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Abstract—Nowadays, Android-based devices are more 

utilized than other Operating Systems based devices. Statistics 

show that the market share for android on mobile devices in 

March 2018 is 84.8 percent as compared with only 15.1 percent 

iOS.  These numbers indicate that most of the attacks are 

subjected to Android devices. In addition, most people are 

keeping their confidential information on their mobile phones, 

and hence there is a need to secure this operating system against 

harmful attacks.  Detecting malicious applications in the Android 

market is becoming a very complex procedure. This is because as 

the attacks are increasing, the complexity of feature selection and 

classification techniques are growing. There are a lot of solutions 

on how to detect malicious applications on the Android platform 

but these solutions are inefficient to handle the features 

extraction and classification due to many false alarms. In this 

work, the researchers proposed a multi-level permission 

extraction framework for malware detection in an Android 

device. The framework uses a permission extraction approach to 

label malicious applications by analyzing permissions and it is 

capable of handling a large number of applications while keeping 

the performance metrics optimized. A static analysis method was 

employed in this work. Support Vector Machine (SVM) and 

Decision Tree Algorithm was used for the classification. The 

results show that while increasing input data, the model tries to 

keep detection accuracy at an acceptable level. 

Keywords—Malware detection; android device; operating 

system; malicious application; machine learning 

I. INTRODUCTION 

In recent time, Android is the most famous platform for 
mobile devices [1]. Saving and storing confidential data such 
as banking information or contact numbers is part of every 
mobile device. Hence providing a barrier between these 
information and an attacker is highly needed. Nowadays 
antiviruses are greatly developed and provide a wide range of 
options based on user needs. However, studies show most 
Android users do not rely on antiviruses to secure their phones 
[2]. So, this can be a great motivation for the attacker to focus 
on the Android platform. Kaspersky, which is one of the 
biggest security solutions company released information 
related to malicious activity on the Android platform in 2018. 
Based on the statistics, 5,730,916 malicious packages were 
detected by their lab [3]. Thus, protecting Android devices 
from misuse or any malicious application is important and 
needed. 

Mobile malware can be classified into three (3) groups [4]. 
These are Malware, Grayware, and Spyware. The Malware 
focuses on gaining access to personal data or damaging to the 

hardware (mobile device). One of the main aims of Malware 
attacks is unprivileged access to user personal information. 
Malware attacks are SMS, Bluetooth, GPS, and Root attacks. 
SMS attack is mostly related to phishing and adware. In 
Bluetooth attack, an attacker can steal user personal 
information or location services. GPS attacks can compromise 
GPS devices on mobile phones to steal user location. In Root 
attack, an attacker can get privileged access to the phone 
operating system to install or remove applications. Grayware 
is an attack that mostly focuses on the marketing side without 
any damaging to phone or user data. Spyware is the most 
frequent type of attack related to the mobile phone which 
steals user data and sends it to an unwanted application rather 
than the original one. Android malware can further be 
specifically categorized into Worm, Trojan, Back-doors, 
Botnet, Spyware and Ransomware [5]. 

To analyze the behavior of application in the Android 
platform, two methods of analysis are commonly used. These 
are Dynamic and Static analysis [5]. Behavioral or dynamic 
focus on application behavior during run time. For example, 
requested permissions while an application is running can 
determine application intend. Additionally, a system call is 
one of the main features which can be measure for application 
behavior in runtime. To address why system call can be 
named as dynamic analysis, an Android operating system is 
based on Linux. A system call is provided by the application 
to request specific resources whether hardware or library from 
Linux kernel. Requesting irrelevant resources for an 
application can be marked as suspicious activity. [6]. 

The static analysis is mostly applicable for analyzing 
application by disassemble package and extracting source. 
Like dynamic analysis, different approaches exist in static 
analysis. Some researches focused on finding a sequence of 
op-code that reflects the malicious activity. The reason why 
op-code can be named as a feature is that every instruction in 
the computer program follows a specific structure. In this 
structure op-code determine the action of this instruction and 
the rest is an address in memory. Malicious packages may 
follow the same action in instruction, and so, op-code can be a 
good classifier for detection. 

Permission is a famous feature for Android malware 
detection and it expose the exact intent of the application. It is 
designed to protect user privacy on the Android platform. 
Permission is requested by an application to authorize itself to 
access specific hardware or software resource. For instance, 
the sensitive user data (such as SMS or contacts) or system 
features (such as a camera or internet). Based on application 
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nature, the system may grant permission or ask the user to 
grant it. Basically, no application has the authorization to 
access or read other application data, system files, and user 
private data (such as SMS). Details related to permission are 
discussed in the next section. Fig. 1 illustrates how Android 
malware can be categorized based on different methods of 
analysis. 

In Malware detection, after the feature selection phase, 
designing the model using real-world input sample data is the 
next phase. In the design phase, different statistical and 
mathematical techniques are used to prune unnecessary 
features from input data as well as to highlight selected 
features. A well-structured model can improve detection 
accuracy. For the classification phase, existing works mostly 
used machine learning, deep learning, and statistical methods 
to carried out the classification. Although most of the 
techniques are based on mathematics but the terms are 
different. 

Machine learning is one of the basis and famous 
techniques used in the classification phase. It is a general term 
and contains many different algorithms inside. The main idea 
is to design a model based on known input data to predict 
unseen input data. In Machine learning, we try to predict as 
precious as possible for unknown input data which is called 
test data. Most of the algorithm follows two steps; train and 
test. In the training phase, the machine tries to make a relevant 
model based on labelled input data and whereas, in the test 
phase, the machine will predict based on its knowledge of 
previous learning. Moreover, machines may work on an 
unforeseen situation where the train phase does not exist. 
Therefore, machines try to find a pattern to distinguish 
between objects.  Two main machine learning techniques are 
classification (Supervised learning) and clustering 
(Unsupervised learning) [7]. Supervised learning uses labelled 
data for the classification. Here, the features need to be 
defined by the operator, and results are described through the 
mapping of input to output by rules that are provided by the 
supervisor. Unsupervised learning focuses on finding a pattern 
in unlabelled or not fully labelled data. The results mostly are 
the grouped of input data. In clustering problems, machines 
try to group data with the same features instead of classifying 
them. 

 

Fig. 1. The different Methods in Android Malware Detection. 

Recently, deep learning has been used for classification. In 
deep learning, instead of focusing on linear analysis, we target 
multiple levels of abstraction. Data representation in each 
layer transfers to the next level to achieve a more accurate 
level of abstraction for input data. Also in this method, feature 
selection is used to improve the accuracy [8]. However, one of 
the drawbacks of the deep learning method is that it uses a lot 
of resources and takes a long time due to the high level of 
decomposition to complete the classification. The statistical 
method is used for the classification and to differentiate 
between applications. The statistical model uses less 
computational resources than machine learning techniques [9]. 

