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Abstract—Development of nanosatellites with CubeSat stan-
dard allow students and professionals to get involved into the
aerospace technology. In nanosatellites, attitude plays an im-
portant role since they can be affected by various disturbances
such as gravity gradient and solar radiation. These disturbances
generate a torque in the system that must be corrected in order
to maintain the CubeSat behavior. In this article, the kinematic
and dynamic equations applied to a CubeSat with three reaction
wheels are presented. In order to provide a solution to the atti-
tude maneuvering problem, three robust control laws developed
by Boskovic, Dando, and Chen are presented and evaluated.
Furthermore, these laws are compared with a feedback control
law developed by Schaub and modified to use Quaternions.
The simulated system was subjected to disturbances caused by
a Gravity Gradient Torque and misalignments in the reaction
wheels. The effectiveness of each law is determined using the
Average of Square of the Commanded Control Torque (ASCCT),
the Error Euler Angle Integration (EULERINT), the settlement
time, the estimated computational cost (O), and the steady-state
error (ess).
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I. INTRODUCTION

The CubeSat standard, developed in 1999, is intended
to reduce development time and costs, as well as increase
accessibility to space for students and teachers [1]. As the
control of attitude maneuvers is a key factor in the performance
of a CubeSat, the aim of this research is to compare and
choose the most adequate control law to perform rest-to-rest
maneuvers under constant and non-linear disturbances.

Sidi [2], Slotine [3], and Márquez [4] defined the attitude
problem as a system of two non-linear matrix equations.
Among the attitude system controllers, the one presented by
Sidi in [2] is observed. Sidi linearized the attitude equations for
small angles and applied PID controllers using Euler Angles
and Quaternions. However, this controller was not effective
under external disturbances. Control algorithms have also been
developed for non-linear systems. These include a feedback
control developed by Schaub in [5] where Modified Rodrigues
Parameters (MRP) are used to describe the attitude of a satel-
lite, and a Variable Speed Control Moment Gyro (VSCMG)
is used as an actuator. Although Schaub’s control algorithm
had a quick response to constant errors of the inertia tensor, it

did not guarantee a quick response to external disturbances.
Adaptive control laws have also been developed following
the guidelines described by Slotine in [3]. Also, Dando [6]
proposed an adaptive control law based on sliding surfaces
that calculated the error between the real and the calculated
inertia tensor instead of estimating the tensor of inertia itself
as proposed by Ahmed in [7]. Nevertheless, this method was
only valid for a constant error. Scarritt in [8] estimated a gain
applied to the modeled inertia tensor and a rotation associated
with the misalignment of the reaction wheel obtaining a robust
control algorithm with a high computational cost (O).

All the controllers mentioned above neglected the input
control constraints. However, Boskovic [9] focused on evalu-
ating stability under saturation inputs obtaining a robust control
algorithm based on the variable structure control. Boskovic’s
controller was independent of the inertia tensor and has a lower
computational cost (O) than the average robust algorithms
but its disturbance rejection property cannot be observed.
Similarly, Chen [10] developed a robust controller that consid-
ered input constraints based on the fast non-singular terminal
sliding mode surface (FNTSMS). This controller needed an
inertia a priori information but was capable to reject non-
linear disturbances and to keep the tracking error around zero.
However, only non-asymptotic stability was guaranteed in a
finite time.

This article is divided into the following sections: Section II
presents the dynamic and kinematic equations for a rigid body.
In Section III, the equations that describe the attitude for a
CubeSat with three reaction wheels are introduced. Sections IV
and V present the equations necessary to simulate the gravity
gradient torque and the internal disturbances torques produced
by reaction wheels misalignment. Section VI presents a bibli-
ographic review of adaptive control laws developed by Dando,
Boskovik, and Chen. Also, a modification of the control law
developed by Schaub to use three reaction wheels instead
of VSCMG and Quaternions instead of MRP is presented.
In Section VII, simulations subject to the aforementioned
perturbations and to a miscellaneous torque were performed. In
order to measure the effectiveness of the control algorithm, a
comparison was made applying five criteria. The first criterion
of comparison is the steady-state error (ess), the second is
the Error Euler Angle Integration (EULERINT) used by Sidi
in [2], the third is the Average of Square of the Commanded
Control Torque (ASCCT) presented by Xiao in [12], the fourth
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is the settlement time, and the fifth is the estimated compu-
tational cost (O). Finally, the results, conclusions, and future
work are shown in Sections VIII, IX, and X, respectively.

