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Abstract—Programming in high abstraction level is known by 

its benefits. It can facilitate the development of digital image and 

video processing systems. Recently, high-level synthesis (HLS) 

has played a significant role in developing this field of study. Real 

time image and video Processing solution needing high 

throughput rate are often performed in a dedicated hardware 

such as FPGA. Previous studies relied on traditional design 

processes called VHDL and Verilog and to synthesize and 

validate the hardware. These processes are technically complex 

and time consuming. This paper introduces an alternative novel 

approach. It uses a Model-Based Design workflow based on HDL 

Coder (MBD), Vision HDL Toolbox, Simulink and MATLAB for 

the purpose of accelerating the design of image and video 

solution. The main purpose of the present paper is to study the 

complexity of the design development and minimize development 

time (Time to market: TM) of conventional FPGA design. In this 

paper, the complexity of the development™ can be reduced by 

60% effectively by automatically generating the IP cores and 

downloading the modeled design through the Xilinx tools and 

give more advantages of FPGA related to the other devices like 
ASIC and GPU. 

Keywords—High-level synthesis; FPGA; fast prototyping; real-

time image processing; video surveillance; computer-aided design; 
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I. INTRODUCTION 

Image processing is taking place in increasingly numerous 
and complex fields to perform essentially control, inspection 
and data acquisition tasks [21]. We can cite industrial vision, 
video surveillance and spatial imagery, medical analysis, 
robotics ... The last in the list is the field of multimedia with its 
many recent applications. Image processing follows a well-
defined process: to establish, from a raw image, a list of 
characteristics of the scenes viewed (or objects present in this 
image) to interpret the content of the image to guide or take a 
decision [1,2]. 

Advances in the integration capability of electronic circuits 
have opened up new perspectives for real-time image and 
video processing on embedded systems. On the one hand, 
specific processors can commonly perform billions of 
operations per second, and on the other hand, reprogrammable 
components will have billions of logical gates in the near 
future. These circuits make it possible to realize applications 
with performances in terms of speed of processing which are 
constantly increasing. 

The past years have seen the explosion of the embedded 
systems market in many industrial and consumer domains such 
as telecommunications, satellites, and medical imaging. These 
increasingly important needs generate an industrial competition 
where factors such as cost, performance and especially the 
"Time To Market" become preponderant for the success of a 
product [25]. 

In this context, the Field Programmable Gate Array 
(FPGA) with its large integration and reconfiguration 
capabilities make it a key component for rapidly developing 
prototypes. In order to encourage the widespread diffusion of 
such circuits, it is necessary to improve the development 
environments to make them more accessible to non-experts in 
electronics [12,16]. 

Some applications of advanced computer vision algorithms 
include video histogram, color conversion system that can be 
found in modern cameras and many video surveillance [3,4]. 
Although it might not be necessary to have live video 
processing capability for many applications, some applications 
such as color conversion and histogram equalization used for 
autonomous driving system would require an input stream 
from cameras to be processed at real time in order to send 
signals back to the powertrain and steering control unit to 
respond properly [5,6,7]. FPGAs are a good choice platform 
for real-time video processing because energy efficiency and 
the potential to extract highly-parallelized calculations [7,8]. 
However, hardware development consumes typically more 
time and human resources than a similar software development 
would consume [20,22]. For a traditional development based 
on FPGAs, a good knowledge of digital logic circuit is 
necessary for Hardware Description Languages (HDLs) such 
as Verilog and VHDL to construct and config Register-
Transfer Level (RTL) circuits in an FPGA [7,17]. 

Each software offers users with its model block. These 
tools can help users build the Simulink model with the 
provided block to generate HDL codes. As compared to the 
above three software, Simulink HDL Coder by which the 
generated HDL codes is characterized by its flexibility [18,19]. 

