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Abstract—The main challenge facing the Internet of Things 

(IoT) in general, and IoT security in particular, is that humans 

have never handled such a huge amount of nodes and quantity of 

data. Fortunately, it turns out that Machine Learning (ML) 

systems are very effective in the presence of these two elements. 

However, can IoT devices support ML techniques? In this paper, 

we investigated this issue and proposed a twofold contribution: a 

thorough study of the IoT paradigm and its intersections with 

ML from a security perspective; then, we actually proposed a 

holistic ML-based framework for access control, which is the 

defense head of recent IT systems. In addition to learning 

techniques, this second pillar was based on the organization and 

attribute concepts to avoid role explosion problems and applied 

to a smart city case study to prove its effectiveness. 
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I. INTRODUCTION 

Access Control (AC) plays a pivotal role in the security 
world given its mission of protecting digital and physical 
accesses by delimiting and enforcing who has access to what 
and in which conditions [1]. However, most of the AC 
solutions we find in the literature tend to consider the IoT as a 
single block that is characterized mainly by the limited storage 
and computing capacities. In this paper, we will come back to 
this unfair and unrealistic view that slows down the 
elaboration of a holistic approach to address AC in IoT 
environments. Moreover, relying on a single technique to 
address an issue that is as complex as IoT is also a weakness 
that confines the performance of many IoT security-oriented 
models. 

To fulfil the AC requirements, this paper will 
progressively build a global framework that not only focuses 
on policy management and AC models, but also digs deeper 
into the mechanisms that accurately fit them; which leads to a 
smooth and coherent Machine Learning (ML) integration 
going down to highlight what and where ML algorithm(s) 
should be implemented. 

To do so, we first need to delimit the perimeter covered by 
the IoT by giving a much more representative definition of the 
term, which will allow us later to tackle the question of AC 
with a much more appropriate vision, and above all, will lead 
us to know where and how we can use the power of ML to 
take advantage of the large amount of objects and data we are 
handling. 

Motivated by the above, we perceive the relationship 
between IoT and ML much like the relationship between the 
human body and its brain. Our bodies gather sensory input 
such as sight, sound, smell, taste and touch while our brains 
focus on gathering that data and making sense of it. 

The remainder of this paper is presented as follows: 
Section II exposes an overview of ML applications in IoT 
scenarios; then Sections III and IV reveals the building blocks 
of the ML-based framework aiming to handle IoT AC, as well 
as all the required concepts to understand it. Next, Section V 
provides the theoretical and technical details of 
implementation which are applied to a smart city case study, 
before moving to the last section in which we discuss and 
evaluate the results. 

II. RELATED WORKS 

Basically, ML algorithms are computer programs that can 
essentially learn and improve their accuracy by looking at data 
without being explicitly programmed. In a more formal 
wording: “A Computer program is said to learn from an 
experience E with respect to some task T and some 
performance measure P, if its performance on T, as measured 
by P, improves with experience E” [2, 3]. In this section, we 
will be exploring the most promising and latest ML 
applications used in order to secure IoT environments. 

A. Learning Algorithms for Constrained Environments 

Despite the common sayings that build a delusive wall 
between ML algorithms and constrained nodes given the 
computational and storage limitations of the latter, many 
studies combined these two worlds in order to answer both 
application and security issues. In this section we are about to 
discuss the most recent and relevant ones. 

Let us begin with a recent work [4] that combined the 
strengths of current neural and tree-based learning techniques 
in conjunction with ternary (-1, 0, 1) quantization to enable 
computation and size compression of NN models in IoT 
platforms. This technique outperformed the state-of-the art by 
11.1%, 52.2% and 30.6% in the number of computations, the 
model size, and the overall memory footprint respectively, 
without losing too much in terms of accuracy. 

Another study [5] focused on the IoT device side rather 
than the cloud. The proposed model is developed on a 
relatively simple tree learnt in a low-dimensional space for 
efficient prediction on IoT nodes like Arduino UNO or 
ATmega328P boards with 16 MHz, 2 KB RAM and 32 KB 
ROM. The authors executed their model using several datasets 
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and proved that it was able to make predictions within 
milliseconds, had lower battery consumption than the state-of-
art and could fit in KB of memory. 

Additionally, a model called MorphNet was suggested by 
Google [6] to automate the design of Deep Neural Networks 
(DNNs). This approach is specifically adjustable to meet 
constrained environments’ requirements without 
compromising the performance, it actually optimizes the DNN 
by iteratively shrinking and expanding. The study showed that 
MorphNet is simple to implement and fast to apply, which is 
why it is a better choice for IoT scenarios. 