II. ATTITUDE EQUATIONS

Two equations are required to describe the attitude of a
rigid body. First, the kinematic equation that describes the
motion of the satellite itself without taking into account the
action of forces. Second, the dynamic equation that takes into
account the torques acting on the body.

A. Kinematics Equation

The kinematics can be described using Euler Angles, Ro-
drigues Parameters, Modified Rodrigues Parameters, Quater-
nions, and other parameters derived from these. In this article,
Quaternions are used for the description of attitude [13] [14].

The kinematic equation for rotations between 0o to 360o

is defined in (1):

q̇ =
1

2
Ξ(q)ω (1)

where ‘Ξ(q)’ is defined in (2).

Ξ(q) ≡

 q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3

 (2)

‘q’ is a Quaternion that describes the rotation of the inertial
frame to the body frame and has the following form:

q = [q1 q2 q3 q4]
T (3)

A Quaternion ‘q’ has a scalar part denoted by ‘q4’ and a vector
part denoted by ‘q13 = [q1, q2, q3]T ’. Also, ‘q’ must have a unit
norm to describe a pure rotation, as seen in (4).

||q|| = q2
1 + q2

2 + q2
3 + q2

4 = 1 (4)

B. Dynamics Equation

The dynamics of the CubeSat, neglecting the effect of the
reaction wheels and modeled as a rigid body, is described by
(5) [17].

ω̇ = J̃−1
B

[
L− ω × J̃Bω

]
(5)

Where:

• ω: Angular velocity of the satellite relative to the
inertial frame.

• J̃B : Body inertia tensor.

• L: External torque applied to the center of mass
expressed in the body frame.

All parameters in (5) are expressed in the body frame accord-
ing to [2], [4] and [16].

Fig. 1. Distribution of the reaction wheels described in the body frame
which origin coincides with the center of mass and geometric. The loads are

considered to be fully balanced around the ‘o’ origin. Adapted from [2].

III. THREE REACTION WHEELS CUBESAT MODEL

To consider the effects that reaction wheels have on the
system, a CubeSat is simulated with three reaction wheels with
the distribution shown in Fig. 1.

‘J̃B’ is defined as the inertia tensor without contributions
from the reaction wheels and the general inertia tensor ‘JB’
is defined in (6) according to [4].

JB ≡ J̃B +

n∑
l=1

J⊥l (I3 −WlWl)
T l = 1, 2, 3 (6)

Where:

• Wl: Rotation axes.

• J⊥l : Reaction wheel inertia perpendicular to the axis
of rotation.

• J
‖
l : Reaction wheel inertia parallel to the axis of

rotation.

• I3: 3x3 Diagonal identity matrix.

Decomposing (6) and taking into account the distribution
of the reaction wheels in Fig. 1, the general inertia tensor is
defined by (7).

JB =

J̃xx + 2J⊥ −J̃xy −J̃xz
−J̃yx J̃yy + 2J⊥ −J̃yz
−J̃zx −J̃zy J̃zz + 2J⊥

 (7)

In the case of reaction wheels with radius ‘Rrw’ , thickness
‘drw’ and mass ‘mrw’, the parallel and perpendicular inertias
are defined by (8) and (9), respectively.

J‖ =
1

2
mrwR

2
rw (8)

J⊥ =
1

4
mrwR

2
rw +

1

12
mrwd

2
rw (9)
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The dynamics of the satellite is defined in (10) according
to [2] and [4].

ω̇ = J−1
B [L− Lrw − ω × (JBω +Hw

B )] (10)

Where:

• L: External torque applied to the center of mass
expressed in the body frame.

• Lrw: Torque delivered by reaction wheels.

• Hw
B : Angular momentum delivered by the reaction

wheels.

Equation (6) excludes the inertia of the reaction wheels
parallel to the rotation axis since this is considered as a body
that rotates freely when the reaction wheel is turned off.
However, the parallel inertias are taken into account when the
general angular momentum of the system is evaluating (11).

The angular momentum delivered by the reaction wheels
is defined by (11):

Hw
B =

n∑
l=1

J
‖
l (Wlω + Ωl)Wl l = 1, 2, 3 (11)

where Ωl represents the angular speed of the reaction wheels.

Particularly, (11) is expressed as follows:

Hw
B = Jrw [ω + Ω] (12)

where Jrw is defined by (13).

Jrw =

J‖ 0 0
0 J‖ 0
0 0 J‖

 (13)

The torque produced by the reaction wheels can be calcu-
lated with (14).

Lrw = Jrw(ω̇ + Ω̇) (14)

With (12) and (13), the dynamics described in (10) can be
rewritten as (15).