In this work, the authors focused on permission as an input 
feature. Because we have only one feature to analyse, the 
model is designed based on binary classification. The 
proposed model used different statistical techniques to boost 
computation while keeping accuracy high. Permission Support 
and Permission Ranking were used in the early steps of this 
model. Principal Component Analysis (PCA) was used to find 
different views of permission correlation. Dimensionally 
reduction using Kaiser and Cumulative techniques was 
implemented to select the most significant permissions. 
Selected permissions were compared to the results of  Li [10] 
to select similar permission. Also, separate analysis has been 
done on our method without any overlap with the existing 
results. The last phase of this work focused on classification 
where Supervised Machine Learning approaches (Support 
Vector Machine and Tree-based algorithm) were used for the 
classification because of their popularity. In summary, the 
main contributions of this paper are as follows: 

Proposed a multi-level permission extraction framework 
that improved malware detection accuracy in Android devices. 

The framework designed was able to handle a large 
number of applications while keeping the performance metrics 
optimized. 

The organization of the paper is as follows. Section 2 
presents the literature review or related work. Section 3 gives 
the details about the methodology used. Section 4 gives the 
details about the proposed framework. Section 5 is the 
experiments setting and results. Section 6 gives a summary of 
the paper. 

II. LITERATURE REVIEW 

The important concepts in the understanding of malware 
detection in Android devices were discussed. The current 
trend and techniques used to develop an Android based 
malware detection model are also explained in this section. 

A. Static based Analysis 

The static based analysis includes the following methods. 

 Source Code 

[11] proposed a model to extract the source code of 
application using machine learning and clustering. Firstly, the 
authors extract the source code and then tokenized it with the 
n-gram method and used a bag of words (BoW) algorithm, 
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which is one of the NLP algorithms. Then they used both 
supervised and unsupervised machine learning techniques to 
get their result. The authors used ensemble learning by 
repeating the experiment 10 times combining with other 
methods and use the majority of results to make predictions. 
With the SVM method, they achieved a 95% detection rate. 
However, with the clustering method, they obtained only a 
72% detection rate. Although the ensemble method showed 
better result with 95.6% detection rate [11]. 

 Op-Code 

[12] developed a Deep Android Malware Detection to get 
a sequence of op-code and used a convolutional neural 
network (CNN) in detecting malicious applications. They used 
a rich dataset for the training of the model. The authors used a 
one-layer convolutional neural network over three types of 
datasets. For a small dataset, they achieved a 97% accuracy 
and for the large and extra-large dataset, they got 78% and 
86% accuracy respectively. Their results show that the model 
produces better results as the dataset and training time are 
increasing [12]. 

 Permission 

[11] proposed a model for Android malware detection 
using machine learning. The authors used the ensemble 
technique to get more accurate results. The results for 
classification with the SVM algorithm were 87.9% and using 
ensemble learning with C.45, Random Forest, Random tree, 
SVM, Logistic regression was 89.4%. Using the clustering 
method, they achieved a 64.6% detection rate [11]. 

 Hardware and Permission 

Multimodal learning is one of the neural network 
techniques that use multi-input as network input. [13] applied 
static analysis to extract features from android packages. The 
features the authors considered in their work are permission 
and hardware features. They two features were chosen 
because the requested permission can define access to 
sensitive data, and the hardware permission can access 
physical resources in mobile devices such as cameras. The 
authors used these features separately to achieve a higher 
degree of accuracy. They further combined both features to 
improve and obtain a better performance result. Grid search 
was used over selected hyperparameters to optimize 
performance value. The analysis demonstrates that the overall 
accuracy achieved was 94.5%. 

 API Tag and Permission 

CENDroid was developed by [14] as a static-based 
Android malware detection based on API tags and permission. 
They formed a different combination of features for analysis 
behaviour and set up five machine learning algorithms for the 
classification. Afterward, three ensemble combination 
techniques were used. CENDroid was based on the clustering 
training dataset into an optimized number of clusters and then 
used ensemble learning for each of them. Ensemble model 
help to improve the performance as it can handle dissimilarity 
due to misclassification. The proposed model was trained and 
tested on different datasets and results revealed that linear 
SVM achieved a higher degree of 96.13% accuracy as 

compared to other classifiers. In ensemble learning, the 
weighted majority voting method hits the highest accuracy of 
97.38% as compared to the staking and majority voting [14]. 

B. Dynamic based Analysis 

Th system call method in a dynamic based analysis is 
discussed below. 

 System Call 

M0droid was proposed by [15] as a client/server 
architecture for detecting the malicious application using 
system call analysis. In this model, when an application is 
installed on a phone, the client check hash of APK file with 
his database to detect whether it is listed or not. If it is not 
listed, the server will send the APK file to do further 
investigation. The application will be run on an isolated 
environment and all of the system calls will be captured. After 
that, a vector that was normalized using z-score store how 
many times the system call is repeated. A signature is made 
from application and Spearman‘s rank correlation was used to 
compare the database and labelled the application. After 
setting the threshold value to 0.92, the result obtained was 
60%. 

C. Hybrid Analysis 

[16] used a hybrid approach (a combination of analyzed 
source code and getting the requested permission) to proposed 
their model for malware detection. The developed model is 
capable of extracting three items. First, meta-data of 
application which contain permission of applications. Second, 
the binary of Dex code and library used in APK. Third, 
analysing the Dalivk assembly. A fuzzy fingerprint was used 
to make DNA for each application. Further, the authors 
proposed another malware detection, called ROAR for 
comparing the mentioned feature from the new application. 
Their framework is divided into three parts, family 
fingerprinting, peer fingerprinting, and merged fingerprinting. 
They achieved an accuracy rate of 95% on the last two 
methods and 85% for family fingerprinting. 

[17] proposed a model by extracting nine (9) features from 
every application. The DroidBox is used to emulate the 
application in a virtual environment. Cryptography material, 
network operation, file operation, Dexclass load, information 
leak, sent SMS, phone call, service start, receive reaction and 
system call is used for malware detection. A Chi-Square 
algorithm was applied for dimension reduction and further 
used ensemble learning and combined different machine 
learning techniques. The best success rate among the different 
datasets and machine learning methods was 96.42%. 