ShuffleNet [7] is another contribution in this direction. It is 
a particularly computation-efficient CNN designed specifically 
for mobile devices which are essentially characterized by their 
limitations in terms of computational power. It is mainly based 
on the power of 1×1 convolutions combined with channel 
shuffle with the aim of reducing the required cost for 
computation without neglecting the accuracy. Being 
implemented on an ARM-based mobile device, the model 
attains up to 13× actual speedup over AlexNet. 

Besides, the authors in [8] suggested a NN-based 
implementation that takes benefit from the communications 
passed between IoT nodes. Theoretically, this work is founded 
on the UAT theorem affirming that a NN with a single hidden 
layer is enough to compute a bounded approximation of a 
generic continuous function. In fact, this remark has led to 
integrate intelligence into IoT constrained platforms by means 
of some (local and on-the-fly) computations as the data 
navigate between the IoT devices using the collective behavior 
of such networks. 

A Mobile and Edge Computing (M/EC) solution was 
proposed in [9] to bring computation near the IoT end-nodes 
by applying CNNs, RNNs and RL at the edge of IoT 
networks. The very idea of this work is to implement 
Information-Centric Networking on top of the IoT via some 
techniques namely shared weights, pooling, and in-network 
caching to solve storage issues on IoT nodes. This approach 
led to remarkable reduction in latency for time-critical 
applications. 

Another study [10] digs deeper into the technical hardware 
requirements to implement DL algorithms over IoT devices. 
The authors implemented several models inside three boards: 
Qualcomm Snapdragon 800 used for phones and tablets (4-
core 2.3 GHz CPU, 1GB of RAM and 8MB DSP), Intel 
Edison principally oriented to wearables and form-factor 
sensitive IoT (500MHz dual-core CPU, 1 GB of RAM) and 
finally Nvidia Tegra K1 used for example in June IoT Oven 
[11], Nexus 9 phone and IoT-enabled cars (up to 1.7GB of 
RAM). The study proved, inter alia, the feasibility of 
implementing DL techniques on IoT oriented boards. 

A more general approach was proposed in [12], in which 
the authors came with a semi-supervised deep RL model 
designed to fit smart cities. Its inference engine exploits 
Variational Auto Encoders (VAE) to generalize optimal 
policies. The model was implemented to handle localization 
issues in a smart building case study portrayed as an ensemble 
of labeled positions associated with the Received Signal 

Strength Indicator values from multiple iBeacons. It was able 
to learn better action policies with at least 23% improvement 
in terms of distance to the target as well as almost 67% more 
gathered rewards compared to the supervised Deep RL 
approaches. 

B. Learning Applications for IoT Security 

Now that we have seen many ML-based applications in the 
IoT, let us move to some studies that tackled security 
problems (always in IoT environments) through ML tools. 

In fact, Support Vector Machines (SVMs) are one of the 
first and most used ML models. They represent standard 
classification models, generally known for splitting 
hyperplanes. Data sorting is achieved through maximizing the 
distance between the hyperplane and the nearby training 
samples of each class. SVMs are more adapted to datasets with 
a large number of features but a relatively small number of 
samples [13]. In the IoT world, a study [14] proposed a linear 
SVM-based Android malware detection system to secure IoT 
platforms. The comparison that was led between the 
performance of the model and other ML algorithms 
outbalanced the SVM method. Besides, SVM was also used to 
compromise cryptographic devices [15, 16]. However, one of 
the big challenges in multidimensional SVM problems is the 
tough task of selecting a suited kernel. 

Another generic method is Random Forest (RF): an 
accumulation of Decision Trees (DTs), which means that they 
are built and trained in order to vote for the output class [17]. A 
study [18] over 17 IoT devices belonging to nine categories 
affirmed that RF (among other ML methods) presents 
significant improvements in the identification of unauthorized 
IoT nodes. Another ML-based study [19] was performed on 
IoT environments to detect DDOS attacks. In this regard, RF 
provided slightly superior results compared to other ML 
methods. That being said, it is important to emphasize that RF 
methods are not always feasible, specifically over large 
datasets as they require the construction of a -relatively- large 
number of DTs. 

In another direction, UL is represented by the popular K-
Means with the key objective of Data clustering (k being the 
number of clusters). The algorithm consists of assigning each 
data sample to one of the k clusters based on their (similar) 
features. Usually UL models are privileged when the dataset is 
not labelled. In IoT, k-means clustering was used to 
distinguish Sybil attackers from normal sensors through 
clustering the channel vectors in industrial WSNs [20]. 
Nevertheless, this technique has many limitations, namely the 
need to have roughly equal numbers in each cluster for the 
algorithm to properly work, as well as the non-trivial task of 
choosing k [21]. 