ω̇ = J−1
B [L− Lrw − ω × (JBω + Jrw [ω + Ω])] (15)

Finally, the attitude for a CubeSat with three reaction
wheels is fully modeled with (1) and (15), the acceleration
of the reaction wheels can also be calculated with (16).

Ω̇ = J−1
rwLrw − ω̇ (16)

IV. EXTERNAL DISTURBANCES

A. Gravity Gradient Torque

The external torques that affect a CubeSat are various.
However, for low orbit satellites, the major disturbance that
a CubeSat is exposed to is the gravity gradient torque ‘Lgg’
which is defined in [13] and [19] as (17).

L = Lgg = 3ω2
oc3 × JBc3 (17)

And ‘ωo’and ‘c3’ is defined in (18) and (19), respectively.

ω2
o =

µ

r3
c

(18)

c3 = C(q)

[
0
0
1

]
=

2(q1q3 − q2q4)
2(q2q3 + q1q4)
1− 2(q2

1 − q2
2)

 (19)

Where:

• µ: Earth’s gravitational coefficient (µ = 3.986×1014).

• r3
c : Distance from the center of earth.

• C(q):Attitude Matrix.

• c3: Nadir-pointing unit vector.

V. REACTION WHEELS DISTURBANCES

Among the most common disturbances, the friction pre-
sented in the motors of the reaction wheels [11] and the
misalignments [12] are considered.

A. Reaction Wheel Misalignments

The reaction wheel configuration presented in Fig. 1 is an
ideal configuration. In practice, the torque produced by the
misalignments is modeled as shown in Fig. 2.

Fig. 2. Misalignments in the reaction wheels. ‘∆α1’, ‘∆α2’, ‘∆α3’ are
small angles and ‘∆β1’, ‘∆β2’, ‘∆β3’ are in the range of ‘[−pi, pi]’.

Adapted from [12].

The equation (20) describes the total torque produced by
the reaction wheels when the misalignment angles are small.

L∗rw = Lrw + ∆DLrw (20)

Where:

∆D =

[
0 ∆α2sin(∆β2) ∆α3cos(∆β3)

∆α1cos(∆β1) 0 ∆α3sin(∆β3)
∆α1sin(∆β1) ∆α2cos(∆β2) 0

]

The angles ‘∆α1’, ‘∆α2’, ‘∆α3’, ‘∆β1’, ‘∆β2’, ‘∆β3’
are defined in Fig. 2.

VI. CONTROL LAWS

In this article, three control laws for attitude maneuvers
are compared. In order to maintain consistency throughout
the article, the nomenclatures of each author were changed
to those defined in [13] by Markley & Crassidis as shown in
Appendix A (Table VI). The ‘u’ control signal becomes the
torque delivered by reaction wheels ‘Lrw’ from (10).

Before starting to describe the control laws, first define the
Quaternion error ‘δq’ between the CubeSat’s attitude ‘q’and
the desired attitude ‘qd’ according to Scarritt [8].

δq =

[
δq13

δq4

]
(21)
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Where:

δq13 = ΞT (qd)q (22)
δq4 = (qd)

T q (23)

And the angular velocity error is defined as ‘δω = ω−ωd’.
Where ‘ω’ is the angular velocity of the CubeSat relative to
the inertial frame expressed in the body frame and ‘ωd’ is the
desired angular velocity expressed in the frame of the body.

In most cases, only the desired angular velocity expressed
in the inertial frame ‘ωdR’ is available. Then, the rotation
matrix ‘C(δq)’ is needed to express it in the body frame [6].

δω = ω − C(δq)ωdR (24)

The skew-symmetric matrix is also defined in (25) [17].

[ω×] =

[
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

]
(25)

A. Quaternion Feedback Controller

The tracking problem is defined by the error variables ‘δω’
and ‘δβ’ defined in (26).

δβ = q13 − qd13 (26)

The control law is defined in (27).

u = Pδω +Kδβ − [ω×](JBω − Jrw(ω + Ω))

− JB(ω̇d − [ω×]ωd) (27)

Where ‘K’ and ‘P’ are positive definite matrices. Lya-
punov’s candidate function is defined by Schaub in [5] as (28).

V =
1

2
δωTJBδω +KδβT δβ (28)

The dynamics of the closed-loop model is defined by (29).

