
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

108 | P a g e
www.ijacsa.thesai.org

Fast FPGA Prototyping based Real-Time Image and

Video Processing with High-Level Synthesis

Refka Ghodhbani
1
, Layla Horrigue

2
, Taoufik Saidani

3
, Mohamed Atri

4

Laboratory of Electronics and Microelectronics, Faculty of Sciences of Monastir, University of Monastir, Monastir, Tunisia1, 2, 3

Department of Computer Science, Faculty of Computing and Information Technology1, 3

Northern Border University Rafha, Saudi Arabia1, 3

College of Computer Science, King Khalid University, Abha, Saudi Arabia4

Abstract—Programming in high abstraction level is known by

its benefits. It can facilitate the development of digital image and

video processing systems. Recently, high-level synthesis (HLS)

has played a significant role in developing this field of study. Real

time image and video Processing solution needing high

throughput rate are often performed in a dedicated hardware

such as FPGA. Previous studies relied on traditional design

processes called VHDL and Verilog and to synthesize and

validate the hardware. These processes are technically complex

and time consuming. This paper introduces an alternative novel

approach. It uses a Model-Based Design workflow based on HDL

Coder (MBD), Vision HDL Toolbox, Simulink and MATLAB for

the purpose of accelerating the design of image and video

solution. The main purpose of the present paper is to study the

complexity of the design development and minimize development

time (Time to market: TM) of conventional FPGA design. In this

paper, the complexity of the development™ can be reduced by

60% effectively by automatically generating the IP cores and

downloading the modeled design through the Xilinx tools and

give more advantages of FPGA related to the other devices like
ASIC and GPU.

Keywords—High-level synthesis; FPGA; fast prototyping; real-

time image processing; video surveillance; computer-aided design;

model-based design; HDL coder; FPGA

I. INTRODUCTION

Image processing is taking place in increasingly numerous
and complex fields to perform essentially control, inspection
and data acquisition tasks [21]. We can cite industrial vision,
video surveillance and spatial imagery, medical analysis,
robotics ... The last in the list is the field of multimedia with its
many recent applications. Image processing follows a well-
defined process: to establish, from a raw image, a list of
characteristics of the scenes viewed (or objects present in this
image) to interpret the content of the image to guide or take a
decision [1,2].

Advances in the integration capability of electronic circuits
have opened up new perspectives for real-time image and
video processing on embedded systems. On the one hand,
specific processors can commonly perform billions of
operations per second, and on the other hand, reprogrammable
components will have billions of logical gates in the near
future. These circuits make it possible to realize applications
with performances in terms of speed of processing which are
constantly increasing.

The past years have seen the explosion of the embedded
systems market in many industrial and consumer domains such
as telecommunications, satellites, and medical imaging. These
increasingly important needs generate an industrial competition
where factors such as cost, performance and especially the
"Time To Market" become preponderant for the success of a
product [25].

In this context, the Field Programmable Gate Array
(FPGA) with its large integration and reconfiguration
capabilities make it a key component for rapidly developing
prototypes. In order to encourage the widespread diffusion of
such circuits, it is necessary to improve the development
environments to make them more accessible to non-experts in
electronics [12,16].

Some applications of advanced computer vision algorithms
include video histogram, color conversion system that can be
found in modern cameras and many video surveillance [3,4].
Although it might not be necessary to have live video
processing capability for many applications, some applications
such as color conversion and histogram equalization used for
autonomous driving system would require an input stream
from cameras to be processed at real time in order to send
signals back to the powertrain and steering control unit to
respond properly [5,6,7]. FPGAs are a good choice platform
for real-time video processing because energy efficiency and
the potential to extract highly-parallelized calculations [7,8].
However, hardware development consumes typically more
time and human resources than a similar software development
would consume [20,22]. For a traditional development based
on FPGAs, a good knowledge of digital logic circuit is
necessary for Hardware Description Languages (HDLs) such
as Verilog and VHDL to construct and config Register-
Transfer Level (RTL) circuits in an FPGA [7,17].

Each software offers users with its model block. These
tools can help users build the Simulink model with the
provided block to generate HDL codes. As compared to the
above three software, Simulink HDL Coder by which the
generated HDL codes is characterized by its flexibility [18,19].