Now, let us move to the deep sphere, and begin our survey 
by Convolutional Neural Networks (CNNs). Actually, the 
basic idea of a CNN is to put a bit of structure in NNs [22] by 
shrinking the enormous number of connections between 
layers, thus optimizing the training time. One of the main 
benefits of CNNs is their end-to-end nature ensured by their 
built-in “features extraction” ability. Yet CNNs still have a 
high computational cost; hence the difficulty of implementing 
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them on IoT constrained nodes. Many studies managed to 
bypass this limitation though, especially using distributed 
architectures [23]. Another study showed that CNNs could 
help in Android malware detection by means of raw sequence 
static analysis (RSSA) of disassembled programs [24]. 

One more giant pillar of ML nowadays goes under the 
name of Recurrent Neural Network (RNN). It is undoubtedly 
one of the ML big discoveries thanks to their particularity of 
having memory. They can read inputs      in sequence, and 
“remember” some information/context thanks to their hidden 
layer activations that get passed from a given time-step to the 
following [22]. Accordingly, RNNs can achieve excellent 
results in classifying network traffic and detecting malicious 
behavior. Besides, RNNs could be a good choice for IoT since 
it produces massive sequential data from different nodes. For 
instance, a previous work [25] proved the worth of using 
RNNs to detect network traffic behavior by modeling it as a 
sequence of states changing over time. Yet, vanishing and 
exploding gradient problems still the ultimate nightmare of 
RNNs. 

In another direction, many researchers consider that there 
was various contributions in ML in recent times, but 
Generative Adversarial Networks (GANs) are the only 
contribution that could be called a breakthrough in the last 
decade. GAN trains two models at the same time: a generative 
model G to identify the data distribution, and a discriminative 
model D to predict the probability that a sample came from 
the training data rather than G [26]. A recent work [27] 
realized a GAN-based architecture in order to secure IoT 
systems by detecting abnormal behavior. GANs may have a 
potential application in IoT security especially in zero-day-
like threats given their ability to learn diverse attack scenarios 
and then to generate innovative attacks beyond the existing 

ones. Though, up to now the training phase of GANs still 
unstable and a tough task [21]. 

Providing a large amount of training data is not always an 
easy task; hence, finding alternatives is a matter of serious 
concern for ML experts. Reinforcement Learning (RL) 
consists of learning behavior only through interactions 
between an agent (usually represented by the algorithm) and 
its surrounding environment; in fact this learning process 
consists of increasing the rewards it receives from the 
environment. Many researchers focus on the application of RL 
to IoT security; for instance, the work in [28] opted for an RL 
approach to learn a sub-band selection policy so that it could 
avoid both jammer signals as well as interference from other 
radios in wideband autonomous cognitive radios (WACRs). 
Two of our previous works [1, 29] tackled the Access Control 
(AC) in IoT scenarios, the two building blocks were: first 
taking into account the smart devices’ context while making 
an AC decision; and proposing AC policies that can be 
improved and optimized over time. However, given the 
enormous and heterogeneous amount of data generated by IoT 
devices, the proposition benefits from the power of RL, to 
accomplish this task. The problem with RL algorithms is that 
they require a large number of practice run (given their trial-
error nature) before they can make significant progress. 

It is worth noting that, in addition to provide an explicit 
survey of the latest and relevant works in IoT and ML, one of 
the motivations of this related works section is to prove that 
ML is already used in the IoT world, and consequently to 
disprove the idea claiming that IoT and ML are two parallel 
universes. In the following section, the proposition of this 
paper is presented with all the necessary details. 

Table I summarizes and compares these studies especially 
based on their achievements in a number of IoT situations. 

TABLE. I. COMPARISON AND SUMMARY OF ML STUDIES FOR IOT 

Application domains Used algorithms Achievements  Studies 

Networks traffic optimization in 

indoor or smart city scenarios 

Semi-supervised D-RL 

Auto Encoders 

D-NN, CNN, RNN 

Bring computing next to IoT devices 

Reduction in latency 

More gathered rewards 

[9], [10], [12]  

(Relatively) Simple processing 

situations 

D-NN, CNN 

Low-dimensional trees 

Local & on-the-fly computations 

Up to 13× actual speedup over AlexNet 

Decreasing model size, memory consumption 

Prediction within milliseconds 

[4], [5], [6], [7], [8] 

Malware & Intrusion Detection  SVM, RF, CNN 

Significant improvements in the identification of 

unauthorized IoT nodes 

Compromising cryptographic devices 

[14], [15], [16], [18], [19], 

[23], [24], 

Network threats & 

Network traffic behavior  
RNN, GAN 

Zero-day attacks 

Good results in time-based environments 

Data augmentation 

[25], [27] 

Security policy improvements RL 
Policy optimization 

Policy efficiency 
[1], [28], [29] 

New and unprecedented attacks K-means, RL 
Zero-day & Sybil attacks detection 

Avoid jammer signals 
[1], [20], [28], [29] 
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III. PRELIMINARIES 

We begin this section by exposing the research questions 
standing behind our work, together with all the essential 
details required to understand our proposition. 