JB
dB

dt
δω +Kβ + Pδω = 0 (29)

Where dB

dt is the derivative with respect to the body frame. By
deriving (28) and replacing it with (29), (30) is described as
follows:

V̇ = δωT [u− [ω×]JBω − [ω×]Jrw(ω + Ω)

− JBω̇d + J [ω×]ωd +Kδβ] (30)

1) Stability Proof: By replacing (27) in (30), (31) is
obtained..

V̇ = −δωT [P ]δω (31)

It can be seen that (31) is a positive semi-defined function.
Thus, the system is stable. However, since (28) is dependent
on two variables, asymptotically stability can not be ensured.

Nevertheless, using the Mukherjee and Chen theorem [18]
we can show that the closed-loop system is asymptotically
stable. However, it is important to mention that the value of

the calculated inertia tensor will never be equal to the real
inertia tensor. Hence, the equation (27) is rewritten as (32).

u = Pδω +Kδβ − [ω×](J∗Bω − J∗rw(ω + Ω))

− J∗B(ω̇d − [ω×]ωd) (32)

Where ‘J∗B’ and ‘J∗rw’ are the calculated inertia tensor
and the matrix of parallel inertias calculated for the reaction
wheels, respectively.

B. Boskovic Robust Controller

Boskovic’s work [9] is based in the variable structure
approach and his control technique does not require previous
knowledge of the inertia tensor. In addition, Boskovic designed
an adaptive gain that allows to compensate the disturbances
torques and to ensure that attitude and angular velocity errors
will tend to zero.

The control law proposed by Boskovic is given by (33).

−ui(t) = −umax
si(t)

|si(t)|+ k2(t)δk
i = 1, 2, 3 (33)

Where ‘δk’ is a positive constant, ‘K(t)’ is the adaptive gain
and ‘umax’ is the torque limit for all control torques. The
Boskovic Sliding Vector ‘s(t)’ is defined by (34).

s(t) = δω(t) + k2δq13(t) (34)

Boskovic defined, in [9], the adjustment law for the time-
varying control gain as (35).

k̇(t) =
γk(t)

1 + 4γ[1− δq4(t)]

{
umax

3∑
i=1

[
δωiδqi(t)

|si(t)|+ k2(t)δk
−

|δωi(t)|(1 + δk)

|δωi(t)|+ k2(t)(1 + δk)

]
− δωT δq13 − k2δqT13δq13

}
(35)

where ‘γ’ is a positive scalar and is called the convergence
rate.

C. Dando Adaptive Controller

The adaptive control law proposed by Dando [6] is intended
to estimate the error of the inertia tensor instead of the inertia
tensor itself.

The closed-loop error dynamics are first defined in (36).

JB ˙s(t) = −[ω(t)×]JBω(t)− JBαr(t) + u(t) (36)

The Dando Sliding Vector is defined in (37).

s(t) = ω(t)− ωr(t) (37)

And the other parameters are defined as:

αr(t) = C(δq)ω̇dR − [δω×]C(δq)ω̇dR − λ ˙δq13 (38)

ωr = C(δq)ωdR − λsgn[δq4]δq13 (39)

In this control, a priori knowledge of the inertia tensor with a
certain level of uncertainty is assumed as defined in (40).

JB = J∗B + J̃E (40)

Where ‘JB’ is the real satellite inertia tensor and ‘J∗B’ is the
calculated inertia tensor and ‘J̃E’ is the inertia uncertainty.
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The control law is given by (41) and (42).

−u = −KDs(t) + J∗Bαr(t) + [ω(t)×]J∗Bω(t) + ũ(t) (41)

ũ(t) = −J̃Eαr(t)− [ωr(t)×]J̃Eω(t) (42)

Equation (42) is a torque related to the uncertainty iner-
tia tensor. In order to develop an adaptive control, Dando
parametrized ‘ũ(t)’ in terms of ‘θ̃’ defined by (43).

θ̃(t) = [J̃Exx , J̃Eyy
, J̃Ezz

, J̃Eyz
, J̃Exz

, J̃Exy
]T (43)

Dando in [9], and Ahmed in [7] introduced the ‘Lop’ operator
defined by (44).

Lop(a) =

[
a1 0 0 0 a3 a2

0 a2 0 a3 0 a1

0 0 a3 a2 a1 0

]
(44)

Applying (44) and (43) to parameterize (42) the following
equation is obtained:

ũ(t) = ΦT θ̃(t) (45)

Where ‘Φ’ is defined as (46).

Φ(ω, ωr, αr) = −(Lop(αr) + [ωr×]Lop(ω))T (46)

And the adaptive law to estimate ‘ ˙̃
θ’ is given by (47).