The goal for this paper is to conceive an automatically very 
high-level synthesis (VHLS) framework with the following 
features: 

 A short time automatically creating for RTL desired 
rather than hours or even days. 
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 To examine the algorithm behavior described in very 
high-level languages. 

 To achieve performances of the designs with the 
hardware constraints, including area of the target 
device or frequency. 

 To be able to use the currently tools for hight level 
synthesis available. 

 To boost code reuse from 0 to 60%. 

The remainder of this paper is organized as follows: in the 
Section 2, related work on VHLS for image and video 
processing are presented. Section 3 present high-level synthesis 
proposed method for image and video prototyping, it discusses 
the challenge that we met when prototyping this conception, as 
well as the solutions. Proposed method prototyping and 
experiment results are given in Section 4. Finally, this paper is 
finished by a conclusion in Section 5. 

A. Selecting a Template 

First, confirm that you have the correct template for your 
paper size. This template has been tailored for output on the 
US-letter paper size. If you are using A4-sized paper, please 
close this file and download the file ―MSW_A4_format‖. 

B. Maintaining the Integrity of the Specifications 

The template is used to format your paper and style the 
text. All margins, column widths, line spaces, and text fonts are 
prescribed; please do not alter them. You may note 
peculiarities. For example, the head margin in this template 
measures proportionately more than is customary. This 
measurement and others are deliberate, using specifications 
that anticipate your paper as one part of the entire proceedings, 
and not as an independent document. Please do not revise any 
of the current designations. 

II. RELATED WORKS 

To accelerate embedded real time image and video 
processing, in the last years, there are some given hardware-
accelerated with different high-level synthesis method have 
been introduced in the automotive area, dedicated DSP-based 
systems and ASIC solutions compete against FPGA platforms 
and GPU applications [24]. 

Abdelgawad, Safar, and Wahba have developed a Canny 
Edge Detection Algorithm on Zynq Platform [1]. They utilized 
the Targeted Reference Design (TRD) for Zynq from Xilinx as 
the platform for the experiment of performance comparison 
between the CPU processor and the hardware accelerator. They 
declared memory accesses as the major bottleneck for a real-
time video processing system. With proper buffering and 
directive-based optimizations, they were able to achieve a 
speedup of 100x on Zynq‘s hardware accelerator. They also 
provide the utilization estimation of the Canny Edge Detector 
hardware accelerator, but power analysis is missing. By using 
the TRD, they could inspect the performance improvement 
more directly thanks to the QT GUI interface. However, the 
TRD design gave rise to less control of the hardware design as 
well as software development. 

Moreover, by the same research team, Monson, Wirthlin, 
and Hutchings attempted to optimize another popular image 
processing algorithm, Sobel filter, using Vivado HLS targeting 
a Zynq based FPGA [2]. Their first goal was to restructure an 
existing Sobel filter written in C to a C synthesizable version in 
Vivado HLS because the original code contains some non-
synthesizable portions. Besides the restructuring, the authors 
discovered and applied three incremental optimizations that 
can be synthesized in Vivado HLS. The incremental 
optimization helped their design to achieve a performance of 
388 FPS at a resolution of 640x480. 

According to [5], the proposed approach operates on the 
building block level. All these devices seem to depend on 
hardware simulation and synthesis technology to derive 
performance scenarios. These figs are only available at a very 
late stage of the design process after a final FPGA integration. 

Cai et al. utilized the capability of Vivado HLS to 
transform a software face recognition program to a 
corresponding hardware design based on Zynq platform [9,11]. 
Their intention was to improve the face detection performance, 
and the result indicates the performance was improved by up to 
80% after migrating the computation onto the hardware. Their 
face location algorithm relies on color segmentation to detect 
human faces. The algorithm involves transforming from RGB 
color space to YCbCr color space, converting the query image 
to grayscale, and locating the skin color region after erosion 
and dilation. This algorithm results in straightforward and fast 
computations. Using color segmentation can be 
computationally efficient and it is possible to achieve real-time 
image processing performance. However, a relatively clean 
background is required for face detection using color 
segmentation. Also, misrecognition could occur if hands and 
arms are exposed in the query image. 