A. Problematic 

The nature of a large portion of IoT devices (e.g. 
Healthcare, critical infrastructures) makes security the number 
one priority: it is, literally, a matter of life and death. In 
addition, the density, heterogeneity and autonomy are intrinsic 
characteristics of these systems that not only expend the 
perimeter of potential attacks but also their magnitude [21]. 

However, it turns out that treating all security aspects in 
one proposition is not a reasonable task; hence, this paper is 
focusing on the AC cornerstone because of its nature of 
protecting the access to digital and physical resources by 
delimiting, managing and enforcing who has (has not, is 
obliged to have) access to what, when and under which 
conditions [1]. 

Furthermore, the abovementioned IoT features impose 
intelligent and dynamic management instead of traditional and 
impractical one; we believe that IoT must benefit from these 
features considered so far as obstacles, IoT nodes need to 
“learn to look after each other”. To do so, our research has 
confronted many speed bumps that we have tried to demolish 
in this article. 

First, the misleading idea that reduces the IoT to 
constrained devices, but more importantly: The need to exploit 
the quantity of IoT devices and data as a catalyst for security 
to emerge. 

Not to mention the necessity for models that go beyond 
simply defining AC policies to understand the context of each 
smart device and continuously improving these policies, 
without falling into the trap of static management or role 
explosion. 

To the best of our knowledge, there seems to exist no 
previous work presenting a holistic ML-based framework for 
IoT answering these problematics. 

B. IoT and Computation Paradigm 

At first sight, IoT is a concatenation of two words: 
“Internet”, which refers to connectivity and communication 
aspects; and “Things”, which is a generic and global term that 
includes all kinds of objects, whether large or small, powerful 
or not. In that sense, every “thing” endowed with communication 
capacity is an IoT device. Put this way, one can easily classify 
the aforementioned constrained nodes, together with mobile 
phones, a Raspberry Pi board and cloud servers as IoT 
devices; and can also set traditional TVs, calculators or 
pillows outside the IoT scope (unless they are connected). 

Actually, no one can deny the difficulty (sometimes even 
the impossibility) of implementing complex ML tools on 
several types of constrained nodes. Yet, these latters remain 
ambiguous especially given the recent innovations in ML-

oriented chips, which are mainly due to the excessive demand 
and hot market of AI applications these days. This subsection 
exposes three reasons to motivate researchers –and investors– 
not to draw a spontaneous correlation between IoT and ML 
ineptness: 

 IoT > constrained nodes: As explained before, one key 
idea to clarify when talking about IoT is that it is more 
than just a collection of constrained nodes. Not to 
confound with Wireless Sensor Networks. 

 Hardware progress: The AI market is in an exponential 
growth, which leads to more investments, then to more 
innovations. This climate could only be beneficial for 
ML community. With this in mind, one can take a look 
at Amazon store for example to see how the ratio of 
hardware size to its storage capacity is decreasing 
faster than ever before. Regarding computation 
capacities the progress is astonishing as well, for 
instance, just few months ago, NVIDIA announced a 
70mm x 45mm AI computer, 4 GB memory, Quad-
core ARM® A57 CPU and 128-core NVIDIA Maxwel 
GPU [30]. 

 Software evolution: What is true for hardware also 
holds for software. Section II is an illustration of the 
active race in proposing new and suitable ML 
algorithms for IoT. Besides, many dedicated and 
extremely optimized ML libraries are already easing 
programmers’ life. For instance, Google’s Tensorflow 
Lite transforms heavy TensorFlow models into 
compressed flat buffers, which are then loaded into a 
mobile or embedded device [31]. 

Furthermore, there are several active research directions 
that could lead to further findings (even breakthroughs) in 
IoT-adapted ML applications: (i) parallel computing in 
training phase using Graphical Processing Units and Tensor 
Processing Units (GPUs/ TPUs), (ii) transfer learning in order 
to swiftly transfer the knowledge from pre-trained models, 
(iii) fog computing to decrease communications overhead size, 
data traffic, user-side latency, (iv) fast optimization algorithms 
[32]. 

