903508.

[24] D. Maiorca, D. Ariu, I. Corona, M. Aresu, and G. Giacinto, ―Stealth
attacks: An extended insight into the obfuscation effects on Android
malware,‖ Comput. Secur., vol. 51, pp. 16–31, Jun. 2015, doi:
10.1016/j.cose.2015.02.007.

[25] Google, ―The Structure of Android Package (APK) Files,‖ Nov. 2010.

[26] R. Banchs, Text Mining with MATLAB. New York, NY: Springer New
York, 2013.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 11, 2020

475 | P a g e

www.ijacsa.thesai.org

[27] J. Ruscio and B. Roche, ―Determining the number of factors to retain in
an exploratory factor analysis using comparison data of known factorial
structure.,‖ Psychol. Assess., vol. 24, no. 2, pp. 282–292, Jun. 2012, doi:
10.1037/a0025697.

[28] B. Williams, T. Brown Andrys Onsman, A. Onsman, T. Brown, P.
Andrys Onsman, and P. Ted Brown, ―Exploratory factor analysis: A
five-step guide for novices Recommended Citation) "Exploratory
factor analysis: A five-step guide for novices Exploratory factor

analysis: A five-step guide for novices,‖ This J. Artic. is posted Res.
Online, vol. 8, pp. 2010–990399, 2012.

[29] S. H. Anthony Desnos, ―Androguard,‖ 2011.

[30] W. Wang, Z. Gao, M. Zhao, Y. Li, J. Liu, and X. Zhang,
―DroidEnsemble: Detecting Android Malicious Applications with
Ensemble of String and Structural Static Features,‖ IEEE Access, pp. 1–
1, 2018, doi: 10.1109/ACCESS.2018.2835654.

