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Abstract—Over the years of applying machine learning in 

bioinformatics, we have learned that scientists, working in many 

areas of life sciences, call for deeper knowledge of the modeled 

phenomenon than just the information used to classify the 

objects with a certain quality. As dynamic molecules of gene 

activities, transcriptome profiling by RNA sequencing (RNA-seq) 

is becoming increasingly popular, which not only measures gene 

expression but also structural variations such as mutations and 

fusion transcripts. Moreover, Single nucleotide polymorphisms 

(SNPs) are of great potential in genetics, breeding, ecological and 

evolutionary studies. Rough sets could be successfully employed 

to tackle various problems such as gene expression clustering and 

classification. This study provides general guidelines for accurate 

SNP discovery from RNA-seq data. Those SNPs annotations are 

used to find relation between their biological features and the 

differential expression of the genes to which those SNPs belong. 

Rough sets are utilized to define this kind of relationship into a 

finite set of rules. Set of (32) generated rules proved good results 

with strength, certainty and coverage evaluation terms. This 

strategy is applied to the analysis of SNPs in A. thaliana plant 
under heat-stress. 
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I. INTRODUCTION 

RNA sequencing (RNA-seq) technology has resulted in 
exceptionally fast and wide scale analysis of the genetic 
information exists in all organisms. This mainly includes the 
concurrent study of alternative splicing, Single nucleotide 
polymorphisms (SNPs) and differential expression. The 
approach of genome-guided transcriptome has been the 
standard RNA-seq analysis method for model organisms like 
A. thaliana. Some existing software packages are available to 
perform this task [1]. New tools are continuously developed to 
be used for RNA-seq analysis task starting from reads 
alignment ending with the pathway analysis mission. 
Unfortunately, some non-expert users for those tools cannot 
get the full power and capabilities of them on wide scale [2]. 

SNPs are single nucleotide base variations, caused by 
transitions or transversions, in the same position between 
individual genomic sequences. Genetics and breeding are the 
most two important studies using SNPs as significant 
molecular markers. In genetic studies, SNPs are ideal genomic 
resources used for functional gene identification for traits and 

characterization of genetic resources because of their 
extensive genome distribution, wide density and, high 
scalability [3]. Fortunately, SNPs discovery can be 
accomplished on both approaches of genome-guided and de 
novo on variety of organisms [4]. This is applied on many 
plants, including those with little or no available genetic 
information. 

Among the various benefits of performing SNPs analysis 
using RNA-seq data, there are two important ones [5]. First 
the reasonable cost for simultaneous discovery of thousands 
SNPs together with expression levels of functional genes at 
the same time. Second is involving phenotypes which can be 
predicted according to genotypes and, the location of SNPs in 
coding regions related to the possibly identified plant 
biological and agronomical traits. 

RNA-seq is considered the ideal method for gene 
expression profiling [6] and, it is commonly used for precision 
medicine due to its high capability of measuring dynamic gene 
activity in the genome for a specific tissue type. Moreover, 
when applying RNA-seq on some disease tissue samples [7], it 
detects most of mutations exist in expressed genes that are 
related to disease biology. 

Machine learning techniques can support very interesting 
and critical analysis applications dedicated for the fields of 
molecular biology and bioinformatics. Particularly, rough set 
method is considered very commonly used for this task of data 
analysis due to its flexibility in handling qualitative data. 
Rough Set theory was proposed in 1982 by Z. Pawlak [8] and, 
has been used as a methodology of database mining or 
knowledge discovery. It can contribute in many processes like 
attribute selection, attribute extraction, data reduction, 
decision rule generation and pattern extraction. 

Rough Set uses information system or information table to 
represent data. This table consists of objects (rows) and 
attributes (columns) [9]. There are two types of attributes 
named as the condition attribute and decision attribute. Each 
row of an information table defines a decision rule, which 
specifies the decision attribute values when conditions are 
indicated by condition attributes are satisfied. Additionally, a 
set of objects is classified using rough set theory by finding 
dependencies and relations between attributes [10]; reduction 
of unnecessary attributes; discovering the most important 
attributes; or by decision rule generation. 
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Rough set-based rule generation provides easier 
explanations and descriptions for complex biological systems 
[8]. The challenges of those complex systems can be 
summarized into determining the features or attributes that can 
demonstrate the biological phenomenon, and what 
combinations of features‘ values can define that phenomenon 
and make a significant added value to the system study [11]. 
The possible decision values can be the participation of some 
particular genes in a biological process. Furthermore, learning 
the set of minimum features that can determine the gene 
involvement in this process may be interesting issue for some 
biologists. High throughput problems have a great care about 
discovering which features, in which order and, in which 
combinations define decisions. 