The goal for this paper is to conceive an automatically very
high-level synthesis (VHLS) framework with the following
features:

 A short time automatically creating for RTL desired
rather than hours or even days.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

109 | P a g e
www.ijacsa.thesai.org

 To examine the algorithm behavior described in very
high-level languages.

 To achieve performances of the designs with the
hardware constraints, including area of the target
device or frequency.

 To be able to use the currently tools for hight level
synthesis available.

 To boost code reuse from 0 to 60%.

The remainder of this paper is organized as follows: in the
Section 2, related work on VHLS for image and video
processing are presented. Section 3 present high-level synthesis
proposed method for image and video prototyping, it discusses
the challenge that we met when prototyping this conception, as
well as the solutions. Proposed method prototyping and
experiment results are given in Section 4. Finally, this paper is
finished by a conclusion in Section 5.

A. Selecting a Template

First, confirm that you have the correct template for your
paper size. This template has been tailored for output on the
US-letter paper size. If you are using A4-sized paper, please
close this file and download the file ―MSW_A4_format‖.

B. Maintaining the Integrity of the Specifications

The template is used to format your paper and style the
text. All margins, column widths, line spaces, and text fonts are
prescribed; please do not alter them. You may note
peculiarities. For example, the head margin in this template
measures proportionately more than is customary. This
measurement and others are deliberate, using specifications
that anticipate your paper as one part of the entire proceedings,
and not as an independent document. Please do not revise any
of the current designations.

II. RELATED WORKS

To accelerate embedded real time image and video
processing, in the last years, there are some given hardware-
accelerated with different high-level synthesis method have
been introduced in the automotive area, dedicated DSP-based
systems and ASIC solutions compete against FPGA platforms
and GPU applications [24].

Abdelgawad, Safar, and Wahba have developed a Canny
Edge Detection Algorithm on Zynq Platform [1]. They utilized
the Targeted Reference Design (TRD) for Zynq from Xilinx as
the platform for the experiment of performance comparison
between the CPU processor and the hardware accelerator. They
declared memory accesses as the major bottleneck for a real-
time video processing system. With proper buffering and
directive-based optimizations, they were able to achieve a
speedup of 100x on Zynq‘s hardware accelerator. They also
provide the utilization estimation of the Canny Edge Detector
hardware accelerator, but power analysis is missing. By using
the TRD, they could inspect the performance improvement
more directly thanks to the QT GUI interface. However, the
TRD design gave rise to less control of the hardware design as
well as software development.

Moreover, by the same research team, Monson, Wirthlin,
and Hutchings attempted to optimize another popular image
processing algorithm, Sobel filter, using Vivado HLS targeting
a Zynq based FPGA [2]. Their first goal was to restructure an
existing Sobel filter written in C to a C synthesizable version in
Vivado HLS because the original code contains some non-
synthesizable portions. Besides the restructuring, the authors
discovered and applied three incremental optimizations that
can be synthesized in Vivado HLS. The incremental
optimization helped their design to achieve a performance of
388 FPS at a resolution of 640x480.

According to [5], the proposed approach operates on the
building block level. All these devices seem to depend on
hardware simulation and synthesis technology to derive
performance scenarios. These figs are only available at a very
late stage of the design process after a final FPGA integration.

Cai et al. utilized the capability of Vivado HLS to
transform a software face recognition program to a
corresponding hardware design based on Zynq platform [9,11].
Their intention was to improve the face detection performance,
and the result indicates the performance was improved by up to
80% after migrating the computation onto the hardware. Their
face location algorithm relies on color segmentation to detect
human faces. The algorithm involves transforming from RGB
color space to YCbCr color space, converting the query image
to grayscale, and locating the skin color region after erosion
and dilation. This algorithm results in straightforward and fast
computations. Using color segmentation can be
computationally efficient and it is possible to achieve real-time
image processing performance. However, a relatively clean
background is required for face detection using color
segmentation. Also, misrecognition could occur if hands and
arms are exposed in the query image.