˙̃
θ(t) = −ΓΦs(t) (47)

D. Chen Robust Controller

The robust control law proposed by Chen [10] is based
on the Fast Non-singular Terminal Sliding Mode Surface
(FNTSMS) method and adaptive control methods to compen-
sate the inertia tensor uncertainties under constraints in the
reaction wheels.

The Chen Sliding Vector is defined in (48).

S = [S1, S2, S3]T = δω + α1δq13 + α2β(δq13) (48)

In (48), ‘α1’, ‘α2’ are positive constants and the ‘β’ operator
is defined in (49) and (50).

β(δqi) =

{
sigγ(δqi) |δqi| > η
r1(δqi) + r2sgn(δqi)δq

2
i |δqi| ≤ η

(49)

sigγ(δqi) = sgn(δqi)|δqi|γ i = 1, 2, 3 (50)

Where ‘r1 = (2−γ)η(γ−1)’, ‘r2 = (γ−1)η(γ−2)’, ‘γ > 0’,
‘η < 1’ and ‘sgn(.)’ is the sign function.

The system to compensate the actuator saturation is defined
in (51).

ζ̇ =


0 ||ζ||2 ≤ ζ0
−k1ζ − k2sig

γ1(ζ)−
||ST ∆u||1+0.5∆uT ∆u

||ζ||22
ζ + ∆u ||ζ||2 > ζ0

(51)

Where ‘∆u = sat(u) − u’, ‘k1’, ‘k2’ and ‘ζ0’ are positive
constants and ‘sigγ1(ζ) = [sigγ1(ζ1), sigγ1(ζ2), sigγ1(ζ3)]T ’.

The Chen Control Law is given by (52).

− u = −F − α1J
∗
B

˙δq13 − α2J
∗
Bβ̇(δq13)− k3ζ −

1

2
S

+ ur + un + ua (52)

Where ‘ua’ and ‘F ’ are defined in (53) and (56) respectively.

ua = −û S

||S||2 + ε
, ε =

k0

1 + û
(53)

û = ĉ0 + ĉ1||δω||2 + ĉ2||δω||22 (54)

ĉn = pn(||S||2||δω||n2 − χnĉn), n = 1, 2, 3 (55)

F = −[ω×]J∗Bω + J∗B([δω×]C(δq)ωdR − C(δq)ω̇dR) (56)

Equations for ‘ur’ and ‘un’ are defined in (57) and (58)
respectively.

ur = −τ1S − τ2sigρ(S) (57)

un = −k4sig
γ1(S) (58)

Where ‘ρ > 0’, ‘γ1 < 1’, ‘τ1’, ‘τ2’, ‘k3’, ‘k4’ are positive
constants, and ‘k1 − 1

3k
2
3 − 1

2 > 0’.

Chen defines the saturation function as (60).

sat(u) = [sat(u1), sat(u2), sat(u3)]T (59)

sat(ui) =



(Umax − a)+ ui ≥ Umax − a
atanh(ui−Umax+a

a ),
ui, a− Umax < ui

< Umax − a
(a− Umax)+
atanh(ui+Umax−a

a ), ui ≤ a− Umax

(60)

Where ‘Umax’ is the maximum control torque delivered by the
reaction wheels, ‘a’ is positive constant, and ‘i=1,2,3’.

VII. NUMERICAL SIMULATIONS

Numerical simulations were carried out to perform regu-
lation maneuvers for long angles. The block diagram shown
in Fig. 3 describes how simulations were performed and the
parameters taken from [15]. Parameters, initial conditions, and
desired attitude can be seen in Tables I, II, and III, respectively.

The second-order Simpson’s rule, shown in Appendix B,
was used as the numerical integration method and the fourth-
order Runge-Kutta algorithm was used to approximate the
solution in differential equations. Simulation time was 200
seconds with a total of 100,000 iterations with a step of 0.2
milliseconds.

Fig. 3. Block diagram for a CubeSat subject to gravity gradient torque, and
misalignment. The control law block may have adaptation algorithms

depending on the simulated control law.
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TABLE I. PARAMETERS OF SATELLITE AND REACTION WHEELS

Satellite Parameters
Parameter Values

CubeSat Inertia Tensor J̃B =

[
8.46 1.1 1.5
1.1 8.46 1.6
1.5 1.6 8.46

]
×10−3 (Nm)

Desired trajectory qd=[0.2393, 0.1893, 0.0381, 0.9515]T

ωd=[0, 0, 0]T (deg/s)

Initial conditions q = [0, 0, 0, 1]T

ω = [0, 0, 30]T (deg/s)
ωrw = [0, 0, 30]T (deg/s)