The main motivation for this research is to provide aid to 
find a reasonable answer about the relationship between 
expressed genes and SNPs under the effect of heat-stress 
phenomenon. This relationship is achieved through 
determining the set of features that best describe this 
biological process. Rough-set based rule induction method is 
applied on RNA-seq data for the A. thaliana plant. 

The rest of the paper is organized as follows. Related work 
is reviewed in Section II. Section III describes the data used in 
the research and tools adopted to perform SNPs detection and 
analysis. Methodology and techniques utilized for SNPs 
Detection phases as well as SNPs analysis are discussed in 
Section IV. The results of the experiments in the form of 
evaluation terms, tables and charts are discussed in Section V. 
Section VI provides our derivations, outcome on the study 
and, recommendations for the future work. 

II. RELATED WORK 

Various research efforts in the literature have been targeted 
to the two main focal topics of this research; SNPs 
identification and Rough set theory in bioinformatics. This 
section lists a summarization of these efforts as follows. 

The authors in [7] investigated the most suitable method 
that can provide the greatest number of SNP calls with high 
specificity and sensitivity. Following the steps of alignment 
sequence reads to the genome, removing duplicates, and using 
SAMtools to call SNPs had achieved the required purpose. 
SAMtools proved higher consistency than GATK with 8–10% 
more variants identification. 

Plant functions, related to climate adaptation, have leading 
genes involved in transcriptional mechanisms. In the study 
[12], they realized that neat and strong peaks of association 
were identified in expected functional variants in the extreme 
tail of genetic differentiation. Those results proved that 
climate adaptation can mainly cause the genomic variation 
when applied on A. thaliana at a small scale. 

SNP-ML (SNP machine learning) suggested in [13], a 
novel tool, predicted true SNPs from sequence data using 
machine learning. It was designed for calling more trusted 
SNPs from polyploids. Moreover, it provided SNP machine 
learner (SNP-MLer), a functionality to train new models for 
customized use. Tetraploid peanut SNPs were identified using 
SNP-ML, and the validated true- and false-positive SNP 
mapping data improved the discovery process. 

Another research [2] suggested Visualization Pipeline for 
RNA-seq analysis (VIPER) that combined stages of an RNA-
seq analysis workflow. This workflow graded from raw RNA-
seq data, then quality control and genome alignment, reaching 
to the differential expression and pathway analysis. VIPER 
listed the most popular tools used in the workflow like, RSEM 
for quantification, and SNPeff for annotating identified SNPs. 

A reasonable amount of work has been performed on the 
usage of rough set methodology in solving bioinformatics 
issues and challenges [14]. These studies have focused on 
problems of classification and reduction of bioinformatics 
data. Some other literatures have dealt with topics related to 
selection of genes, classification of protein sequence and, 
prediction of protein structure. 

A novel approach for tumor classification was proposed by 
[15]. This approach was based on Wavelet Packet Transforms 
(WPT) and Neighborhood Rough Sets (NRS) as tools for 
effective features extraction and selection. WPT performed 
features extraction, and then decision tables are formed. High 
classification with few attributes was reduced by NRS. The 
proposed method was applied on three gene expression 
datasets and experimental results showed feasibility and 
effectiveness. 

A feature selection algorithm based on rough set theory 
had been suggested in [16]. It depended on selecting reduced 
set of genes from microarray data based on relevance and 
significance criteria of the selected genes. The importance of 
rough set theory here was computing both criteria to produce 
theoretical analysis justification. The proposed algorithm 
performance, along with a comparison with other related 
methods had obtained 100% predictive accuracy for three 
cancer and two arthritis data sets. 