C. Background 

The aim of this section is to explore two concepts that are 
essential to understand our proposition, namely, AC and IoT 
architecture. 

In fact, AC is of paramount importance being the entry 
point of every system after the identification/ authentication 
phase, thus securing any system must pass through (if not 
begin with) controlling its accesses. In the literature, tens of 
models are handling this issue, one of the most popular is Role 
Based Access Control [33] (RBAC); without going into too 
much details: instead of granting (or removing) a separate 
permission to every subject in the network, the model 
aggregates these subjects by roles and thus gets a lightweight 
version of its AC policy. Yet, end devices are not involved in 
AC decision, also, even with the aggregation of subjects into 
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roles, IoT systems still have astronomical number of objects 
and actions to manage. Attribute Based Access Control [34] 
(ABAC) is another model that is taking up more and more 
space recently, its basic concept is to identify subjects and 
objects through attributes (characteristics), then the 
permissions are granted according to these attributes, which 
could be any relevant security-characteristics, this makes 
ABAC, unlike RBAC, more adapted to afford fine-grained AC 
highly valued in IoT circumstances. Still, it comes with a 
terrifying and intolerable drawback: complexity. Other models 
[35] tried to make many tradeoffs but generally fall into one of 
the aforesaid limitations. 

Reasonably, Organization Based Access Control [36] 
(OrBAC) is a remarkable model that we believe it could be 
used as a foundation to an IoT-oriented solution. It inherits 
and extends the benefits of RBAC by proposing abstractions 
to all the AC elements (subject to role, object to view and 
action to activity – see Fig. 1), then it adds two more 
dimensions to the decision making process: context (crucial 
for IoT) and organization; this latter makes it a centralized 
model, but we will see in the next section how to turn this 
limitation into a strength. 

In the other hand, and given what is been elucidated earlier 
in this paper, IoT is not a single homogenous block; hence, in 
order to propose reasonable solutions, there is no other way 
but to have a conception of the main building blocks 
composing standard IoT environments. To do so, of course 
one could suggest several subdivisions but since the intention 
of this paper is to conciliate IoT and ML, the proposed 
categorization needs be centered on computing capabilities. 

In that sense, many researchers [37, 38] agree that every 
IoT platform could be molded into one or more of the 
following categories: C1: the constrained layer, here is where 
the constrained devices are located (physical constraints on 
many characteristics such as size, weight, available power and 
energy [39] which make them unable to accomplish more than 
basic tasks); C2: this category includes more powerful nodes, 
which are capable of executing relatively serious 
computations. In fact, the vast majority of the everyday smart 
devices fit into this category (e.g. smartphones, smart homes 
components); finally, C3: Computational or offloading layer, 
it is the most powerful one, it could be Cloud or local servers, 
computers, GPUs/TPUs and so on. 

Generally, complex environments (like smart cities) are a 
combination of the three layers. Another point to underline is 
the absence of explicit and rigid boundaries between these 
layers; this is mainly due to the dynamic nature of the IT 
domain, in fact what we call powerful today (or for a given 
task) might be considered constrained tomorrow (or for 
another task) and vice versa. Based on some examples, Fig. 2 
exposes the borders and intersections between these categories. 

As shown above, typically what most people call IoT is in 
general the intersection between the three layers, it is where 
all sorts of devices are interacting with each other to create 
this large universe of smart devices. 

 

Fig. 1. Simplified Presentation of OrBAC Layers. 

 

Fig. 2. Intersections between IoT Layers. 

IV. CONTRIBUTION 

In this section we present the AC framework that takes 
into consideration all the previously discussed requirements. 

A. Global Questions Need Global Answers 

One can fairly claim that IoT is the largest and most 
heterogeneous artificial network humans have ever made, it is 
becoming earth’s nervous system. Therefore it would be 
naive, if not irrational, to search for elementary narrowed 
solutions to such a complex and multifaceted problem; instead 
what this paper is suggesting is a multi-layer AC solution, that 
exploits ML and OrBAC strengths to answer IoT burning 
questions exposed in Section III-A. 

First thing to consider when treating AC in IoT is the 
overall architecture, whether it is distributed (like blockchain 
based solutions [40]) or centralized as long as it is equipped 
with the collaboration aspect. In fact, each of these two 
architectures has its advantages and drawbacks [29]; however, 
without loss of generality, this paper mainly focus on the 
second one for the following reasons: (i) IoT, at least as we 
know it today, requires that each device has an owner, whether 
a person, in the case of a smart home for example or an 
organization in industry or in smart cities. So practically an 
approach that takes this aspect into consideration will be 
closer to reality. (ii) Even in distributed architectures, there 
always should be an entity in charge of defining AC policies 
for the IoT nodes, unless the device is open to everyone (and 
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therefore no need for AC at all). For simplicity reasons, in 
both scenarios this entity is given the name “object owner” 
(OO). 

