
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

606 | P a g e
www.ijacsa.thesai.org

Performance Evaluation of Deep Autoencoder

Network for Speech Emotion Recognition

Maria AndleebSiddiqui
1

Computer Science and Information Technology

N.E.D University of Engineering & Technology

Karachi, Pakistan

Wajahat Hussain
2

Deputy Manager

Karachi Shipyard and Engineering Works Ltd

Karachi, Pakistan

Syed Abbas Ali
3

Computer & Information Systems Engineering

N.E.D University of Engineering and Technology

Karachi, Pakistan

Danish-ur-Rehman
4

Electronics Engineering

N.E.D University of Engineering and Technology

Karachi, Pakistan

Abstract—The learning methods with multiple levels of

representation is called deep learning methods. The composition

of simple but now linear modules results in deep-learning model.

Deep-learning in near future will have many more success,

because it requires very little engineering in hands and it can

easily take ample amount of data for computation. In this paper

the deep learning network is used to recognize speech emotions.

The deep Autoencoder is constructed to learn the speech

emotions (Angry, Happy, Neutral, and Sad) of Normal and

Autistic Children. Experimental results evident that the

categorical classification accuracy of speech is 46.5% and 33.3%

for Normal and Autistic children speech respectively. Whereas,

Auto encoder shows a very low classification accuracy of 26.1%

for only happy emotion and no classification accuracy for Angry,
Neutral and Sad emotions.

Keywords—Auto-encoder; emotions; DNN; classification

accuracy; autism

I. INTRODUCTION

The composition of simple but nonlinear modules results
in deep-learning model. The composition is started by
representation at one level, which is usually raw input, and
then this raw input is transformed into a representation of
higher layers, which are slightly more abstract levels [1]. The
records of machine learning techniques in many domains of
science, especially in image recognition [2-5] and speech
recognition [6-8] has been beaten up by deep learning
modules. Deep learning has revolutionized the speech signal
processing. Excellent results have been achieved using the
deep learning networks [9-11]. An Autoencoder is constructed
in this paper by stacking two layers; First layer is used to
classify the category of speech that is normal or autistic and
the second layer is used to classify the emotion of that
category that is Angry, Happy, Neutral and Sad. Auto-encoder
is a stack of building block. It contains multiple layers of
representation [12]. Auto-encoder is also called auto-
associator or Diabolo network. It is used to learn a
representation of a set of data typically for dimensionality
reduction [13]. Comprehensive review was presented in [14]
about popular deep learning algorithms for speech emotion

recognition. Experimental results shown that the performance
of EMO-DB using Log Mel spectrograms on CNN+LSTM is
highest that is 78.10%. To improve the Chinese speech
emotion recognition, a novel speech emotion recognition
algorithm based on stack autoencoder, denoise autoencoder
and sparse autoencoder is proposed [15]. The experimental
results revealed that the proposed algorithm with stack
autoencoder performs 14.3% higher than SVM. The
architecture of this algorithm can be studied in Fig. 1.

Fig. 1. Architecture of Auto-Encoder.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

607 | P a g e
www.ijacsa.thesai.org

Here Xte are test samples, Xtr are training samples, W is
weight, and b is bias

The representation of weight and bias in neural network is
shown in Fig. 2. Architecture Neuron Model is an elementary
neuron with “P” inputs as shown. Each input is weighted with
an appropriate “w.” The sum of the weighted inputs and the
bias forms the input to the transfer function “f.” Neurons can
use any differentiable transfer function “f” to generate their
output.

Fig. 2. Architecture of Auto-Encoder.

The basic Algorithm for auto encoder is as follows:

Step 1. Load the training speech data into memory

Step 2. Get the number of columns and rows in each
sample

Step 3. Turn the training samples into vectors and put them
in a matrix. As the training samples are saved into a matrix,
training the network is ready to begin.

Rest of paper is organized into following three sections:
Section II presents the methodology of experimental
framework. Results of experimental framework with four
different emotions are discussed in Section III. Conclusion is
drawn in Section IV.