Suitable solutions were provided in [17] to solve two 
important issues exist in the data represented in information 
table. Those two solutions were applied based on concepts 
exist in Rough Set Methodology. The first issue was the 
indiscernible objects that were represented several times and 
solved by data reduction. This reduction included eliminating 
the unnecessary attributes and deletion of identical rows. The 
second issue was the existence of many redundant attributes 
and solved by dimensionality reduction. This solution used 
simplifying discernibility function to get reducts which used 
for generating if-then rules for classification. 

A Promising framework was introduced in [18] to handle 
the complexities of protein structure prediction. Rough set 
improved harmony search quick reduct algorithm to be used 
for selecting the optimum number of features. More compact 
rules were generated via Rough set classification which 
showed a higher overall accuracy rates compared with 
classification algorithms in Weka. 

III. DATASETS AND MATERIALS 

This section lists the datasets with their types and full 
description of the experiment conditions. Moreover, the tools, 
and computational power needed for accomplishing this study 
are presented. It involves Data Sources, Software Packages 
and Tools and, Computational Requirements. 
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A. Data Sets 

The A. thaliana reference genome FASTA sequences have 
been downloaded from the Ensemble FTP 
(https://plants.ensembl.org/info/website/ftp/index.html). The 
RNA-seq FASTQ data files for A. thaliana under heat-stress 
were downloaded from the NCBI website. These data files 
represent an experiment that is performed on A. thaliana 
plants in Moscow, Russia. A Third leaf was collected from 15 
plants of age 21 days after heat treatment at 42°C for 1, 3, 6, 
12, and 24 hours.  The experiment was accomplished with 2 
replicates for each of the mentioned 5 different time points to 
resolve false-positive calls at the low end of signal detection 
[5]. This experiment was SINGLE stranded – Illumina Hi-Seq 
2000 – RNA-seq libraries from TRANSCRIPTOMIC PolyA 
RNA. Ten files were downloaded and their attributes and 
description are listed in Table I. 

B. Software Packages and Tools 

The following list contains software tools and packages 
that were integrated with custom code to carry out the 
execution of the various processes along the presented 
workflow. 

 STAR (Spliced Transcripts Alignment to a Reference): 
2.5.3a [March 17, 2017] version available on BA-HPC. 

 SAMtools (Sequence Alignment/Map tool): 1.9-intel-b 
[2018] version available on BA-HPC. 

 BCFtools (Binary Counterpart Format tools): 1.9-foss-
b [2018] version available on BA-HPC. 

 SnpEff (variant annotation and effect prediction tool): 
4.1d using (Java-1.7.0_80) [2015] version available on 
BA-HPC. 

 Rosetta: version 1.4.41 [May 27 2001]. 

C. Computational Requirements 

The experiments conducted in this research are based on 
the Unix-type operating systems (primarily Linux); it provides 
a command-line interface and is best run on a high-memory, 
multicore computer or in a high-performance computing 
environment. In general, having ~1 GB of RAM per 1 million 
paired-end reads is recommended. A typical configuration is a 
multicore server with 256 GB to 1 TB of RAM. 

TABLE. I. FILES OF RNA-SEQ READS 

Symbol Replicate Name Accession 

H1_R1 1 hour Replicate 1 SRX1881868 

H1_R2 1 hour Replicate 2 SRX1881876 

H3_R1 3 hours Replicate 1 SRX1881880 

H3_R2 3 hours Replicate 2 SRX1881883 

H6_R1 6 hours Replicate 1 SRX1881886 

H6_R2 6 hours Replicate 2 SRX1881888 

H12_R1 12 hours Replicate 1 SRX1881889 

H12_R2 12 hours Replicate 2 SRX1881897 

H24_R1 24 hours Replicate 1 SRX1881908 

H24_R2 24 hours Replicate 2 SRX1881912 

For the research problem presented in this article, the lack 
of the required computing resources to accomplish the 
required work could be a challenge. In this study, the used 
computational resources were provided by The Bibliotheca 
Alexandrina (bibalex)1. The super computer BA-HPC 
capabilities are used to achieve this work. 