Now, As opposed to the low-level design approach, Model
Based design for FPGA are one of the methods that are based
of high-level modeling for image and video processing
applications on a very higher level of abstraction. Many
various industrial and academic design approaches are
available such as Simulink/ Xilinx System generator models,
which can convert automatically into a hardware (VHDL)
description [10,11].

Author in [13] provides a survey of HLS FPGA design
flows for image and video processing applications. Although
the given solutions focus on the composition, implementation
or HDL generation of an optimal FPGA design, FPGA
resources at execution time are neglecting considering reuse of.

III. PROPOSED VERY HIGH-LEVEL SYNTHESIS FOR IMAGE

PROCESSING

According to [14,15], from September 2013 when
MathWorks presented its hardware/software workflow for
Zynq-7000 focusing Model-Based Design (MBD). Based on
this new proposed workflow presented in Fig. 1, models are
designed in Simulink using HDL toolbox that can show a
completely dynamic system. These include a Simulink model
for algorithms targeted for the Xilinx Zynq SoC platform, and
Quickly create software- hardware implementations for Zynq
platform directly from the algorithm and system design.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

110 | P a g e
www.ijacsa.thesai.org

A. Rapid Prototyping Flow with HDL coder

This paper presents a video processing system rapid
prototyping flow that allows engineers with little to no HDL
experience to develop an FPGA based high-performance video
processing system.

Fig. 2 demonstrates the rapid prototyping flow from a high-
level point of view, and this paper focuses on three of the most
essential steps in the flow:

 An FPGA-based SoC video processing system
architecture needs to be designed. The system should

allow integration of generated IPs from high-level
synthesis tools to realize real-time video processing
capability.

 The design enables the adoption of FPGA acceleration
kernels developed by high-level synthesis tools so that
engineers can quickly reconfigure the functionality of
the system.

 System-level communications allow users to use
software for initializing and configuring modules that
are developed in the hardware system.

Fig. 1. HDL Coder Workflow.

Fig. 2. Model based Design Prototyping with MATLAB/HDL Coder.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

111 | P a g e
www.ijacsa.thesai.org

The development of the proposed real-time video
processing system is divided into two parts: 1) Video
processing system architecture design, and 2) Video processing
algorithms design. The first part discusses the major
components contributed to the video processing system on the
Zynq platform including the AXI4 Interfaces used for high
throughput data transmissions, while the second part discusses
the approaches and optimizations, we have taken for building
video processing algorithms using Vivado HLS [25]. The
proposed approach is based on the following key:

 Simulation in Simulink used by system designers and
algorithm developers is utilized for two reasons. The
designer involves creating models for a complete
system – communications, image and video processing
components. The second reason is to facilitate partition
model between hardware and software component and
make a good compromise for high-level synthesis.

 High-speed I/O cores for the Xilinx Zynq 7000
platform and IP cores creating can be easily generated
by using HDL code generation from HDL coder TM.

 The Zynq Cortex-A9 cores programming, by using of
embedded coder from Simulink support rapid
embedded software iteration [23].

 Relating to the ARM processing system and
programmable logic with support for Xilinx Zynq
7000, automatic AXI4 interfaces cores can be
generated.

 Integration with downstream tasks, including software
compilation, the executable for the ARM and bit
stream generation using Xilinx implementation tools
like Vivado and downloading directly to Zynq 7000
platform boards permits a rapid prototyping workflow.

IV. EXPERIMENTS APPLICATIONS

The experimental of the proposed approach are investigated
by utilizing real-time applications for image and video
applications (Fig. 3).

As clarified in, the design is structured and verified in
MATLAB and Simulink. Then, it targeted to the Zynq-7000 on
the Xilinx Zed board development kit [23]. The real-life
application algorithm is achieved on the FPGA fabric through
HDL Coder for system acceleration, and it is executed on the
ARM Cortex-A9 processor, as shown in Fig. 4.

A. Color Histogram Equalization

A histogram can be defined as a diagram that describes
how many pixels of an image or a video frame have a
particular intensity. It includes different applications in image
and video processing [1]. This is due to the simplicity of
extracting histogram features. Its characteristics are invariant to
image rotation. Moreover, it has low storage demands as
compared to the size of the image.