[18] discussed the importance of Android devices on the 
current Internet of Things (IoT) space. It was revealed that 
securing IoT devices that are running on Android is an issue. 
The authors used Factor Analysis of Information (FAIR) 
model to measure the risk associated with the IoT devices. In a 
situation of threat, they considered Situational Awareness 
(SA) to recognize the environmental elements. The proposed 
model contains three layers. The first layer, using machine 
learning, detect malicious behaviour of the attacker. The 
second layer mapped the selected feature in the first layer to 
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LEF factor of the FAIR model. The third layer, which is the 
decision-making layer finalized the process. The results 
demonstrate that with different machine learning techniques, 
different degrees of accuracy can be achieved. Based on the 
provided data, linear SVM has the highest accuracy of 99% as 
compared to other methods. 

Author in [19] focused on different features to differentiate 
between Android applications and proposed a malware 
detection model. Op-code and API calls are choosing as desire 
features for analysing. The proposed model contains five 
layers. After feature extraction from APK files, Op-codes are 
tokenized by n-gram technique and API call by API frequency 
vector. A Convolutional neural network (CNN) was used as 
the main analyser in this model. Due to the high number of 
dimensions, principal component analysis (PCA) was used to 
distinguish significant features. The Neural network outputs 
are passed to feature fusion to achieve a higher degree of 
accuracy. SoftMax was used as the classification algorithm. 
The results focus on achieving accuracy while keeping 
runtime low. On 0.034 seconds, 95.1% accuracy achieved. 

D. Significant Permission Identification 

To achieve malware detection with high certainty, the 
Significant Permission Identification is used to achieve a high 
detection rate with the lowest possible permissions for 
analysing. This method focuses on permission which has a 
high chance to labelled as malware and omit permissions with 
low effect on our detection. To implement, three-layer data 
filtering is used for analysing real-time data. These are: (1) 
permission ranking with negative rate, (2) support based 
permission ranking and (3) permission mining with 
association rules. After applying these permissions, a 
supervised machine learning model is trained to detect further 
application. 

 Data Pruning 

The first step for analysing is to eliminate the necessity of 
considering all of the permissions for analysing. Due to the 
high number of applications in our dataset and each 
application consist of many permissions, it takes time to 
analyse all of them. We use Multi-Level Data Pruning 
(MLDP) to detect the most affectable permissions. The 
following are discussions about MLDP solution. 

1) Permission Ranking with Negative Rate (PRNR): In 

every application, any requested permission reflects the need 

of the application. As far as we know the malicious 

application follows a specific subset of permission, then there 

will be no need to study all of the permissions. The algorithm 

only focuses on dangerous permissions and frequently 

requested permissions. Also, it can separate malicious 

applications from the benign applications with rare 

permissions requested by malware applications. For increasing 

the detection rate, the algorithm is omitting the same 

permission requested by both classes. To come up with one 

solution, permission ranking with negative rate is used to 

distinguish not only high-risk permission but also the 

permission used by benign applications. The goal is to 

differentiate normal and malware attacks. 

We define two matrices, M and B. M is defined as the list 
of permission used by malicious application and B is the list 
of permission used by the benign application. Mij  says 
whether permission j

th 
is used by the i

th 
malicious application 

or not. If the answer is yes then 1 otherwise 0. The same goes 
for Bij for benign applications. 

In the first step, we need a balance between malicious 
applications and benign applications. In this work, the size of 
the benign application is 310926 while malicious is only 5494 
applications, which caused skew in our model. Therefore, it is 
used in the equation 1 to find the support of each permission 
in a larger dataset and then scale down that permission to 
match smaller datasets. In this case number of benign B is 
more than malicious M. 

   (  )  
∑     

    (  )
     (  )              (1) 

Pj describes j
th 

permission and SB(Pj) is the support of j
th
 

permission in the B matrix. After rescaling, we can deploy 
PRNR in the equation 2: 

 (  )  
∑         (  ) 

∑        (  )  
              (2) 

The R(Pj) shows the rate of j
th 

permission. The range for an 
answer could be from [-1, 1] which 1 shows the permission Pj 
exists in the malicious dataset, so it can be categorized as 
danger permission. Also, if it is -1, it means that permission 
exists in the benign dataset which is low-risk permission. If 0, 
it means that it doesn‘t have a special impact on the detection. 
After that, two lists are generated from R(Pj) in a form of 
ascending or descending order. To continue, the Permission 
Incremental System (PIS) is proposed for getting top 
permission from the benign and malicious list with the 
following metrics: True Positive, False Positive, Precision, 
recall, accuracy and F-measure. The aim is to find out those 
permissions which have much effects on the whole of the 
datasets. For the 310926 benign applications and 5494 
malicious applications, all of the requested permissions are 
135 and decreased to 95 with PRNR. 

2) Support Based Permission Ranking (SPR): To narrow 

the result of PRNR and support each permission is considered 

that we focus on how many times one permission is repeated 

in the whole of the dataset or if permission exists only on a 

specific dataset. Therefore, we can omit permission with the 

lowest support. To implement this, the Permission Incremental 

System (PIS) is used to find the most supported permission. 

Our results show that 25 permission out of all the permissions 

is supportive. 

3) Permission Mining with Association Rule (PMAR): 

After two steps pruning data, we get 25 most significant 

permission. To look closer to these permissions, it seems that 

some of the permissions are formatted as pairs. As an 

example, permission WRITE_SMS always comes with 

READ_SMS and so, we can consider them as one. To find 

this association between permissions, we used association 

rules. These rules are used for discovering relations between 

entities in the dataset. It only focused on high confidence 
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permissions. The algorithm which is used for detecting 

permissions is Apriori [20], which is one of the famous 

algorithms in association rules. With 96.5% confidence and 

10% minimum support, 3 permission were found which can be 

removed due to its relative to another permission. Finally, 22 

permissions were left as the most important permissions as 

shown in Table I. 

 Machine Learning on Significant Permission 

For the detection, a supervised machine learning method 
was used. Support Vector Machine (SVM) was applied to 
small data to test the Multi-Level Data Pruning model. SVM 
needs two classes from the training dataset to differentiate its 
hyperplane. One class is map to the malicious and the other 
class to the benign while the input data would be to unknown 
application. The application is then mapped to vector space to 
decide whether it is benign or malicious. 

To check the applicability of MLDP, 67 machine learning 
techniques were used. The results of the learning algorithm 
over the original dataset were compared and applied 
algorithms on the MLDP dataset. Also, tree base techniques 
like decision tree have better result but due to high features 
among the data, this method consumed a lot of memory and 
thus greatly reduce the accuracy of the results. 