Now, As opposed to the low-level design approach, Model 
Based design for FPGA are one of the methods that are based 
of high-level modeling for image and video processing 
applications on a very higher level of abstraction. Many 
various industrial and academic design approaches are 
available such as Simulink/ Xilinx System generator models, 
which can convert automatically into a hardware (VHDL) 
description [10,11]. 

Author in [13] provides a survey of HLS FPGA design 
flows for image and video processing applications. Although 
the given solutions focus on the composition, implementation 
or HDL generation of an optimal FPGA design, FPGA 
resources at execution time are neglecting considering reuse of. 

III. PROPOSED VERY HIGH-LEVEL SYNTHESIS FOR IMAGE 

PROCESSING 

According to [14,15], from September 2013 when 
MathWorks presented its hardware/software workflow for 
Zynq-7000 focusing Model-Based Design (MBD). Based on 
this new proposed workflow presented in Fig. 1, models are 
designed in Simulink using HDL toolbox that can show a 
completely dynamic system. These include a Simulink model 
for algorithms targeted for the Xilinx Zynq SoC platform, and 
Quickly create software- hardware implementations for Zynq 
platform directly from the algorithm and system design. 
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A. Rapid Prototyping Flow with HDL coder 

This paper presents a video processing system rapid 
prototyping flow that allows engineers with little to no HDL 
experience to develop an FPGA based high-performance video 
processing system. 

Fig. 2 demonstrates the rapid prototyping flow from a high-
level point of view, and this paper focuses on three of the most 
essential steps in the flow: 

 An FPGA-based SoC video processing system 
architecture needs to be designed. The system should 

allow integration of generated IPs from high-level 
synthesis tools to realize real-time video processing 
capability. 

 The design enables the adoption of FPGA acceleration 
kernels developed by high-level synthesis tools so that 
engineers can quickly reconfigure the functionality of 
the system. 

 System-level communications allow users to use 
software for initializing and configuring modules that 
are developed in the hardware system. 

 

Fig. 1. HDL Coder Workflow. 

 

Fig. 2. Model based Design Prototyping with MATLAB/HDL Coder. 
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The development of the proposed real-time video 
processing system is divided into two parts: 1) Video 
processing system architecture design, and 2) Video processing 
algorithms design. The first part discusses the major 
components contributed to the video processing system on the 
Zynq platform including the AXI4 Interfaces used for high 
throughput data transmissions, while the second part discusses 
the approaches and optimizations, we have taken for building 
video processing algorithms using Vivado HLS [25]. The 
proposed approach is based on the following key: 

 Simulation in Simulink used by system designers and 
algorithm developers is utilized for two reasons. The 
designer involves creating models for a complete 
system – communications, image and video processing 
components. The second reason is to facilitate partition 
model between hardware and software component and 
make a good compromise for high-level synthesis. 

 High-speed I/O cores for the Xilinx Zynq 7000 
platform and IP cores creating can be easily generated 
by using HDL code generation from HDL coder TM. 

 The Zynq Cortex-A9 cores programming, by using of 
embedded coder from Simulink support rapid 
embedded software iteration [23]. 

 Relating to the ARM processing system and 
programmable logic with support for Xilinx Zynq 
7000, automatic AXI4 interfaces cores can be 
generated. 

 Integration with downstream tasks, including software 
compilation, the executable for the ARM and bit 
stream generation using Xilinx implementation tools 
like Vivado and downloading directly to Zynq 7000 
platform boards permits a rapid prototyping workflow. 

IV. EXPERIMENTS APPLICATIONS 

The experimental of the proposed approach are investigated 
by utilizing real-time applications for image and video 
applications (Fig. 3). 