IV. METHODOLOGY 

This study proposes a promising framework to illustrate 
how SNPs can be discovered, annotated and, analyzed from 
RNA-seq data in order to be used to describe genes 
expression. Methodologies are divided mainly into two 
phases: (A) SNPs Detection, and (B) SNPs Analysis. Details 
of both phases and needed resources are being described 
below. 

A. SNPs Detection 

This phase shows an overview of the steps and methods 
that are employed to identify the most suitable performing of 
RNA-seq SNPs detection pipeline in Fig. 1. The employed 
steps start from creating genome indices, and go along till 
finding out annotated SNPs. 

1) Creating genome indices: Using the A. thaliana 

reference genome (*.fna) file from (Data Sets) section, Indices 

are created using STAR tool. 

 

Fig. 1. A Framework for RNA-Seq SNP Detection. 

                                                        

1
 BA-HPC group, Alexandria Library, https://www.bibalex.org/, Egypt, 

(accessed Oct 2019). 
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2) Mapping raw reads to reference genome: This step 

aims to find matches between the reference genome and the 

sequences of the sampled RNA-seq short reads. During 

mapping, using existing gene models obtains the maximum 

advantage to some read mapper in order to map the 

coordinates accurately. 

Using indices files generated by STAR, each individual 
read with the reference genome is mapped. Convert mapped 
reads from SAM to BAM, sort, and index. BAM files are 
generated sorted by coordinates, so they can be loaded much 
more quickly. 

3) Variant calling: Find deviation from reference genome, 

the output of both previous steps (RefGenome indices and 

mapped reads) are used together to perform the variant calling 

task. This step is done using SAMtools which uses the 

mpileup command to compile information about the bases 

mapped to each reference position. It collects summary 

information in the input BAMs, computes the likelihood of 

data given each possible genotype and stores the likelihoods 
in the BCF format Output BCF file is a binary form of the text 

Variant Call Format (VCF). 

4) Obtaining raw variants: BCF file came from the 

previous step is converted into VCF file using BCFtools. It is 

a collection of utilities to call SNPs and manipulate VCF files. 

Those utilities are calling SNPs and small indels, annotating 

and sub-selecting entries from VCF files, querying, filtering, 

merging VCF files, and converting BCF to human-readable 

VCF. VCF file has a nice header explaining what the columns 

mean. Below that header, there are rows of data describing 

potential genetic variants. Fig. 2 shows a sample for one of the 

produced (*.vcf) files header and content. 

Header contains mandatory lines like the first line (1) and 
the line containing columns‘ headers (30). Lines (4) and (5) in 
the shown sample include data about the reference genome 

and bam files used to get that vcf variant calling. While lines 
from (6-12) have the contigs or chromosomes of the reference 
genome and length of each of them. Moreover, there are 
optional lines that describe some meta-data about the 
information in the VCF body shown in Table II. 

SAMtools/BCFtools may write the following fields in the 
‗INFO‘ tag in VCF/BCF. 

 DP: The number of reads covering or bridging POS. 

 INDEL: Indicating the variant is an indel. 

 I16: contains 16 integers like; sum of reference base 
qualities, sum of ref mapping qualities, sum of tail 
distance for ref bases, etc. 

5) Variant filtering: This step applies the prior and does 

the actual calling. It performs filtering short variants using 

vcfutils.pl varFilter. This filtration contains; delete 

duplication, remove low-quality reads (defined by sequencing 

device), filter unmapped reads and, filter low quality 

reads/mappings. 

6) Finding out annotated SNPs: The last step in the phase 

of SNPs Detection is to discover the categorization of the 

variants effects in genome sequences. SnpEff (an abbreviation 

of ―SNP effect‖) tool is able to analyze and annotate 

thousands of variants per second and predict their possible 

genetic effects. Since many databases containing genomic 

annotations are available with SnpEff distribution, the SNPs 

annotation is called through SnpEff DB. The output 

information provided using SnpEff (*.ann.vcf) includes some 

additional lines at the end of the header which are concerned 

with the annotation part, as presented in Fig. 3. In this 

research, ‗ANN‘ field is the main target which includes the 

information needed to determine the value of the variant as 

shown in Fig. 4. 

 

Fig. 2. VCF File Header and Content. 