As shown in Fig. 3, the object owner i (   ) owns several 
IoT devices which can belong to any category (C1, C2 or C3). 
He defines their AC policies and stores them either locally, in 
a distributed manner on multiple servers or even in large 
networks (like blockchain) using smart contracts. Henceforth, 
the location of these policies is called Policy Information 
Point (PIP), as defined by the ISO/IEC standard for the access 
control framework [41] and the XACML related architecture 
[42]. 

As mentioned before, the choice of OrBAC as the 
background model to an IoT-oriented framework is defended 
by the following reasons: First, it has the concept of 
organization by design thus no need for extra dimensions to 
designate the OO. Also, OrBAC is distinguished by two other 
features crucial for IoT environments, namely an advanced 
level of abstraction required to alleviate the complexity 
produced by the colossal number of devices; together with the 
context incarnated in all OrBAC rules, which will ease the 
collect of real time contextual information from the end nodes 
for better AC decisions. In a more formal sense, the AC policy 
is stored in the PIP as rules presented in this form: 

                                    (1) 

Where org stands for organization or the view owner, r for 
role (aggregation of subjects), v for view as a collection of 
objects, ay for activity which is an abstraction of actions 
whereas c is the context. Thus the previous rule declare that: 
In the organization org the role r has permission to execute the 
activity ay on the view v under c circumstances. 

1) Pre-request stage: Policy initiation: In step one, when 

the OO have to define a new rule, either the device o fits in 

one of the existing views v so the affectation :              

(2) is executed; if not the role is automatically created when 

declaring a new permission and the subject and role get the 

same name. 

Another key concept of this framework is the process of 
matching abstract and concrete entities, it also begins in phase 
one: In fact, besides the aforementioned rules, the PIP 
contains two types of match functions: 

Usual correspondences in the form of      (         ) 

as shown in (2) are employed for the frequently used entities, 
while generic match functions based on attributes, for 
instance: 

                                   (3) 

Which means if a subject s, has the 
attributes         then it belongs to the role   . Yet since the 
designation of    could as well be considered as an attribute of 

itself, we can use (3) for both. 

2) Inference stage request processing: Now that AC 

policies are initiated and stored in the PIP, phase 2 begins: a 

subject    is willing to execute an action    on an object   , to 

do so the following request is sent to the Policy Enforcement 

Point (PEP): 

                                       (4) 

When the PEP gets the access request, it triggers the 
process of matching (phase 3); it is the step where we go up 
from concrete to abstract entities in order to reduce the 
complexity. So the PEP transfers (4) to the Policy Decision 
Point (PDP), which in its turn requests the PIP by an: 

                                      (5) 

After that, the PIP, responds by the corresponding 
matches: 

                                         (6) 

Up till now, the PDP has all the static features to take the 
decision. However, even if we have already handled two IoT 
major worries, namely context and complexity, the process 
still lacking dynamism. In fact, policies are statically stored in 
the PIP without any learning from past experiences. To answer 
this, (6*) will be coupled with an extra feature: a ratio 
reflecting the probability of a safe access granting given the 
aforementioned characteristics: 

                                          (7) 

To do so, (1*) needs to be joined with the probability 
feature which is set by default (in the policy definition phase) 
to p=1, then it is updated over time: 

                                       (8) 

Now, and based on a threshold fixed by the OO, the PDP 
can decide (phase 4) and inform the PEP, and consequently 
the requester, about the final decision. Note that this threshold 
has two essential benefits: first it gives the organization a 
better personalization of the framework, in addition to 
allowing it to define even several thresholds given the 
criticality of certain resources or context. 

 

Fig. 3. Step 1: to define AC Policies. 
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3) Post-request stage learning and upgrading: The final 

phase -5- in our process is a post access one, it consists of 

calculating a feedback rating of the experience, which will be 

used by the PDP to generate AC policy updates leading to 

more accurate decision in the future (a concrete example is 

given in the case study section). The output will be stored in 

the “learning matrix” which will have 6 columns 

(organization, role, view, activity, context, feedback) and as 

many line as the number of experiences the system could 

store; while feedback is a rational number between 0 and 1. 