Functional tree (FT) and Random Forest are more likely to 
have better Recall than the other algorithms. However, 
Random Forest consumes more memory and time to analyse 
data. One of the main issues with this algorithm is that while 
the number of datasets increasing, FPR and other performance 
metrics are slightly decreasing. Table II shows that as we 
moved from 2650 to 54694 applications, the false positive rate 
increases to 4.85%, and this is really high. 

E. Comparison between Different Techniques 

In this section, we conclude that each method has its own 
advantages and disadvantages. These pros and cons can be 
shown in terms of the accuracy of detection or overhead on 
computational resources. Therefore, there is no specific best 
method for investigation in the area of Android. Fig. 2 
illustrates the comparison between different techniques in 
terms of accuracy. 

TABLE I. MOST SIGNIFICANT PERMISSION BY MLDP 

MLDP 

22 Permissions 

ACCESS_WIFI_STAT 

CAMERA 
CHANGE_NETWORK_STATE 

CHANGE_WIFE_STATE 

DISABLE_KEYGUARD 
GET_TASKS 

INSTALL_PACKAGES 

READ_CALL_LOG 
READ_CONTACTS 

READ_EXTRERNAL_STORAGE 

READ_HISTORY_BOOKMARKS 

READ_LOGS 

READ_PHONE_STATE 
READ_SMS 

RECEIVE_BOOT_COMPLETE 

RESTART_PACKAGES 
SEND_SMS 

SET_WALLPAPER 

SYSTEM_ALRERT_WINDOW 
WRITE_APN_SETTING 

WRITE_CONTACTS 

WRITE_SETTINGS 

TABLE II. RESULTS FOR DIFFERENT DATASETS 

Num_of_Malapp 2650 5494 54694 

Precision 

Recall 
FPR 

FM 
ACC 

98.83% 

94.4% 
1.17% 

94.97% 
96.47% 

97.54% 

93.62% 
2.36% 

95.54% 
95.63% 

95.15% 

92.17% 
4.85% 

93.63% 
93.67% 

 

Fig. 2. Comparison between the different Methods in Android Malware 

Detection. 

III. METHODOLOGY 

Here, we discussed the simulation environments, data 
collection, and research methodology. 

A. Simulation Environment 

In this work, Python 3.6.1 is used as the base scripting 
language. Python provides a wide range of libraries and 
functions. Additionally, there are a lot of Android packages 
analysis tools that are written in Python. Operating systems 
vary during different phases of analysis. Windows 10 is our 
base operating system in this analysis but however in some 
cases, Linux CentOS 6.8 is used. 

The data extraction platform needs strong computational 
power for the early stage of the study. Because of the high 
number of input data set, it is good to use a high-frequency 
CPU to extract specific data from APK files. In our work, we 
used two different platforms. First, to only inspect a small 
amount of test data in making the machine learning model, we 
run it on Intel i7-7500U, 2.70 GHz, 16 GB RAM. Second, 
most of the computation is conducted on Intel Xenon L5640 
2.70 GHz, 10 GB RAM. 

B. Datasets Collection 

The scope of Android malware detection only focuses on 
real applications. These applications can be collected from 
different common markets like Google play store. Over the 
years, researchers collected some labelled datasets to ease 
their researches. Some of these datasets are kept confidential 
with related to specific projects and accessing them requires 
special permission. But some of these datasets are accessible 
for researchers. 
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In this research, M0droid project dataset [21] with overall 
410 labelled applications is used. This dataset contains 200 
malware applications and 210 normal applications. The other 
dataset used was collected from different projects in the 
University of Brunswick [22]. This dataset is highly 
categorized and labelled. Number of applications in this 
dataset is over 5000 and Android packages with 2000 normal 
applications and 3000 malware applications. 

Also, the AndroZoo dataset [23] has granted permission to 
this research to use their dataset. This dataset is made up of 
about 8,000,000 applications. Android PRAGuard Dataset 
[24] is another dataset that was used with almost 10479 
applications. Most of the applications are labelled. Android 
Malware Dataset (AMD) [6], is one of the largest malware 
datasets in Android. It contains 24553 applications that are 
grouped into 135 different groups. Up to 71 malware families 
have been seen in this dataset. 

C. Android Packaging File (APK) 

Application in the Android platform is delivered by APK 
file format. The focus of this study is on the APK file. Fig. 3 
describes the architecture of the APK file. The META-INF 
includes manifest file, lib contain compiled code for any 
processor the device is using, res contains the non-compiled 
file, assests include application asset, AndroidManifest.xml is 
used for the identification of applications and classes.dex 
contains the source code in dex format [25]. Dex files are only 
usable by Dalvik or ART compiler on Android devices. The 
APK file is compressed with ZIP format so we can get the 
desired file from unzipping the package. Different tools can be 
used to extract desire information. 

D. Android Permission Structure 

The proposed framework stands on Android permission. 
Permission is designed to add another level of security to 
protect user sensitive data such as SMS or contacts. In 
Android security architecture, no application by default has 
access to any action related to the operating system, other 
applications, or user private files. Permissions with low risk 
are automatically granted to the application. If application 
request high risk permission such as CAMERA, user 
acceptance is required to grant permission. 

Dangerous permission can be asked in two methods: 

1) Install time request: the system asks to grant all 

requested permission. 

2) Runtime request: whenever services needed by an 

application, request permission from the user. 

Permissions are highlighted by ‗uses-permission‘ in the 
Android manifest file. Some permissions are related to 
specific hardware feature and therefore, developer needs to 
mention ‗uses-feature‘ in the manifest file. This option helps 
the application runs on devices without the requested 
hardware. Google defined three protection levels for 
permission: normal, signature, and dangerous. These are 
discussed below. 

 Normal Permission 

Normal permission is a permission that is requested by 
application for accessing data or resources out of its box. 
Mostly, these permissions are granted by the system when the 
application is installed. According to Google on Android 9, 
the following as shown in Table III are normal permissions: 

 Signature Permission 

The system grants these permissions but the permissions 
need to be signed by the same application that requests 
permission. Table IV contains the list of signature 
permissions. 

 Dangerous Permission 

Dangerous permission is the type of permission that is 
requested to access user‘s private data or system files. When 
permission is declared as dangerous, user approval is 
necessary for allocating requested resources or data. Table V 
shows the dangerous permissions. 

 

Fig. 3. APK File Structure. 