Reaction wheels parameters
Parameter Values

Radius Rrw = 4.3 cm
Mass mrw = 25 g
Width drw = 1.5 cm

Maximum torque 1.343× 10−2 (Nm)

TABLE II. PARAMETERS OF DISTURBANCES

Gravity Gradient Torque
Parameter Values

rc 6471× 103 m
Reaction wheel misalignments
Parameter Values

∆α1, ∆α2, ∆α3 3, -4, 5 deg
∆β1, ∆β2, ∆β3 10, -50, 70 deg

TABLE III. CONTROL PARAMETERS

Quaternion Feedback Controller
Parameter Values

Calculated Inertia Tensor a: J∗B = I3 (Nm)
Ka, Pa : I3, I3

Calculated Reaction wheels parameters Rrw = 4cm
drw = 1cm
mrw = 20g

Boskovic Robust Controller
Parameter Values
δk , γ 0.01, 0.001

Umax 1.343× 10−2 Nm
Initial condition K0 = 1

Dando Adaptive Controller
Parameter Values

Calculated Inertia Tensor a J∗B = I3 (Nm)
λ, γ, Kd 1, 0.001, 1

Initial condition θ0 = [1, 1, 1, 0, 0, 0]T

Chen Robust Controller
Parameter Values

Calculated Inertia Tensor a J∗B = I3 (Nm)
α1, α2, η 1, 0.5, 0.0001
γ, γ1, ρ 0.6, 0.7, 0.7

k1, k2, k3, k4 2, 1, 0.3, 1
τ1, τ2, k0 10, 10, 0.0005
p0, p1, p2 0.1, 0.1, 0.1
χ1, χ2, χ3 0.001, 0.001, 0.001
ζ0, a 0.0001, 0.5

aI3: Diagonal identity matrix.

A. Attitude Regulation Maneuvers and Torque Magnitude
Constraints

The rest-to-rest attitude maneuver for a non-spinning Cube-
Sat is simulated with all control laws subject to saturation with

a maximum torque of 13.45 ×10−3 Nm emulating the physical
limitations of the reaction wheels. Euler angles, angular rate
error, and control torque are shown in Appendix C (Fig. 9, 10,
11, and 12), respectively.

B. Disturbances Torque Rejection

In order to evaluate the Disturbance Torques Rejection, a
miscellaneous disturbance torque was added as follows:

Tmis = 0.7[sin(t), 2cos(2t), 3sin(3t)]T × 10−3Nm (61)

The results obtained were shown in Euler Angles since the
attitude Quaternion does not have any physical sense. The
conversion of Quaternions to Euler Angles was carried out
using the asymmetric XYZ sequence. The results obtained are
shown in Figures 4, 5, 6, and 7.
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Fig. 4. Euler Angles and Angular Rate Errors produced by the miscellaneous
disturbance torque in the Controller defined in (32) with a settling time (ts)

of 6.81, ± 0.04 degrees in the Euler Angles oscillations, ± 1.9 ×10−3

rad/s oscillations in angular rates, and ±2.1 × 10−3 Nm in Control Torque.

C. Evaluation of Performance Between Laws of Control

To compare the efficiency of the different control laws,
several articles have been published [4][5][6]. Precision, com-
putational cost, and stability are used as evaluation criteria
in [20]. In [21], a performance index that considers both the
thruster activity and the attitude tracking performance is used.

In this paper, five criteria of comparison have been used:
EULERINT, ASCCT, settlement time at 5% (ts), average
computational cost (O), and steady state error (ess).

• Error Euler Angle Integration (EULERINT). Sidi
[2] defines it as the integral of the error angle about
the Euler axis of rotation. This is a quality indicator
since it shows the accumulated angle error that the
CubeSat travels to reach the desired position. The
adapted formula to calculate it with Quartenions is
described in (62). This parameter is similar to the
attitude tracking performance metric defined in [21].

EULERINT =

∫ T

0

2cos−1(δq4) (62)
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Fig. 5. Euler Angles and Angular Rate Errors produced by the miscellaneous
disturbance torque in the Controller defined in (33) with a settling time (ts)

of 6.44, ± 0.04 degrees in the Euler Angles oscillations, ± 1.8 ×10−3

rad/s oscillations in angular rates, and ±2.1 × 10−3 Nm in Control Torque.
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Fig. 6. Euler Angles and Angular Rate Errors produced by the miscellaneous
disturbance torque in the Controller defined in (41) and (45) with a settling

time (ts) of 6.48, ± 0.05 degrees in the Euler Angles oscillations, ± 2.0
×10−3 rad/s oscillations in angular rates, and ±2.1 × 10−3 Nm in Control

Torque.