The learning algorithms run in phase 5 varies according to 
the hardware resources of the system but also according to the 
layers defined in Section III-C. However, generally in 
complex and multifaceted IoT environments we propose 
using: RL and many resource consuming SL scheduled, for 
example, periodically in category C3; SL up to a reasonable 
size of the learning matrix in C2; while leaving normal 
equation stechnique or no ML at all to C1. Table II 
summarizes the previously detailed steps. 

For simplicity reasons, we were focusing in permission 
formulas, however what goes for permissions is also valid for 
obligations and prohibitions [43]. 

B. The Algorithm 

The steps discussed in Table II are compressed in the 
following Fig. 4 to explain the overall functioning of the 
algorithm. In fact, the framework could be segmented into 
three main time frames: (i) pre-request tasks, which handle the 
definition of the AC policies; (ii) request processing, 
involving all the actions triggered after an access request up 
till the subject receives back a permission/rejection; (iii) post-
request actions that are responsible for the learning and policy 
improvements. 

Note that the proposed framework is a decentralized one. 
In fact, the concept of organization is introduced to 
decompose complex IoT environments into reasonable and 
manageable groups, not to turn them into one giant centralized 
one. For instance, if we have to manage AC in a smart city 
situation, the framework will treat this multidimensional 
platform as a collection of organizations interacting and 
collaborating with each other. 

Several studies have examined the collaboration issues in 
OrBAC [37, 44, 45, 46], either by creating further abstract 
entities, web services, or even through prior agreements 
between the involved organizations, however the definition of 
AC relationships using attributes that we saw in 1.b. (Table II) 
is a better alternative in IoT situations since with one tool we 
answer both intra and inter organizations AC concerns. An 
example of this scenario will be discussed in the following 
section, where we are exploring a smart city case study. 

 

Fig. 4. Overall Functioning of the Framework. 

TABLE. II. SUMMARY OF THE FRAMEWORK’S PHASES 

 Action Responsible 
Location/ 

destination 
Example 

Phase 1 

1.a. AC policy definition OO PIP                            

1.b. AC relationship definition (either explicit or 

through attributes) 
OO PIP 

                       

                   

                         

1.c. Threshold definition OO PDP                       

Phase 2 
2.a. The subject request executing an action over a 

resource/object 
The requester/ subject PEP                         

Phase 3 

3.a. Request for decision PEP PDP                         

3.b. Request matching information PDP PIP                        

3.c. Matching response PIP PDP                            

Phase 4 4.a. Make decision PDP PEP 
                          

                         

Phase 5 

5.a. Update learning matrix PDP PDP                                   

5.b. Learning process PDP PDP                     

5.c. Send updates periodically PDP PIP                            
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V. CASE STUDY 

The IoT is growing by leaps and bounds, thus creating this 
large, smart and autonomous system requiring less and less 
human intervention. Smart city (SC) was always the case in 
point that portrays this vision where devices not only interact 
but depend on (even control) each other. This section presents 
a SC situation to depict how the previously described 
framework could be implemented in such complex 
environment. 

Actually, the choice of SC has been motivated by many 
reasons: First, because it covers many of the other IoT use 
cases. Secondly, in addition to the IoT world, it is also a 
typical case in the AI domain. Thirdly, it presents an active 
research field [47], and last but not least it is becoming a 
necessity in order to efficiently deal with the massive growth 
of urbanization that is estimated to reach 66% by 2050 [48]. 

To better illustrate this example, let us take three 
organizations in a SC, namely: a car rental agency (CRA), 
which represents the organization we are willing to secure, a 
smart parking (SP) and a police station (PoS). 

As a CRA, our organization is mainly composed of self-
driving cars (decomposed into two views: luxury and normal 
cars); its customers are generally normal clients, VIP clients or 
blacklisted ones (which makes respectively three roles: NC, 
VIP, BC); regarding the activities it is more realistic to 
categorize them by rental period (a1: 1 day, a2: between 1 and 
3 days, and a3: more than 3 days). Finally, the context 
represents the time of the year during which the request is 
made: is it a peak season (peak) like summer for example, or 
off season (off). 

In this case, each self-driving car is equipped with its own 
PEP, which means it is the car itself that receives the access 
request and responds the requester by the final decision. PIP 
may ideally be one (or several) local server(s) storing the AC 
policy. Regarding the PDP, in general it needs to be spread out 
over two layers: one part dealing with the steps (1.c., 3, 4 and 
5.a.) that are executed within the smart car, and another part 
that needs to be run on C3 category (namely 5.b. and 5.c.). 
Nevertheless, as we will see later some lightweight versions of 
these two steps could also be run within the smart car. The 
following Fig. 5 portrays the building blocks forming this 
platform: 

 

Fig. 5. The Building Blocks of the Case Study. 