TABLE III. NORMAL PERMISSION 

ACCESS_LOCATION_EX

TRA_COMMANDS 
ACCESS_NETWORK_STATE 

ACCESS_NOTIFI

CATION_POLICY 
ACCESS_WIFI_STATE BLUETOOTH 

BLUETOOT

H_ADMIN 

BROADCAST_STICKY CHANGE_NETWORK_STATE 
CHANGE_WIFI_S

TATE 

CHANGE_WIFI_MULTIC

AST_STATE 

DISABLE_KEYG

UARD 

EXPAND_ST

ATUS_BAR 

FOREGROUND_SERVICE GET_PACKAGE_SIZE 
INSTALL_SHORT
CUT 

INTERNET 
KILL_BACKGRO
UND_PROCESSES 

MANAGE_O
WN_CALLS 

MODIFY_AUDIO_SETTIN

GS 
NFC 

READ_SYNC_SE

TTINGS 
READ_SYNC_STATS 

RECEIVE_BOOT_

COMPLETED 

REORDER_T

ASKS 

REQUEST_COMPANION_

RUN_IN_BACKGROUND 

REQUEST_COMPANION_US

E_DATA_IN_BACKGROUND 

REQUEST_DELE

TE_PACKAGES 

REQUEST_IGNORE_BAT

TERY_OPTIMIZATIONS 
SET_ALARM 

SET_WALLP

APER 

SET_WALLPAPER_HINTS TRANSMIT_IR 
USE_FINGERPRI
NT 

VIBRATE WAKE_LOCK 
WRITE_SYN
C_SETTINGS 

https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_LOCATION_EXTRA_COMMANDS
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_LOCATION_EXTRA_COMMANDS
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_NETWORK_STATE
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_NOTIFICATION_POLICY
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_NOTIFICATION_POLICY
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_WIFI_STATE
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH_ADMIN
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH_ADMIN
https://developer.android.com/reference/android/Manifest.permission.html#BROADCAST_STICKY
https://developer.android.com/reference/android/Manifest.permission.html#CHANGE_NETWORK_STATE
https://developer.android.com/reference/android/Manifest.permission.html#CHANGE_WIFI_STATE
https://developer.android.com/reference/android/Manifest.permission.html#CHANGE_WIFI_STATE
https://developer.android.com/reference/android/Manifest.permission.html#CHANGE_WIFI_MULTICAST_STATE
https://developer.android.com/reference/android/Manifest.permission.html#CHANGE_WIFI_MULTICAST_STATE
https://developer.android.com/reference/android/Manifest.permission.html#DISABLE_KEYGUARD
https://developer.android.com/reference/android/Manifest.permission.html#DISABLE_KEYGUARD
https://developer.android.com/reference/android/Manifest.permission.html#EXPAND_STATUS_BAR
https://developer.android.com/reference/android/Manifest.permission.html#EXPAND_STATUS_BAR
https://developer.android.com/reference/android/Manifest.permission.html#FOREGROUND_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#GET_PACKAGE_SIZE
https://developer.android.com/reference/android/Manifest.permission.html#INSTALL_SHORTCUT
https://developer.android.com/reference/android/Manifest.permission.html#INSTALL_SHORTCUT
https://developer.android.com/reference/android/Manifest.permission.html#INTERNET
https://developer.android.com/reference/android/Manifest.permission.html#KILL_BACKGROUND_PROCESSES
https://developer.android.com/reference/android/Manifest.permission.html#KILL_BACKGROUND_PROCESSES
https://developer.android.com/reference/android/Manifest.permission.html#MANAGE_OWN_CALLS
https://developer.android.com/reference/android/Manifest.permission.html#MANAGE_OWN_CALLS
https://developer.android.com/reference/android/Manifest.permission.html#MODIFY_AUDIO_SETTINGS
https://developer.android.com/reference/android/Manifest.permission.html#MODIFY_AUDIO_SETTINGS
https://developer.android.com/reference/android/Manifest.permission.html#NFC
https://developer.android.com/reference/android/Manifest.permission.html#READ_SYNC_SETTINGS
https://developer.android.com/reference/android/Manifest.permission.html#READ_SYNC_SETTINGS
https://developer.android.com/reference/android/Manifest.permission.html#READ_SYNC_STATS
https://developer.android.com/reference/android/Manifest.permission.html#RECEIVE_BOOT_COMPLETED
https://developer.android.com/reference/android/Manifest.permission.html#RECEIVE_BOOT_COMPLETED
https://developer.android.com/reference/android/Manifest.permission.html#REORDER_TASKS
https://developer.android.com/reference/android/Manifest.permission.html#REORDER_TASKS
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_COMPANION_RUN_IN_BACKGROUND
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_COMPANION_RUN_IN_BACKGROUND
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_COMPANION_USE_DATA_IN_BACKGROUND
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_COMPANION_USE_DATA_IN_BACKGROUND
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_DELETE_PACKAGES
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_DELETE_PACKAGES
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_IGNORE_BATTERY_OPTIMIZATIONS
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_IGNORE_BATTERY_OPTIMIZATIONS
https://developer.android.com/reference/android/Manifest.permission.html#SET_ALARM
https://developer.android.com/reference/android/Manifest.permission.html#SET_WALLPAPER
https://developer.android.com/reference/android/Manifest.permission.html#SET_WALLPAPER
https://developer.android.com/reference/android/Manifest.permission.html#SET_WALLPAPER_HINTS
https://developer.android.com/reference/android/Manifest.permission.html#TRANSMIT_IR
https://developer.android.com/reference/android/Manifest.permission.html#USE_FINGERPRINT
https://developer.android.com/reference/android/Manifest.permission.html#USE_FINGERPRINT
https://developer.android.com/reference/android/Manifest.permission.html#VIBRATE
https://developer.android.com/reference/android/Manifest.permission.html#WAKE_LOCK
https://developer.android.com/reference/android/Manifest.permission.html#WRITE_SYNC_SETTINGS
https://developer.android.com/reference/android/Manifest.permission.html#WRITE_SYNC_SETTINGS
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TABLE IV. SIGNATURE PERMISSION 