• Average of Square of the Commanded Control
Torque (ASCCT). It is defined by [12] as a measure
of magnitude equivalent to the effective average torque
exerted on the three satellite axes. This parameter
is similar to the thruster activity performance metric
defined in [21].

ASCCT =
1

T

∫ T

0

||u(t)||2dt (63)

• Computational Cost (O). The average time that the
algorithm takes to calculate the new control command
‘u’.

The conducted simulations in Section VII-A were used
to compare the control laws (27), (33), (41), and (52). The
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Fig. 7. Euler Angles and Angular Rate Errors produced by the miscellaneous
disturbance torque in the Controller defined in (52) with a settling time (ts)
of 2.75, ± 0.01 degrees in the Euler Angles oscillations, 0.2 Euler Angles
offset, ± 0.7 ×10−3 rad/s oscillations in angular rates, and ±2.1 × 10−3

Nm in Control Torque.

calculated ASCCT and EULERINT are shown in Fig. 8.
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Fig. 8. EULERINT and ASCCT performance for control laws (27), (33),
(41), and (52) without effects of miscellaneous disturbance torque.

VIII. RESULTS

This section presents the results obtained in the numerical
simulations developed in Section VII. The results obtained
from Sections VII-A and VII-B are shown in Table IV and
Table V, respectively.

TABLE IV. SIMULATION RESULTS WITHOUT EFFECTS OF
MISCELLANEOUS TORQUES

Controller ts (5%) EULERINT ASCCT O ess
Feedback 6.83s 1.372 rad.s 0.486 µN.m 0.027ms −0.16 10−3

Boskovic 6.32s 1.336 rad.s 0.430 µN.m 0.16ms 0.71 10−6

Dando 6.33s 1.333 rad.s 0.485 µN.m 0.20ms 0.96 10−6

Chen 2.75s Growing 0.640 µN.m 0.31ms −0.21

The torque per gravity gradient for a balanced CubeSat of
one unit is minimal. A magnitude of [−3.14, 6.44,−5.02]T ×
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TABLE V. SIMULATION RESULTS WITH EFFECTS OF MISCELLANEOUS
TORQUES

Controller ts (5%) Amplitude in Euler Angles oscillations OFFSET
Feedback 6.81s 0.04 deg 0 deg
Boskovic 6.44s 0.04 deg 0 deg
Dando 6.48s 0.05 deg 0 deg
Chen 2.75s 0.01 deg 0.2 deg

10−9 Nm for the Gravity Gradient Torque is obtained as seen
in Appendix D (Fig. 13).

IX. CONCLUSION

In this article the simulation and comparison of four control
laws in a CubeSat environment were carried out to find the
most efficient control law that will be applied in the authors’
future CubeSat projects.

The Quaternion Feedback Controller explained in Section
VI-A is a basic algorithm that needs previous knowledge of
the inertia tensor. Although, the miscellaneous torque rejection
in this algorithm is not robust, it has an acceptable behavior
rejecting constant inertia tensor uncertainties as can be seen
in Fig. 4 and 9. However, the steady-state error is higher than
the other robust algorithms and stability cannot be ensured in
the case of control input constraints.

The Boskovic Robust Controller explained in Section VI-B
is a robust algorithm that was developed considering the
control input constraints so the authors ensure its global
stability. To avoid the problem of chattering in the simulations,
gain values for the adaptive parameter ‘k’ were chosen in
order to not achieve convergence before the attitude and
angular rate errors. As seen in Fig. 5, the controller does not
reject the miscellaneous torque completely but the estimated
computational cost is lower than the other robust algorithms
as seen in Table IV. Moreover, the ASCCT parameter is the
lowest but the EULERINT is only lower than the quaternion
feedback algorithm.

The Dando Adaptive Controller law explained in Section
VI-C is a robust algorithm that need a priori knowledge of
the inertia tensor. Global stability cannot be ensured because
this algorithm is not evaluated with control input constraints.
Even though the saturation time to perform the maneuver is
minimal, the behavior of the control law can be acceptable as
seen in Fig. 6 and 11. The disturbance rejection is similar to
Boskovic Controller but its steady state behavior is better than
the other control laws.