Fig. 5 presents histogram equalization module flowchart
operations. The flowchart is composed by two states of
operation. When executing, the ready input signal is approved,
using a lookup table the input value is transformed, and the

histogram is generated. The module enters the second mode of
operations once the complete image has been streamed via the
module, if the input is not ready so that the new lookup table
can be calculated. For the new transformation lookup table
generation, the size of the input image approves the
accumulating and normalizing histogram module. Lookup
table is updated by normalized values, and running mode of
operation is done once all 255 values have been updated.

1) Simulink HDL coder Model

a) Video Partition: The video partition component in
this design divides a big input frame to 4 small images. For

each small frame histogram is generated. The big input image

is divided into 160 by 120 small images. There is a connection
between each small partition, Frame, pixel and block. This

video partition module generates pixel stream and

corresponding control signals.

b) HDL Histogram: this module is a part of hardware
acceleration. It is designed with HDL coder toolbox and

Simulink library. Using the vision HDL toolbox Histogram, the

pixel stream of histogram is calculated. The grayscale input

pixels are classified into 256 bins.
The model presented by Fig. 6 reads the calculated

histogram bins sequentially once the block asserts the read Rdy
signal. The bin values are sent for cumulative histogram
calculation. After all 256 bin values are read, the model asserts
binReset to reset all bins to zero. The collected histogram of
each small image is then added together to compute the
accumulated histogram of the big image (Fig. 7).

Equalization module: The calculated and accumulated
histogram for the current frame generated by a histogram
module is processed by equalization module to store the input
video. This last input video is delayed by one frame. The
uniform equalization is performed to the original video.
Finally, a comparison between the original video and the
equalized video is done.

2) Synthesis and FPGA implementation: Once the

Histogram process is completed and Simulink code of design

is successfully converted into hardware design, generated

VHDL code of histogram equalization is verified through co-

simulation using ModelSim 10.3d software. A further design

is processed in Vivado 17.4 Design Suite for synthesis and

implementation on Xilinx Zynq xc7z020clg484-2 FPGA

device. The logic resources utilized by design with timing

performance are presented in Table I. Table I represents the

total number of slices and look-up tables used in this design,

which indicates entire area occupied in the target device. From

the Table II, it is found that the proposed design is working

with an estimated speed of 170 MHz by utilizing only 3350

slices. Proposed model is using 2770 lookup tables.

Hardware consumption in any design determines its cost.
Therefore, the cost of proposed design is decreased due to
lesser hardware utilization. Hence, the suggested design
methodology improves efficiency in area and provides good
choice in terms of low-cost hardware. The resource usage and
maximum frequency for this module are shown in Table II.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

112 | P a g e
www.ijacsa.thesai.org

Fig. 3. Low-Light Video Processing Architecture Implemented on the FPGA.

Fig. 4. Real-Time Video Processing Architecture based on Zynq 7000 FPGA and ARM Processor.

Fig. 5. Histogram Equalization Module Flowchart.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

113 | P a g e
www.ijacsa.thesai.org

Fig. 6. Model based Design of Histogram Equalization using HDL Coder.

Fig. 7. HDL Histogram Equalization Subsystem.

TABLE. I. UTILIZATION OF THE AVAILABLE RESOURCES IN THE ZYNQ

XC7Z020CLG484-2 PART

Bit Depth 8

Channels 1

LUT-FF Pairs 3740 7%

LUTs as Logic 2770 5%

LUTs as Memory 289 1.66%

Slice Registers 3350 3%

RAM 36/18 0.5 0.36%

DSP48 0 0.00%

TABLE. II. UTILIZATION AND MAXIMUM FREQUENCY FOR THE

HISTOGRAM EQUALIZATION MODULE

Max frequency: 170 MHz

Resolution Pixel Per Frame Maximum Frame Rate

1920x1080 2073600 82.1FPS

1440x900 1296000 129.6 FPS

1024x1024 1048576 159.7 FPS

1280x720 921600 181.0 FPS

1024x768 786432 211.5 FPS

640x480 307200 536.9 FPS

512x512 262144 628.6 FPS

B. Color Conversion System

Color conversion converts the raw image having colors
belonging to the color space of the sensor into values in a
standard color space independent of the sensor. The RGB color
space is the standard widely adopted by the image and video
processing system. Hence the interest of making the conversion
directly to this color space. The conversion is performed using
a standard method which is the use of a 3x3 conversion matrix.