BIND_ACCESSIBILITY

_SERVICE 
BIND_AUTOFILL_SERVICE 

BIND_CARRIER_SE

RVICES 

BIND_CHOOSER_TARGET_S

ERVICE 

BIND_CONDITION_PROVID

ER_SERVICE 

BIND_DEVICE_ADMI

N 
BIND_DREAM_SERVICE 

BIND_INCALL_SER

VICE 
BIND_INPUT_METHOD 

BIND_MIDI_DEVICE_SERVI

CE 

BIND_NFC_SERVICE 
BIND_NOTIFICATION_LISTE

NER_SERVICE 

BIND_SCREENING_

SERVICE 

BIND_TELECOM_CONNECTI

ON_SERVICE 
BIND_TEXT_SERVICE 

BIND_TV_INPUT 
BIND_VISUAL_VOICEMAIL_S
ERVICE 

BIND_VOICE_INTE
RACTION 

BIND_VPN_SERVICE 
BIND_VR_LISTENER_SERVI
CE 

BIND_WALLPAPER CLEAR_APP_CACHE 
MANAGE_DOCUM

ENTS 
READ_VOICEMAIL 

REQUEST_INSTALL_PACK

AGES 

SYSTEM_ALERT_WIN

DOW 
WRITE_SETTINGS 

WRITE_VOICEMAI

L 
* * 

TABLE V. DANGEROUS PERMISSION 

CALENDAR 
READ_CALENDAR 

LOCATION 
ACCESS_FINE_LOCATION 

SMS 

SEND_SMS 

WRITE_CALENDAR ACCESS_COARSE_LOCATION RECEIVE_SMS 

CALL_LOG 

READ_CALL_LOG MICROPHONE RECORD_AUDIO READ_SMS 

WRITE_CALL_LOG 

PHONE 

READ_PHONE_STATE RECEIVE_WAP_PUSH 

PROCESS_OUTGOING_CALLS READ_PHONE_NUMBERS 
STORAGE 

READ_EXTERNAL_STORAGE 

CAMERA CAMERA CALL_PHONE WRITE_EXTERNAL_STORAGE 

CONTACTS 

READ_CONTACTS ANSWER_PHONE_CALLS * * 

WRITE_CONTACTS ADD_VOICEMAIL * * 

GET_ACCOUNTS USE_SIP * * 

RECEIVE_MMS SENSORS BODY_SENSORS * * 

IV. PROPOSED FRAMEWORK 

The proposed framework contains different layers for data 
processing. It is called a multi-level permission extraction 
framework. The multi-level permission extraction framework 
contains methods from the previous researches as well as a 
novel method to improve the accuracy of the detection model. 
The general overview of the proposed framework is shown in 
Fig. 4. 

A. Permission Extraction from APK Files 

The first step in our framework is to extract permissions 
from APK files. As described previously, permissions exist in 
the Android manifest file. To read and extract desire 
information, specific tools are required which is discussed in 
the experimental section. After extracting permissions from 
both malware and benign datasets, data are mapped into a 
matrix. This matrix is called a feature matrix. 

B. Feature Matrix 

The feature matrix represents the existence of permission 
in the applications. In the feature matrix, each application‘s 
permissions are defined by Boolean variables. We defined two 
matrices, M and B. Matrix M is the list of permission used by 
the malicious application and matrix B is the list of permission 
used by the benign application. Mij  says whether permission j

th 

is used by the i
th 

malicious application or not. If the answer is 
yes then 1 otherwise 0. The same goes to Bij for benign 
applications. Table VI is the sample matrix from the malware 
dataset. 

 

Fig. 4. Proposed Multi-Level Permission Extraction Framework. 

C. Multi-Level Permission Extraction 

Multi-level permission extraction level is the proposed 
framework. In this framework, different levels of permission 
pruning are applied to achieve the most significant 
permissions. The proposed framework contains four main 
phases; data skew correction, permission ranking, principal 
component analysis, and two different statistical algorithms 

https://developer.android.com/reference/android/Manifest.permission.html#BIND_ACCESSIBILITY_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_ACCESSIBILITY_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_AUTOFILL_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_CARRIER_SERVICES
https://developer.android.com/reference/android/Manifest.permission.html#BIND_CARRIER_SERVICES
https://developer.android.com/reference/android/Manifest.permission.html#BIND_CHOOSER_TARGET_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_CHOOSER_TARGET_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_CONDITION_PROVIDER_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_CONDITION_PROVIDER_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_DEVICE_ADMIN
https://developer.android.com/reference/android/Manifest.permission.html#BIND_DEVICE_ADMIN
https://developer.android.com/reference/android/Manifest.permission.html#BIND_DREAM_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_INCALL_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_INCALL_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_INPUT_METHOD
https://developer.android.com/reference/android/Manifest.permission.html#BIND_MIDI_DEVICE_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_MIDI_DEVICE_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_NFC_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_NOTIFICATION_LISTENER_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_NOTIFICATION_LISTENER_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_SCREENING_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_SCREENING_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_TELECOM_CONNECTION_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_TELECOM_CONNECTION_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_TEXT_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_TV_INPUT
https://developer.android.com/reference/android/Manifest.permission.html#BIND_VISUAL_VOICEMAIL_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_VISUAL_VOICEMAIL_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_VOICE_INTERACTION
https://developer.android.com/reference/android/Manifest.permission.html#BIND_VOICE_INTERACTION
https://developer.android.com/reference/android/Manifest.permission.html#BIND_VPN_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_VR_LISTENER_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_VR_LISTENER_SERVICE
https://developer.android.com/reference/android/Manifest.permission.html#BIND_WALLPAPER
https://developer.android.com/reference/android/Manifest.permission.html#CLEAR_APP_CACHE
https://developer.android.com/reference/android/Manifest.permission.html#MANAGE_DOCUMENTS
https://developer.android.com/reference/android/Manifest.permission.html#MANAGE_DOCUMENTS
https://developer.android.com/reference/android/Manifest.permission.html#READ_VOICEMAIL
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_INSTALL_PACKAGES
https://developer.android.com/reference/android/Manifest.permission.html#REQUEST_INSTALL_PACKAGES
https://developer.android.com/reference/android/Manifest.permission.html#SYSTEM_ALERT_WINDOW
https://developer.android.com/reference/android/Manifest.permission.html#SYSTEM_ALERT_WINDOW
https://developer.android.com/reference/android/Manifest.permission.html#WRITE_SETTINGS
https://developer.android.com/reference/android/Manifest.permission.html#WRITE_VOICEMAIL
https://developer.android.com/reference/android/Manifest.permission.html#WRITE_VOICEMAIL
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for identifying the most valuable permissions in the dataset. 
This framework hired some techniques from one of the states 
of arts research in Android malware detection [10]. 

 Data Skew Correction 

In data analysis research, it is necessary that data in every 
category balanced to avoid any wrong or incorrect results. 
However, providing the same amount of data for every 
category is not possible. In this research, we used different 
sources for our datasets. The malware dataset size is around 
25000 APK files as compare to 15000 APK files for the 
normal datasets. Also, we have around 8,000,000 APK files in 
both malware and benign dataset. This unbalances in malware 
and normal data category may lead to inaccurate results in the 
final steps. 

In data skew correction layer, we used equation 3 to find 
support for each permission in the larger datasets and then 
scale down that permission to match smaller dataset. In this 
case, the number of malicious applications is more than the 
benign applications. 