 

Fig. 3. Header of (*.ann.vcf) File. 
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Fig. 4. Content Sample of ‗ANN‘ Field. 

TABLE. II. VCF META-DATA 

Tag  Description 

CHROM No. of chromose that variant belongs to 

POS Position of that variant on that chromosome 

REF Reference sequence at POS involved in the variant 

ALT Comma delimited list of alternative sequence(s) 

QUAL 
Phred-scaled probability of all samples being homozygous 

reference 

INFO Semicolon delimited list of variant information 

B. SNPs Analysis 

The input of this phase is the 10 (*.ann.vcf) files created in 
the first phase, which include analysis ready variants. This 
phase includes set of well-ordered processes which are applied 
to determine the relationship between SNPs biological 
features and gene expression. 

1) Adjustment: This process handles the 10 (*.ann.vcf) 

files and put them into another flexible form enabling the 

separation of some specific information to be analyzed (INFO, 

ANN) tags. 

2) Separation of variants from indels: The main goal is 

analyzing SNPs and their effect on the genome sequence. So, 

indels are removed to focus on SNPs only. 

3) SNPs selection: Choose only SNPs located in the 

common heat-stress genes of A. thaliana, published in 

reference databases; DRASTIC2 and TAIR103. 

4) Detection of SNPs biological features: Some biological 

features of SNPs mainly describe the biological value of the 

detected SNP. They are isolated and been prepared for 

analysis. Table III lists some of those features, description 

and, their possible values. 

5) Discovery of relationship between SNPs‘ features and 

genes differential expression using Rough Set: The most 

suitable technique to represent this kind of relation is Rough 

set. Rough set theory has been a methodology of database 

mining or knowledge discovery in relational databases [9]. 

The target is to find the set of rules that translate the 

relationship between the values of the biological features of 

detected SNPs for some gene and the differential expression 

of the same gene. 

                                                        

2
 Gary Lyon, The DRASTIC gene expression database, http://www. 

drastic.org.uk, (accessed Nov 2018). 
3 The Arabidopsis Information Resource (TAIR), http://www 

.Arabidopsis.org, (accessed Oct 2019). 

Rough Set Analysis approach has many important 
advantages like; Discovery of hidden patterns in data, Data 
reduction (finds minimal sets of data), Evaluating the 
importance of data, Representing data as sets of decision rules 
and, Providing the interpretation of obtained result [19]. 

Rosetta is a general-purpose tool that is not geared towards 
any particular application domain. The name ROSETTA can 
be construed as an acronym, for a Rough Set Toolkit for 
Analysis of Data. It has been put to use by a large number of 
researchers world-wide, and has resulted in scientific 
publications in a wide variety of areas. Moreover, it 
implements features relevant to build and evaluate rough set 
models in different domains, and offers a highly user friendly 
environment in which to conduct experiments. In this study, 
Rosetta is used to generate rough set rules for the predicted 
SNPs. This will be discussed obviously in the (Generation of 
Rough set rules) section [20]. 

6) Measuring the generated rules: To quantify the 

generated rules, several numerical measures for the rules are 

illustrated in Definition 1, 2, and 3 and described in Table IV 

[21] [22]. 

  is called a decision table, which is denoted by    
        . They are called     condition and decision 
attributes, respectively. 

Definition 1: Let             be a decision table, 
          and           .The expression if   then   is 
called a decision rule and is denoted by      . 

Definition 2: Let             be a decision table and 
      a decision rule in  . The certainty factor of this rule 
is defined as: 

           
            

          
 

It is obvious that                  for every       
. This coefficient is widely used in data mining and is called 
confidence coefficient too. 

Definition 3: Let             be a decision table and 
     a decision rule in  . The coverage factor of this rule is 
defined as: 

           
            

          
 

It is obvious that                   for every    
  . 
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TABLE. III. SNPS BIOLOGICAL FEATURES 

Feature Description, and Possible value(s) 

Gene Name Common gene name (PPA1) 

Gene ID Gene ID (AT1G01050) 

Annotation 

(effect or consequence) 

Annotated using Sequence Ontology (SO) terms (e.g.  chromosome_number_variation, exon_loss_variant, 

stop_gained, stop_lost, start_lost, etc.) 