As clarified in, the design is structured and verified in 
MATLAB and Simulink. Then, it targeted to the Zynq-7000 on 
the Xilinx Zed board development kit [23]. The real-life 
application algorithm is achieved on the FPGA fabric through 
HDL Coder for system acceleration, and it is executed on the 
ARM Cortex-A9 processor, as shown in Fig. 4. 

A. Color Histogram Equalization 

A histogram can be defined as a diagram that describes 
how many pixels of an image or a video frame have a 
particular intensity. It includes different applications in image 
and video processing [1]. This is due to the simplicity of 
extracting histogram features. Its characteristics are invariant to 
image rotation. Moreover, it has low storage demands as 
compared to the size of the image. 

Fig. 5 presents histogram equalization module flowchart 
operations. The flowchart is composed by two states of 
operation. When executing, the ready input signal is approved, 
using a lookup table the input value is transformed, and the 

histogram is generated. The module enters the second mode of 
operations once the complete image has been streamed via the 
module, if the input is not ready so that the new lookup table 
can be calculated. For the new transformation lookup table 
generation, the size of the input image approves the 
accumulating and normalizing histogram module. Lookup 
table is updated by normalized values, and running mode of 
operation is done once all 255 values have been updated. 

1) Simulink HDL coder Model 

a) Video Partition: The video partition component in 
this design divides a big input frame to 4 small images. For 

each small frame histogram is generated. The big input image 

is divided into 160 by 120 small images. There is a connection 
between each small partition, Frame, pixel and block. This 

video partition module generates pixel stream and 

corresponding control signals. 

b) HDL Histogram: this module is a part of hardware 
acceleration. It is designed with HDL coder toolbox and 

Simulink library. Using the vision HDL toolbox Histogram, the 

pixel stream of histogram is calculated. The grayscale input 

pixels are classified into 256 bins. 
The model presented by Fig. 6 reads the calculated 

histogram bins sequentially once the block asserts the read Rdy 
signal. The bin values are sent for cumulative histogram 
calculation. After all 256 bin values are read, the model asserts 
binReset to reset all bins to zero. The collected histogram of 
each small image is then added together to compute the 
accumulated histogram of the big image (Fig. 7). 

Equalization module: The calculated and accumulated 
histogram for the current frame generated by a histogram 
module is processed by equalization module to store the input 
video. This last input video is delayed by one frame. The 
uniform equalization is performed to the original video. 
Finally, a comparison between the original video and the 
equalized video is done. 

2) Synthesis and FPGA implementation: Once the 

Histogram process is completed and Simulink code of design 

is successfully converted into hardware design, generated 

VHDL code of histogram equalization is verified through co-

simulation using ModelSim 10.3d software. A further design 

is processed in Vivado 17.4 Design Suite for synthesis and 

implementation on Xilinx Zynq xc7z020clg484-2 FPGA 

device. The logic resources utilized by design with timing 

performance are presented in Table I. Table I represents the 

total number of slices and look-up tables used in this design, 

which indicates entire area occupied in the target device. From 

the Table II, it is found that the proposed design is working 

with an estimated speed of 170 MHz by utilizing only 3350 

slices. Proposed model is using 2770 lookup tables. 

Hardware consumption in any design determines its cost. 
Therefore, the cost of proposed design is decreased due to 
lesser hardware utilization. Hence, the suggested design 
methodology improves efficiency in area and provides good 
choice in terms of low-cost hardware. The resource usage and 
maximum frequency for this module are shown in Table II. 
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Fig. 3. Low-Light Video Processing Architecture Implemented on the FPGA. 

 

Fig. 4. Real-Time Video Processing Architecture based on Zynq 7000 FPGA and ARM Processor. 

 

Fig. 5. Histogram Equalization Module Flowchart. 
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Fig. 6. Model based Design of Histogram Equalization using HDL Coder. 

 

Fig. 7. HDL Histogram Equalization Subsystem. 