The Chen Robust Controller law explained in Section VI-D
is a robust controller that takes into account the control input
constraints and needs a priori knowledge of the inertia matrix.
Even though the asymptotic convergence in a finite time cannot
be ensured as seen in Fig. 7 and 8, the disturbance rejection
is better than the other controllers. In the simulations, the
minimum steady-state is 0.02 degrees and the ASCCT torque
needed to produce the rest-to-rest maneuver is the highest.

In order to choose the best control algorithm the priority
was given to the steady-state error because it allows to perform
precise attitude maneuvers. As a second evaluation criterion,

the EULERINT parameter was chosen since it allows to per-
form a maneuver with the least possible error. Computational
cost (O) was not consider a major factor as complex algorithms
are not a challenge in modern micro-controllers. The settling
time (ts) was not relevant for the chosen application.

Following these guidelines and according to the results
obtained, it can be seen that the best performing control law
for rest-to-rest maneuvers is the Boskovic Control law. This
controller is capable of maintaining a steady-state error of
0.71 × 10−6 degrees while rejecting disturbances caused by
misalignment, gravity gradient, and miscellaneous torques.

X. FUTURE WORK

Further research will implement and compare the studied
control laws in an air bearing testing platform as proposed in
[15]. Also, it is interesting to evaluate the performance of these
control laws under noise effects and uncertainties in the overall
system. Moreover, based on [20], further work will be focused
on the measurement of the current consumed by each reaction
wheel and the overall electric potential in each maneuver.
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[16] T. T. Arif, ”A Decentralized Adaptive Control of Flexible Satellite,”
2007 IEEE Aerospace Conference, Big Sky, MT, 2007, pp. 1-7.

[17] P. S. Pereira da Silva, F. S. Freitas and P.R. Y. Aco-Cardenas, “Flat
systems, flat information and an application to attitude control,” 1999
European Control Conference (ECC), Karlsruhe, 1999, pp. 3202-3207.

[18] R. Mukherjee and D. Chen, “Asymptotic stability theorem for au-
tonomous systems,” Journal of Guidance, Control, and Dynamics, 1993,
vol. 16, no 5, p. 961-963.

[19] I. Kök, “Comparison and analysis of attitude control systems of a
satellite using reaction wheel actuators,” Dissertation, 2012.

[20] A. Bello et al., “Experimental comparison of attitude controllers for
nanosatellites,” in 8th European Conference for Aeronautics and Space
Sciences, 2019.

[21] N. Coulter and H. Moncayo, “Comparison of Optimal and Bioinspired
Adaptive Control Laws for Spacecraft Sloshing Dynamics,” Journal of
Spacecraft and Rockets, 2020, vol. 57, no 1, p. 12-32.

APPENDIX A

Nomenclature used in this paper taken from Markley’s
book [13] .

TABLE VI. NOMENCLATURE

Name Symbol
Attitude Quaternion q = [q1, q2, q3, q4]

Quaternion vectorial part q13
Quaternion scalar part q4

Satellite angular velocity ω
Reaction wheels angular velocity Ω

Inertia tensor without reaction wheels J̃B
Total inertia tensor JB

Perpendicular reaction wheel inertia J⊥

Parallel reaction wheel inertia J‖

Perpendicular reaction wheel inertia matrix Jrw
External torques L

Reaction wheels torques Lrw

Gravity gradient torque Tgg

Reaction wheel radio Rrw

Reaction wheel thickness drw
Reaction wheel mass mrw

Error Quaternion δq
Angular velocity error δω

Earth’s gravitational coefficient µ
Distance from the center of Earth rc

APPENDIX B

Numerical integration method used in Section VII: The
second-order Simpson’s rule.∫ t2

t1

f(t)dt ≈ dt

6

[
f(t1) + 4f

(
t1 + t2

2

)
+ f(t2)

]
(64)

APPENDIX C

The rest-to-rest attitude maneuver for a non-spinning Cube-
Sat simulated in Section VII-A.
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Fig. 11. Euler Angles, Angular Rate Errors and Control Torque produced by
the Dando Adaptive Controller defined in (41) and (45) with a settling time
(ts) of 6.33 s and average computational cost (O) of 0.200 ms. The Control

Torque saturation time was 267 ms.
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Fig. 12. Euler Angles, Angular Rate Errors, and Control Torque produced by
the Chen Robust Controller defined in (52) with a settling time (ts) of 2.75 s

and an average computational cost (O) of 0.309 ms. The Control Torque
saturation time was 235 ms.

APPENDIX D

Gravity Gradient Torque described by (17) in Section IV.
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Fig. 13. Gravity gradient torque disturbance for a 100 Km low orbit CubeSat.
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