Annotation_impact A simple estimation of putative impact / deleteriousness : {HIGH, MODERATE, LOW, MODIFIER} 

Feature type Which type of feature is in the next field (e.g. transcript, motif, miRNA, etc.). It is preferred to use SO terms 

Transcript biotype The bare minimum is at least a description on whether the transcript is {Coding, Noncoding} 

cDNA_position / (cDNA_len) Position in cDNA and trancript‘s cDNA length 

Protein_position / (Protein_len) Position and number of AA 

TABLE. IV. EVALUATION MEASURES FOR ROUGH SET RULES 

Measure Description 

Rule Support The number of samples that represent this rule 

Rule Strength The Rule Support divided by the total number of samples. (The more cases support a rule, the stronger it is) 

Rule Certainty (accuracy) the frequency of objects having Ψ in the set of objects with the property Φ 

Decision Coverage the frequency of objects with the property Φ in the set of objects with the property Ψ 

V. RESULTS AND EVALUATION 

A. Identification of SNPs in Heat-Stress Genes 

Continuous decision values may cause a challenge. In 
most practical approaches, there are about two to five decision 
classes. So, if the problem has continuous decision values, 
they can be split into 2 or 3 intervals [11]. In another example 
of exon expression values, the decision experimentally was 
split into three classes by taking 20%: 60%: 20% 
corresponding to highly expressed, medium expressed and low 
expressed exons [23]. Similarly, in this study the decision is 
divided only into two classes, by taking the highest expressed 
(Yes): the lowest expressed (No) genes. 

DRASTIC and TAIR10 reference databases are used as 
trusted sources for the highest expressed heat-stress genes for 
A. thaliana. The union of heat-stress genes in those two 
databases are (225) unique genes. Next, all SNPs that are 
located into those set of genes exist in the resulting 10 
(*.ann.vcf) files are being selected. The number of heat-stress 
genes detected in each replicate and also numbers of their 
identified SNPs are listed in details in Table V. 

For balance, an equalized set of the lowest expressed heat-
stress genes are selected from work presented in [24], to 
analyze their SNPs features too. About (200) genes are 
selected and their SNPs are got from the 10 (*.ann.vcf) files. 
The number of the lowest expressed heat-stress genes detected 
in each replicate and, number of their identified SNPs are 
listed in details in Table VI. 

B. Capturing Biological Features of Identified SNPs 

After that, the biological features of SNPs for both groups 
of genes, for the highest and lowest expressed heat-stress 
genes, are picked up from the 10 (*.ann.vcf) files. The most 
effective biological features exist in these annotation files due 

to the rough set are (Gene Name, Gene ID, Annotation, 
Annotation Impact, Feature Type and, Transcript BioType). 

The top-ranked attributes (biological features) are used to 
build a rule-based classifier using the Rosetta system. 

C. Generation of Rough Set Rules 

An information system or information table can be viewed 
as a table, consisting of objects (rows) and attributes 
(columns). The captured set of SNPs are used to discover 
finite set of rules that can describe whether the genes, those 
SNPs belong to, are heat-stress or not. Rules were generated in 
Rosetta [20] with the manual reducer which determines 
decision rules (Heat Expressed: Yes; No) based on 
characterization of a set of objects in terms of attribute values 
(SNPs biological features). Table VII explores the given 
replicates and their total number of objects, number of (Yes) 
decision, number of (No) decision, and the number of 
resulting rules. Total number of Rules (251) represents the 
sum of all rules generated over the 10 replicates. However, the 
set of non-repeatable rules shared between the 10 replicates is 
(32) rules. 

Table VIII presents samples of the resulting rules after 
applying the rough set characterization. It shows the values of 
the chosen condition attributes based on the Rough set 
reduction, and the decision attribute for each rule. 

D. Rules Evaluation 

To quantify the generated rules, three main numerical 
parameters for the rules are defined: Rule Strength, Rule 
Certainty (accuracy) and, Decision Coverage. 