  (  )   
∑     

        
      (  )            (3) 

Where Pj describes j
th 

permission and SM(Pj) is the support 
of j

th
 permission in the malware matrix. 

 Permission Ranking 

In this step, permission ranking scheme has been used to 
hold the most frequent permissions in the dataset. Some 
permissions only happened in the context a few times, and 
hence these permissions have less support as compare to the 
common permissions. This scheme provides a more accurate 
view on what each permission represents in the datasets. 

Term-Frequency Inverse Document Frequency (TF-IDF) 
technique is used to indicate the importance of each 
permission in all of the datasets. Term weighting methods are 
commonly grouped into supervised and unsupervised 
methods. The unsupervised or traditional term weighting 
methods are originated from the information retrieval field. 
The supervised weighting methods used the prior information 
of the training documents in predefined categories. The weight 
of a feature   with respect to a class represent the 
discriminating ability of   towards normal and attack classes. 
The higher the weight, the stronger the discriminating power 
of this feature in identifying the anomaly instances. Because 
permission-based Vector is by nature a bag of permission in 
the form of a vector, the tf-idf weighting method, where,  
       is the weight of the feature    with regards to 
permission     is the product of       and        [26] and this is 

show mathematically in equation 4. 

   
   

                           (4) 

The matrices from the previous layer are passed into this 
layer and the value of all the rows is summed in one row. The 
new row represents how many times one permission is 
requested in a specific dataset. Then, the TF-IDF is applied to 
determine the impact of permission in the dataset. The 
weighting scheme result will omit the less frequent 

permissions and show the significant permissions in both 
datasets. 

 Principal Component Analysis 

Data transformation is required to come up with an 
efficient method to analyse a large amount of data. This 
method helps to reduce the dimension of the feature matrix to 
increase the efficiency of the model. Principal component 
analysis (PCA) is a statistical model which reduce large 
feature sets into smaller one while keeping most of the 
information intact. It transforms correlated features into some 
uncorrelated features called the principal component. This 
method is closed to a correlation technique that is applied to 
data with a wide difference of variance. PCA algorithm is 
mainly used for the algorithm with common share variance 
and focuses on a linear combination of a variable to extract 
maximum possible variance. In the PCA algorithm, 
eigenvector and eigenvalue are considered. The eigenvector 
shows a common variance and unique variance for producing 
correlation. Eigenvalue is the measure of all variance for a 
specific factor. 

 Kaiser and Cumulative 

The last layer of the proposed framework is to select the 
most significant permissions based on the eigenvalues and 
eigenvectors variables. Factor analysis is used in this step. 
Factor analysis is a statistical model to check variability 
between observed and unobserved factors. Kaiser‘s method 
sets a threshold between the maximum and minimum margin 
for the eigenvalue of 1. It means each eigenvalue above 1 
demonstrates the desired factor and those below are not 
selected [27]. In this study, we applied Kaiser‘s method on the 
PCA results to find the most significant permissions. 

Besides Kaiser, the cumulative technique was also used. 
Unlike Kaiser, there is no specific threshold for cumulative 
technique. Rather than a threshold, a percentage has been 
suggested. In most of the existing models, when 90% of the 
variance is reached, the model stopped. In our case, we also 
set the variance percentage to be 90% and applied the 
cumulative method on the PCA results to distinguish the most 
important permissions [28]. 

We compared Kaiser and cumulative results to obtain 
similar permission from the list. Similarly, this comparison 
has been done with Li [10] and Google dangerous permission 
list. The Final selected permissions are obtained from the 
intersection of all the results. 

 Significant Permission Matrix 

In the final step of the data processing, the desired feature 
matrix with the most significant permissions is formed. Also, 
the data label is added to the model to be used for 
classification in the machine learning and detection part. 

V. EXPERIMENTAL SETTING AND RESULTS 

This section summarily discussed how the data are 
extracted and processed, the implementation that is done using 
machine learning approaches and the discussion on the 
evaluation of the proposed framework using some standard 
metrics. 
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A. Data Extraction 

Permissions exist in the Android manifest file. To access 
permissions, extracting Android packages is required. For 
APK files in ZIP format, accessing them directly is not 
possible. There are two main methods to access the manifest 
file. First, extracting files manually and decoding 
AndroidManifest.xml file, and second, using a tool to extract 
them. In this work, the Androguard tool has been used. 
Androguard is a tool that extracts details from APK files [29]. 
When using this tool, we only need the permission extraction 
part. Thus, we extract all the required permissions and mapped 
them into the desired feature matrix to begin the data 
processing phase. The feature matrix store permissions as 
columns and applications as a row. The sample of the 
extracted data from the datasets is displayed in Table VIa. 

B. Data Processing 

Python is the main programming language used for the 
implementation. Scikit learn library is used for the PCA, 
Kaiser, and cumulative layers of our framework. Table VII 
shows the sample correlation among features. The main 
diagonal is 1 because the relation of each permission with 
itself is 1. Based on this matrix, each correlation variable is 
higher declared and these two permissions have much impact 
on the datasets. 

C. Machine Learning 

We used Scikit learn library to implement the malware 
detection model using SVM and decision tree algorithms. We 
used 80% of the datasets to train the model and  20% for the 
testing. 

D. Experimental Results 

We report the selected permission based on the multi-level 
permission extraction framework and its effectiveness on large 
datasets. To align with the main objective of this research, we 
are able to achieve a better optimized solution for large 
datasets as compared to the existing works. 

 Significant Dangerous Permission 

From our results, 16 permissions were highlighted as 
dangerous permissions. Table VI shows the list of high-risk 
permissions based on the proposed framework. 

 Evaluation Metrics  

The evaluation metrics considered in this research are 
precision, recall, and F-measure. Precision is the number of 
correct positive results by the number of positive predicted 
results. A recall is the number of correct positive results by the 
number of all datasets. F-measure is the balance between 
precision and recall rate. This rate tries to determine the 
accuracy of the classification. Mathematically, these metrics 
are defined in equations 5, 7, and 8. 

           
                 

                                      
          (5) 

       
                  

                                     
           (6) 

           
                  

                 
            (7) 

Tables VIII and IX show the measurement metrics for our 
framework based on 20 selected permissions. From the tables, 
the input applications considered are 10000, 25000, and 
60000. Although, the available datasets are higher than the 
number of applications, but we are able to get our desire 
threshold at 60000 based on the results. 

Table VIII shows the performance metrics based on the 
SVM and Table IX contains the results based on the decision 
tree algorithm. 