TABLE. I. UTILIZATION OF THE AVAILABLE RESOURCES IN THE ZYNQ 

XC7Z020CLG484-2 PART 

Bit Depth 8 

Channels 1 

LUT-FF Pairs 3740 7% 

LUTs as Logic 2770 5% 

LUTs as Memory 289 1.66% 

Slice Registers 3350 3% 

RAM 36/18 0.5 0.36% 

DSP48 0 0.00% 

TABLE. II. UTILIZATION AND MAXIMUM FREQUENCY FOR THE 

HISTOGRAM EQUALIZATION MODULE 

Max frequency: 170 MHz 

Resolution Pixel Per Frame Maximum Frame Rate 

1920x1080 2073600 82.1FPS 

1440x900 1296000 129.6 FPS 

1024x1024 1048576 159.7 FPS 

1280x720 921600 181.0 FPS 

1024x768 786432 211.5 FPS 

640x480 307200 536.9 FPS 

512x512 262144 628.6 FPS 

B. Color Conversion System 

Color conversion converts the raw image having colors 
belonging to the color space of the sensor into values in a 
standard color space independent of the sensor. The RGB color 
space is the standard widely adopted by the image and video 
processing system. Hence the interest of making the conversion 
directly to this color space. The conversion is performed using 
a standard method which is the use of a 3x3 conversion matrix. 

For the forward conversion module, the conversion module 
uses the following matrix conversion: 

  
       

   
   

        

   
   

       

   
     

  
       

   
   

       

   
   

   

   
         

 
   

   
   

        

   
   

       

   
       

The following equations present the backward conversion 
from YCbCr space to RGB space: 
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1) Simulink HDL coder model: Color image processing is 

a logical extension to the processing of grayscale images. The 

essential difference involves the fact that each pixel is 

composed of a vector of components rather than a scalar. 

Usually, a pixel from an image has three parts: red, green and 

blue. These are defined by the human visual system. A three-

dimensional vector and user mainly present color can 

determine how many bits each component have. 

The pre-defined video reference design, which contains 
other IPs to handle the HDMI input and output interfaces. The 
HDL DUT IP processes a video stream coming from the 
HDMI input IP, generates an output video stream and sends it 
to the HDMI output IP. All of these video streams are 
transferred to AXI4-Stream Video interface. The HDL DUT IP 
can also include an AXI4-Lite interface for parameter tuning. 
Compared to the AXI4-Lite interface, the AXI4-Stream Video 
interface transfers data much faster, making it more suitable for 
the data path of the video algorithm. 

The color conversion system IP core was established in 
Matlab Simulink environment with HDL coder. This tool 
allows the user to drive the Zynq programmable logic (PL) part 
at a high level without having to deal with low-level hardware 
details. The proposed architecture is shown in Fig. 8. 

Fig. I gives an overview of the entire color system 
conversion Simulink system. The other blocks are identical 
with those in color correction model except the RGB2YCbCr 
kernel block. The input bus signal is represented in Xilinx 
video data format, which is 32'hFFRRBBGG. So, we first 
separate the bus signal to three color components RGB. Red 

component is bit 23 to 16; Green is bit 7 to 0; Blue is bit 15 to 
8. The gain blocks implement multiplication. The sum blocks 
calculate add and subtract result, which is defined in block 
parameter. Matrix multiplication is performed using these gain 
and sum blocks. Finally, again to a bus signal. The delay 
blocks inserted in between will be transferred to registers in 
hardware, which break down the critical path to achieving 
higher clock frequency. 

2) Synthesis and FPGA implementation: A block design 

for color space conversion that implements an entire image 

processing system can be created. 

The vivado project for the video processing system is 
generated by a proposed worksflow based on model-based 
design (MBD). This project can be opened with Xilinx Vivado 
version 2017.4. 

Fig. 10 presents a full diagram for color conversion system. 
This diagram is composed by many blocks such as 
RGBtoYCbCr conversion IP, YCbCrtoRGB conversion IP. 
Also, the video processing HDMI input output, the Zynq‘s 
CPU cores, the Video DMA engines, and all the supporting 
blocks. 