Those parameters are calculated for the generated set of 
rules by applying Definition 1, 2, 3 and, Table IV mentioned 
in section (Measuring the generated rules). The pie chart 
shown in Fig. 5 displays the Rule Strength of all rules, 
showing rules that have the highest strength percentages. 
Moreover, Fig. 6 shows the different Rule Certainty in a bar 
chart. Rules that have the same condition values but different 
decision value (Yes, No) are represented in adjacent bars. 
Finally, Decision Coverage of rules is represented in Fig. 7 for 
(Yes) decision rules and Fig. 8 for (No) decision rules. 
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TABLE. V. THE HIGHEST EXPRESSED HEAT-STRESS GENES AND THEIR SNPS IN ALL REPLICATES 

Rep. Name H1_R1 H1_R2 H3_R1 H3_R2 H6_R1 H6_R2 H12_R1 H12_R2 H24_R1 H24_R2 

No.Genes 140 64 172 171 184 186 186 190 183 173 

No. SNPs 2353 440 5158 2971 4860 2799 3930 3020 3446 3041 

TABLE. VI. THE LOWEST EXPRESSED HEAT-STRESS GENES AND THEIR SNPS IN ALL REPLICATES 

Rep.  Name H1_R1 H1_R2 H3_R1 H3_R2 H6_R1 H6_R2 H12_R1 H12_R2 H24_R1 H24_R2 

No.Genes 95 22 134 144 157 159 165 170 158 144 

No. SNPs 424 58 889 898 1181 1013 1241 1195 1177 853 

TABLE. VII. REPLICATES OBJECTS AND THEIR RULES 

Rep.  Name Objects (Yes) (No) Rules 

H01_R1 2775 2351 424 24 

H01_R2 498 440 58 16 

H03_R1 6047 5158 889 23 

H03_R2 3863 2965 898 27 

H06_R1 6037 4856 1181 24 

H06_R2 3806 2793 1013 26 

H12_R1 5164 3923 1241 27 

H12_R2 4210 3015 1195 28 

H24_R1 4622 3445 1177 29 

H24_R2 3891 3038 853 27 

Total 40913 31984 8929 251 

TABLE. VIII. SAMPLE OF GENERATED RULES 

Annotation Annotation_Impact Feature_Type Transcript_BioType Heat_Expressed 

missense_variant MODERATE Transcript protein_coding Yes 

stop_lost HIGH Transcript protein_coding Yes 

downstream_gene_variant MODIFIER Motif protein_coding No 

intergenic_region MODIFIER intergenic_region Noncoding Yes 

start_lost HIGH Transcript protein_coding No 

 

 

Fig. 5. Rules Strength. 

 

Fig. 6. Rules Certainty. 
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Fig. 7. Decision Coverage (Yes). 

 

Fig. 8. Decision Coverage (No). 

VI. CONCLUSION 

The ultimate goal of this research is to find the relationship 
between the set of heat-stress expressed genes and their 
detected SNPs biological features in A. thaliana RNA-seq raw 
reads. Utilizing rough set-based rule induction resulted in set 
of descriptive rules which can draw the correlation between 
those two significant concepts; genes and SNPs. A promising 
analysis framework was presented to detect SNPs in RNA-seq 
raw reads then using annotations of those SNPs to figure out 
their biological features. Additionally, about (225) unique 
genes got from DRASTIC and TAIR10 databases were used 
to represent the highly expressed heat-stress genes for A. 
thaliana. However, (200) genes were selected to represent the 
lowly expressed heat-stress genes for the same plant. The top-
ranked biological features of SNPs for both groups of genes 
with decision rules (Heat Expressed: Yes; No) were utilized to 
build a rule-based classifier using the Rosetta system. 

The system stated set of (32) non-repeatable rules. Results 
showed acceptable outcomes and, evaluation had been applied 
to check the suitability of the generated rules using Rule 
Strength, Rule Certainty and Decision Coverage. In 
conclusion, relation between SNP calls and expressed genes in 
RNA-seq data can be a very useful by-product and increases 

the amount of knowledge for SNPs discovery and analysis in 
functional genomics research. With this important result in 
mind, this method can be verified using in vivo tests to 
improve the work results. Moreover, generating rules for more 
species of the same plant may improve complete and well-
defined base for machine learning approach to researchers of 
all expertise levels. 
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