Now that we have exposed all the stakeholders, first thing 
to do as the owner of CRA is to define a primary AC policy, 
so in the PIP there will be two sorts of rules: (i) Those of the 
1.a. step, which will be in the form of: 

                                   

                                               

* Star stands for all, i.e. any organization. 

Then the definition of the AC relationships, which are 
responsible for matching abstract to concrete entities, for 
example a car is considered luxury if its release date comes 
after 2017 and its price exceeds 100,000$: 

                          

                          

                                           

For luxury cars the threshold is set to 1, so that access is 
not granted to any role without a 100% confidence about its 
previous experiences. While for the less critical view (normal) 
the threshold is reduced to 0.8 allowing more usability. These 
thresholds are set in the car side’s PDP. 

Let’s move to phase 2. At the moment, an access request 
arrives to the PEP of the car id=79, it is a subject presenting 
his membership badge and demanding this resource for 5 days 
starting from August the 1st, 2019. 

                                 
           
                          

After the previous request is forwarded to the PDP, this 
latter requests matching information from the PIP via: 

                                
           
                          

Then it gets the response: 

                                      

And since the threshold for luxury cars is set to 1, the PDP 
makes and informs the PEP about its final decision allowing 
the requester to access/use the car: 

                                   
           
                          

Now comes the learning phase. Actually, it is up to the 
organization either to rate the experience after its end (i.e. rate 
just the physical state of the car for example) or to perform an 
online rating so that it gets periodic feedback from the smart 
car to compute more sophisticated inferences (e.g. 
geolocation, fuel consumption, speed) and then the PDP ends 
up with a weighted average. To simplify our case, we use the 
first option. 

Therefore, after the car is back, the PDP receives the 
required ingredients to compute the feedback. Let us consider 
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that what is important for this CRA is whether the car is back 
in time and its mechanical situation, and that for both features 
this experience was negative, so the feedback was set to 0.6. 
The learning matrix is now updated: 

                                               

Now we can imagine that if after a while similar feedbacks 
comes from the same organization (    ) or under the same 
context or whatever, the algorithm will detect the pattern when 
the learning model is run over the collected data 
using                     , then the AC policy could 
eventually be updated, thus improved over time. 

A final point that we want to highlight is about the 
attributes used in the matching phase. In fact, depending on 
their nature there are two ways to collect them; either 
explicitly as we saw in the previous example (i.e. as 
parameters within the access request) or by extracting them 
directly from the object. For instance, if we want to use the 
license plate number we could eventually use the cameras 
from the smart parking. 

VI. DISCUSSION AND CONCLUSIONS 

The motivation behind this work was to come up with a 
smart, decentralized and IoT-suited AC framework. In this 
section we discuss theoretical and practical contributions of 
this paper as well as their strengths over existing solutions. 

First thing to remember is that IoT are not all constrained. 
To prove this we went back to define this paradigm and to 
delimit its boundaries and layers; in addition to overview 
several IoT propositions that have used ML techniques. 
However, to the best of our knowledge, the existing solutions 
are narrowed ones, each one focus either on proposing a 
model, managing the policy or tackling specific techniques. 
The problem with this approach shows up when an 
organization wants to put it all together, generally the 
concatenation of these uncoordinated solutions do not give 
acceptable results. Thus proposing a holistic framework to 
manage AC in IoT environments is another key contribution 
of this paper. 

Equally important, the introduction of the notion of 
organization in IoT is notably benefic since it helps drastically 
decreasing the problem of role explosion, which is the number 
one problem challenging role-based and attribute-based AC 
solutions. In fact, an IoT environment could always be broken 
off into several organizations and therefore, depending on 
their mission, the roles will be manageable; and of course 
what goes for roles also goes for views, activities and context. 
Note that the organization aspect has by no means been a 
source of centralization, it is rather a push toward more 
decentralization and collaboration. 

Another interesting and captivating point: the learning 
process we have introduced actually differs from the 
traditional procedure commonly used in the current AI 
applications, which consist first of a learning phase followed 
by the prediction phase. In our framework it is rather a 
minimum of basic knowledge is initiated in the beginning then 
learning came to fine-tune this expertise. It is actually how 

humans learn, they always have some innate skills before 
anyone comes to teach them anything. 

Finally, we believe that having the ability to personalize 
the threshold, not forcing an immediate update after each 
experience, and allowing explicit as well as extracted 
attributes bring this framework with further flexibility and 
adaptability to fit the IoT requirements discussed in 
SectionIII-A. 
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