For the forward conversion module, the conversion module
uses the following matrix conversion:

The following equations present the backward conversion
from YCbCr space to RGB space:

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

114 | P a g e
www.ijacsa.thesai.org

1) Simulink HDL coder model: Color image processing is

a logical extension to the processing of grayscale images. The

essential difference involves the fact that each pixel is

composed of a vector of components rather than a scalar.

Usually, a pixel from an image has three parts: red, green and

blue. These are defined by the human visual system. A three-

dimensional vector and user mainly present color can

determine how many bits each component have.

The pre-defined video reference design, which contains
other IPs to handle the HDMI input and output interfaces. The
HDL DUT IP processes a video stream coming from the
HDMI input IP, generates an output video stream and sends it
to the HDMI output IP. All of these video streams are
transferred to AXI4-Stream Video interface. The HDL DUT IP
can also include an AXI4-Lite interface for parameter tuning.
Compared to the AXI4-Lite interface, the AXI4-Stream Video
interface transfers data much faster, making it more suitable for
the data path of the video algorithm.

The color conversion system IP core was established in
Matlab Simulink environment with HDL coder. This tool
allows the user to drive the Zynq programmable logic (PL) part
at a high level without having to deal with low-level hardware
details. The proposed architecture is shown in Fig. 8.

Fig. I gives an overview of the entire color system
conversion Simulink system. The other blocks are identical
with those in color correction model except the RGB2YCbCr
kernel block. The input bus signal is represented in Xilinx
video data format, which is 32'hFFRRBBGG. So, we first
separate the bus signal to three color components RGB. Red

component is bit 23 to 16; Green is bit 7 to 0; Blue is bit 15 to
8. The gain blocks implement multiplication. The sum blocks
calculate add and subtract result, which is defined in block
parameter. Matrix multiplication is performed using these gain
and sum blocks. Finally, again to a bus signal. The delay
blocks inserted in between will be transferred to registers in
hardware, which break down the critical path to achieving
higher clock frequency.

2) Synthesis and FPGA implementation: A block design

for color space conversion that implements an entire image

processing system can be created.

The vivado project for the video processing system is
generated by a proposed worksflow based on model-based
design (MBD). This project can be opened with Xilinx Vivado
version 2017.4.

Fig. 10 presents a full diagram for color conversion system.
This diagram is composed by many blocks such as
RGBtoYCbCr conversion IP, YCbCrtoRGB conversion IP.
Also, the video processing HDMI input output, the Zynq‘s
CPU cores, the Video DMA engines, and all the supporting
blocks.

We validate the entire color conversion system design on a
Zynq FPGA platform using generated HDL code. The logic
resources utilized by design with timing performance are
presented in Table III. The reported maximum frequency is
302 MHz for RGB to YcbCr and 260 MHz for YCbCr to RGB.
The resources utilization of the YCbCr to RGB system on
Zynq xc7z020clg484-2 FPGA is as follows: 1850 slice
registers and 2280 slice LUTs.

Fig. 8. AXI4-Stream Video Interface in Zynq 7000.

Fig. 9. Hardware Prototype for Color System Conversion.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

115 | P a g e
www.ijacsa.thesai.org

Fig. 10. Vivado IP Integrator with Several IP-Blocks for Color System Conversion.

TABLE. III. UTILIZATION OF AVAILABLE RESOURCES IN THE ZYNQ

XC7Z020CLG484-2 PART

 YCbCr to RGB RGB to YCbCr

Bit Depth 8 8

Channels 3 3

LUT-FF Pairs 2280 4.20 % 4400 8.1 %

LUTs as Logic 1938 3.64% 3864 7.26%

LUTs as Memory 6 0.03% 4 0.02%

Slice Registers 1850 1.50% 3580 1.4%

RAM 36/18 0 0.00% 0 0.00%

DSP48 0 0.00% 0 0.00%

Table IV illustrates the result of our YCbCr to RGB system
on hardware for color system conversion. Table IV present the
resource usage and maximum frequency.