TABLE VI. DANGEROUS PERMISSION 

CAMERA RECEIVE_BOOT_COMPLETE 

READ_CALL_LOG ANSWER_PHONE_CALL 

READ_CONTACTS RECORD_AUDIO 

READ_EXTERNAL_STORAGE WRITE_SETTING 

READ_PHONE_STAT WRITE_EXTERNAL_STORAGE 

READ_SMS CHANGE_WIFI_STAT 

WRITE_CONTACT DISABLE_KEYGUARD 

WRITE_SMS SET_WALLPAPER 
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TABLE VIa : SAMPLE FEATURE MATRIX 

 

TABLE VII. CORRELATION BETWEEN PERMISSIONS 

 

ACCESSOR

Y_FRAME

WORK 

ACCESS_CO

ARSE_LOCA

TION 

ACCESS_F

INE_LOCA

TION 

ACCES

S_KEY_

APP 

ACCESS_LOCATI

ON_EXTRA_COM

MANDS 

ACCESS_M

OCK_LOCA

TION 

ACCESS_N

ETWORK_S

TATE 

ACCESS_

WEB_PA

GES 

ACCESSORY_FR

AMEWORK 
1 0.099614 0.097472 -0.00485 -0.01303 -0.00688 0.019474 -0.00485 

ACCESS_COARSE

_LOCATION 
0.099614 1 0.717591 -0.04873 0.267477 0.141218 0.195498 -0.04873 

ACCESS_FINE_L

OCATION 
0.097472 0.717591 1 -0.0498 0.205232 0.138181 0.199795 -0.0498 

ACCESS_KEY_AP

P 
-0.00485 -0.04873 -0.0498 1 -0.01303 -0.00688 0.019474 -0.00485 

ACCESS_LOCATI

ON_EXTRA_COM

MANDS 

-0.01303 0.267477 0.205232 -0.01303 1 -0.01848 0.052291 -0.01303 

ACCESS_MOCK_

LOCATION 
-0.00688 0.141218 0.138181 -0.00688 -0.01848 1 0.027608 -0.00688 

ACCESS_NETWO

RK_STATE 
0.019474 0.195498 0.199795 0.019474 0.052291 0.027608 1 0.019474 

ACCESS_WEB_PA

GES 
-0.00485 -0.04873 -0.0498 -0.00485 -0.01303 -0.00688 0.019474 1 

TABLE VIII. PERFORMANCE METRICS BASED ON SVM 

Number of applications 10000 25000 60000 

Precision 

Recall 

F-measure 

98.20% 

95.80% 

96.98% 

97.16% 

93.75% 

95.42% 

95.17% 

92.86 % 

94.00% 
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TABLE IX. PERFORMANCE METRICS BASED ON DECISION TREE 

Number of applications 10000 25000 60000 

Precision 

Recall 

F-measure 

98.99% 

96.10% 
97.53% 

96.10% 

93.20% 
94.68% 

92.11% 

91.10 % 
91.60% 

From the above tables, we say that the SVM performs 
better than the decision tree in all the measurement metrics. 
SVM shows promising results in false positive rate of 3.89 
with 60000 applications. This is also shown in Fig. 5. 

 

Fig. 5. False Positive Rate in SVM and Decision Tree. 

 Discussion 

Android malware detection is a crucial research area for 
the current digital world. Most of the handphones are running 
on Android. Due to the availability and wide usage of this 
platform, many attacks are carried out to take advantage of the 
user‘s personal data. Permission in Android is the main source 
of investigation on developer intent. Permission can be named 
as double edge blade which can be dangerous or helpful for 
users. In most cases users need to decide whether permission 
is granted or not. This decision is crucial when it comes to a 
wide range of applications on mobile phones. Google as the 
main developer of Android tried to facilitate this decision by 
adding extra labels to some permissions, however this barrier 
is still not enough. 

The proposed framework successfully increased the 
detection rate by using only permissions. Although some 
researchers like [30] used an ensemble of features for 
detection but this method is complex and inefficient in a real-
world implementation. In the work of [1], permission is used 
as the only feature for identification but their results show that 
as the data increases, the detection accuracy keep reducing. To 
maintain the detection accuracy when using a large number of 
datasets and one feature, we used different factor analysis 
methods such as Kaiser and cumulative to aggregate the 
significant permissions. Our results are compared with the 
results of [1] in Table X. 

TABLE X. COMPARISON BETWEEN LI FRAMEWORK AND THE PROPOSED FRAMEWORK 

Performance metrics Li Framework Proposed Framework 

 No. of Applications Results No. of Applications Results 

Precision 

2650 98.83% 10000 98.20% 

5494 97.54% 25000 97.16% 

54694 95.5% 60000 95.17% 

Recall 

2650 94.4% 10000 95.80% 

5494 93.62% 25000 93.75% 

54694 92.17% 60000 92.86% 

F-measure 

2650 94.97% 10000 96.98% 

5494 95.54% 25000 95.42% 

54694 93.63% 60000 94.00% 

False positive rate 

2650 1.17% 10000 1.46% 

5494 2.36% 25000 2.11% 

54694 4.85% 60000 3.89% 
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During the analysis, some problems were faced. Some 
applications do not follow normal patterns. This anomaly can 
be code obfuscation or APK encryption. Some attackers 
encode the Android manifest file which makes it inaccessible 
for analysis. In this case, analysing the pattern of application 
in terms of network connection or requested permission while 
the application is running can help to distinguish malicious 
applications. But in most cases, this analysis is costly in terms 
of resource and time. 

VI. CONCLUSION 

Due to high demand and availability, the Android has 
become a famous platform for malicious activity. There are 
existing algorithms developed to avoid malware attacks on 
this platform but these algorithms are inefficient. Static, 
dynamic, and hybrid analysis are the three main techniques 
used to investigate malicious applications. The authors 
proposed a multi-level permission extraction framework to 
identify significant permissions to differentiate between 
normal and malicious applications in Android devices. The 
method used is based on static analysis as the researchers‘ 
focus is on the Android packaging file (APK) in a static 
environment. Permission was used as a feature to develop the 
proposed model and the model is able to achieve a better 
detection accuracy as compared to the existing works. To 
prune out unnecessary permissions, the researchers employed 
different mathematical steps in the proposed framework. The 
SVM and decision tree algorithms were used for the 
classification with different number of datasets. The results 
obtained are promising as with 60,000 applications, the model 
achieved 94% accuracy. This result is better when compared 
to other existing models.  Hybrid method (a combination of 
static and dynamic permission analysis) would be adopted to 
see if better results can be achieved. Adding more features 
from applications and increasing the datasets will also be 
considered in our future work. 
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