We validate the entire color conversion system design on a 
Zynq FPGA platform using generated HDL code. The logic 
resources utilized by design with timing performance are 
presented in Table III. The reported maximum frequency is 
302 MHz for RGB to YcbCr and 260 MHz for YCbCr to RGB. 
The resources utilization of the YCbCr to RGB system on 
Zynq xc7z020clg484-2 FPGA is as follows: 1850 slice 
registers and 2280 slice LUTs. 

 
Fig. 8. AXI4-Stream Video Interface in Zynq 7000. 

 

Fig. 9. Hardware Prototype for Color System Conversion. 
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Fig. 10. Vivado IP Integrator with Several IP-Blocks for Color System Conversion. 

TABLE. III. UTILIZATION OF AVAILABLE RESOURCES IN THE ZYNQ 

XC7Z020CLG484-2 PART 

 YCbCr to RGB RGB to YCbCr 

Bit Depth 8 8 

Channels 3 3 

LUT-FF Pairs 2280 4.20 % 4400 8.1 % 

LUTs as Logic 1938 3.64% 3864 7.26% 

LUTs as Memory 6 0.03% 4 0.02% 

Slice Registers 1850 1.50% 3580 1.4% 

RAM 36/18 0 0.00% 0 0.00% 

DSP48 0 0.00% 0 0.00% 

Table IV illustrates the result of our YCbCr to RGB system 
on hardware for color system conversion. Table IV present the 
resource usage and maximum frequency. 

The resources utilization of the RGB to YCbCr system on 
Zynq xc7z020clg484-2 FPGA is as follows: 3602 slice 
registers and 4400 slice LUTs. 

TABLE. IV. UTILIZATION AND MAXIMUM FREQUENCY COLOR SPACE 

CONVERSION 

YCbCr to RGB RGB to YCbCr 

Max frequency: 302 MHz Max frequency: 260 MHz 

Resolution 
Pixel Per 

Frame 

Maximum 

Frame Rate 

FPS 

Pixel Per 

Frame 

Maximum 

Frame Rate 

FPS 

1920x1080 2073600 143.1 2073600 125.5 

1440x900 1296000 228.2  1296000 197.6  

1024x1024 1048576 282.5  1048576 242.5  

1280x720 921600 321.3  921600 376.2  

1024x768 786432 373.4  786432 324.1  

640x480 307200 955.5  307200 823.1  

512x512 262144 1.125.6  262144 963.2  

V. DISCUSSION AND CONCLUSION 

The current paper suggests a VHLS method for image 
processing designs. This method gives a high abstraction level 
environment to the users, which can improve the development 
productivity by automating the MATLAB/Simulink-to-RTL 
synthesis process. We prototyped the suggested method by 
utilizing recently available Model-Based Design tools based on 
Simulink /HDL coder modeling. This method is then verified 
within two real-life applications. Experiments show that it can 
lead to the benefits of FPGA related to the tools of other kinds 
in the same abstraction level. It is worth noting that the 
findings of the study show that it will decrease the complexity 
of the algorithm behaviors depicted using MATLAB in routine 
level. This study also demonstrates the usefulness of 
heterogeneous Zynq SoC to establish an embedded vision 
system for a smart camera dedicated to traffic surveillance. 

Resolving the following issues can facilitate reaching this 
goal; one of the needs of hardware-software architecture is to 
monitor the mastery of the HDMI video signal to the system 
the AXI bus-based communication between the FPGA and 
ARM processor. It shows that the suggested flow reduces 
FPGA prototyping time by up to 60% with MATLAB and 
HDL Coder. MATLAB and HDL Coder are used to eliminate 
the step of translating the initial algorithm to HDL by hand. 
HDL coder facilitates the improvements completed in hours, 
not weeks. 
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