The resources utilization of the RGB to YCbCr system on
Zynq xc7z020clg484-2 FPGA is as follows: 3602 slice
registers and 4400 slice LUTs.

TABLE. IV. UTILIZATION AND MAXIMUM FREQUENCY COLOR SPACE

CONVERSION

YCbCr to RGB RGB to YCbCr

Max frequency: 302 MHz Max frequency: 260 MHz

Resolution
Pixel Per

Frame

Maximum

Frame Rate

FPS

Pixel Per

Frame

Maximum

Frame Rate

FPS

1920x1080 2073600 143.1 2073600 125.5

1440x900 1296000 228.2 1296000 197.6

1024x1024 1048576 282.5 1048576 242.5

1280x720 921600 321.3 921600 376.2

1024x768 786432 373.4 786432 324.1

640x480 307200 955.5 307200 823.1

512x512 262144 1.125.6 262144 963.2

V. DISCUSSION AND CONCLUSION

The current paper suggests a VHLS method for image
processing designs. This method gives a high abstraction level
environment to the users, which can improve the development
productivity by automating the MATLAB/Simulink-to-RTL
synthesis process. We prototyped the suggested method by
utilizing recently available Model-Based Design tools based on
Simulink /HDL coder modeling. This method is then verified
within two real-life applications. Experiments show that it can
lead to the benefits of FPGA related to the tools of other kinds
in the same abstraction level. It is worth noting that the
findings of the study show that it will decrease the complexity
of the algorithm behaviors depicted using MATLAB in routine
level. This study also demonstrates the usefulness of
heterogeneous Zynq SoC to establish an embedded vision
system for a smart camera dedicated to traffic surveillance.

Resolving the following issues can facilitate reaching this
goal; one of the needs of hardware-software architecture is to
monitor the mastery of the HDMI video signal to the system
the AXI bus-based communication between the FPGA and
ARM processor. It shows that the suggested flow reduces
FPGA prototyping time by up to 60% with MATLAB and
HDL Coder. MATLAB and HDL Coder are used to eliminate
the step of translating the initial algorithm to HDL by hand.
HDL coder facilitates the improvements completed in hours,
not weeks.

REFERENCES

[1] H. M. Abdelgawas, M. Safar, A. M. Wahba, ―High Level Synthesis of
Canny Edge Detection Algorithm on Zynq Platform,‖ International

Journal of Computer, Electrical, Automation, Control and Information
Engineering Vol:9, No:1, 2015, pp. 148-152.

[2] J. Monson, M. Wirthlin and B. L. Hutchings, "Implementing high-

performance, lowpower FPGA-based optical flow accelerators in C,"
Application-Specific Systems, Architectures and Processors (ASAP),

2013 IEEE 24th International Conference on, Washington, DC, 2013,
pp. 363-369.

[3] Ben Hamida, A., Koubaa, M., Nicolas, H., Amar, C.B.: Video

surveillance system based on a scalable application-oriented
architecture. Multimedia. Tools Appl. pp. 1–27 (2015). doi:

10.1007/s11042-015-2987-5.

https://doi.org/10.1007/s11042-015-2987-5

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

116 | P a g e
www.ijacsa.thesai.org

[4] Fleck, S., Strasser, W.: Smart camera-based monitoring system and its

application to assisted living. Proc. IEEE 96(10), 1698–1714 (2008).
doi: 10.1109/JPROC.2008.928765.

[5] Huang, D.Y., Chen, C.H., Chen, T.Y., Hu, W.C., Chen, B.C.: Rapid

detection of camera tampering and abnormal disturbance for video
surveillance system. J. Vis. Commun. Image R. 25(2), 1865–1877

(2014).

[6] Chao Li, Yanjing Bi., Benezeth, Franck Marzani, Fan Yang: Fast FPGA
prototyping for real-time image processing with very high-level

synthesis. J. Real-Time Image Process. (2017). doi: 10.1007/s11554-
017-0688-1.

[7] Henning Sahlbach, Daniel Thiele, Rolf Ernst: A system-level FPGA

design methodology for video applications with weakly-programmable
hardware components. J. Real-Time Image Process. (2017). doi:

10.1007/s11554-014-0403-4.

[8] Baklouti, M., Aydi, Y., Marquet, P., Dekeyser, J., Abid, M.:
Scalablempnoc for massively parallel systems—design and

implementation on FPGA. J. Syst. Archit. 56(7), 278 – 292 (2010).
doi:10.1016/j.sysarc.2010.04.001. Special Issue on HW/ SW Co-Design:

Systems and Networks on Chip.

[9] T. Han, G. W. Liu, H. Cai and B. Wang, "The face detection and

location system based on Zynq," Fuzzy Systems and Knowledge
Discovery (FSKD), 2014 11th International Conference on, Xiamen,

2014, pp. 835-839.

[10] P. K. Dash, S. S. Pujari and S. Nayak, "Implementation of edge
detection using FPGA and Model-based approach", Proceedings of 2014

International Information Communication and Embedded Systems
(ICICES), IEEE, (2014), pp. 1- 6.

[11] Sukhwani, B., Thoennes, M., Min, H., Dube, P., Brezzo, B., Asaad, S.,

Dillenberger, D.: A hardware/software approach for data base query
acceleration with FPGAs. Int. J. Parallel Prog. 43(6), 1129–1159 (2015).

doi:10.1007/s10766-014-0327-4.

[12] Jiang, J., Liu, C., Ling, S.: An FPGA implementation for real time edge
detection. J. Real-Time Image Process. (2015). doi:10. 1007/s11554-

015-0521-7.

[13] S. Sanchez-Solano, M. BroxJimenez, E. delToro, P. BroxJimenez and I.
Baturone, "Model-based design methodology for rapid development of

fuzzy controllers on FPGAs", IEEE Trans. Ind. Informat, vol. 9, no. 3,
(2013), pp. 1361-1370.

[14] The MathWorksInc, (2014, May 17), ―Optimizing HDL Code‖ [Online],

Available:http:// http://www.mathworks.se/products/hdl-coder/descriptio
n3 .html.

[15] The MathWorksInc, (2014, May 17), ―Automating FPGA Design‖

[Online], Available:http:// www.mathworks.se/products/hdl-coder/descri
ption4.html.

[16] Bailey, D.G.: Design for Embedded Image Processing on FPGAs. Wiley

(Asia) Pte Ltd, Singapore (2011).

[17] The MathWorksInc, (2014, May 18), "GenerarateVerilog and VHDL
code for FPGA and ASIC designs." [Online], Available: http://

www.mathworks.se/products/hdlcoder/.

[18] The MathWorksInc, (2014, May 17). ―HDL Coding standards‖ [Online],
Available:http:// www.mathworks.se/products/hdl-coder/description7.

html.

[19] The MathWorksInc, (2014, May 17), ―Generating HDL Code‖ [Online],

Available:http:// www.mathworks.se/products/hdl-coder/description2.
Html.

[20] Kyo, S., Okazaki, S.: IMAPCAR: a 100 GOPS in-vehicle vision

processor based on 128 ring connected four-way VLIW processing
elements. J. Signal Process. Syst. 62, 5–16 (2011).

[21] Leu, A., Aiteanu, D., Graser, A.: A novel stereo camera-based collision

warning system for automotive applications. In: IEEE International
Symposium on AppliedComputational Intelligence and Informatics

(SACI), pp. 409–414 (2011).

[22] Stein, G.P., Rushinek, E., Hayun, G., Shashua, A.: A computer vision
system on a chip: a case study from the automotive domain. In:

Proceedings of IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPRW) (2005).

[23] Crockett, L.H.; Elliot, R.A.; Enderwitz, M.A.; Stewart, R.W. The Zynq

Book: Embedded Processing with the Arm Cortex-A9 on the Xilinx
Zynq-7000 All Programmable Soc; Strathclyde Academic Media:

Glasgow, UK, 2014.

[24] Xilinx: Introduction to FPGA design with vivado high-level synthesis.
Tech. Rep. UG998 (v1.0), Xilinx (2013).

[25] Coussy, P., and Morawiec, A.: ‗High-Level Synthesis: from Algorithm
to Digital Circuits‘, Berlin: Springer Science + Business Media, chapters

1, 4, 2008.

https://doi.org/10.1109/JPROC.2008.928765