II. METHODOLOGY

A. Speech Data Set

The data evaluated in this study were collected from 94
normal and 94 autistic children of age group 10-13 years of
both genders. Some Urdu language sentences with four
different emotions (Angry, Happy, Neutral and Sad) are
chosen for this study. The sentence which is suitable to utter
and contain maximum phonetic information is used to
implement the speech emotion corpus. The Emotion Corpus
consists of 24 samples of each Angry, Happy and Neutral
emotions and 22 samples of Sad Emotions. The following ITU
recommendations have been used for corpus recording with
specifications: SNR>= 45dB and bit rate 24120 bps. Windows
10 built in sound recorder and microphone has been used for

recording the speaker’s utterances with 48 kHz sampling rate
and sensitivity of 56dB ± 25dB. The description of the
available speech samples of both normal and autistic children
for each emotion is shown in Table I.

B. Training and Configuration of Auto Encoder

The Flow diagram of auto encoder configuration, testing
and training phases is presented in Fig. 3.

The training and testing of Autoencoder is discussed in
subsequent sections.

1) Create and configure first auto encoder: Sparse auto

encoder is trained by using speech training data set without

labels. As auto encoder can replicate its input and output, so

the size of the input and output will be same. The compressed

representation of the input is learned by auto encoder when the

size of the input is greater than the number of neurons in

hidden layer. By modifying some of the settings of the feed

forward neural network, the auto encoder is created.
Step 1. The size of the hidden layer, which is to be trained,

is set. It is usually less than the input size.

Step 2. The number of training functions and training
epochs are changed to create the network.

TABLE. I. SPEECH EMOTION DATA SET

Category
Emotions

Angry Happy Neutral Sad

Normal 24 24 24 22

Autistic 24 24 24 22

Fig. 3. Auto-Encoder Configuration Training and Testing Phases.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

608 | P a g e
www.ijacsa.thesai.org

Step 3. Process function is not used at the input and output.

Step 4. The transfer function of logistic sigmoid is set for
both layers.

Step 5. All the dataset is used for training.

Step 6. The first layer comprises of the sparse
representation, which is learned by adding the regularizes as it
encouraged the learning power of auto-encoder by using the
following parameters:

a) |L2WeightRegularization|: It should be small enough
to control the weighing of an L2 regularizers for the weights of

the network (not the biases).

b) |sparsityRegularization|: It is used to prevent the large
fraction of neurons in hidden layers from activating in response

of input.

c) |sparsity|: This function is used to control the fraction

of neurons.It is activated in response to the input layer in the

1st layer. Its range is between 0 and 1.

2) Train First Autoencoder
Step 1. Train the auto-encoder with the input data that

should be identical to the target data.

Step 2. The auto-encoder diagram is viewed to show the
size of hidden layer, input layer, output layer, as well as the
transfer function for the two layers.

Step 3. From the first auto encoder the result can be
visualized. Visualization helps to get the insight into the
feature that can be gained. The hidden layer neurons have the
weights vector associated with it in the input layer. Create and
Configure empty network.

3) Create and configure empty network: Curls and Stroke

patterns from the digit samples are represented by auto-

encoder that are seen by the features learned. The compressed

version of the input is the 100 dimensional outputs from the

hidden layer of auto-encoder. Now the next auto-encoder is

trained on the speech training dataset from which the set of the

vectors are extracted. For training the next auto-encoder, the

first version of the auto-encoder is created with the removed

final layer. Removal of first layer is done by manually

configuring the settings and creating an empty network object.

The biases and weights can be copied from the trained auto-

encoder.
Step 1. The empty network is created

Step 2. The number of inputs and outputs are set.

Step 3. The First and only layer is connected to the first
input and also to the output.

Step 4. The connection for the bias term to the first layer is
added.

Step 5. The size of the input and first layer is set.

Step 6. The first layer uses the logistic sigmoid transfer
function.

Step 7. The first layer of trained auto encoder is used to
copy the weights and biases.

Step 8. The empty network is seen by the |view| function
which is equivalent to the first auto encoder with the first layer
removed.

Step 9. To train the second auto-encoder, the features are
now generated. This is achieved by evaluating the truncated
auto-encoder on the speech training data set.

4) Configure second auto encoder: The second auto-

encoder is trained in the similar way as the first auto-encoder.

The main difference is that for training the second auto-

encoder the speech training data set are the features obtained

by hidden layer of the previous auto-encoder. The feed

forward neural network is created once again and the settings

are modified.
Step 1. The network is created. The number of training

function, the size of the hidden layers and the training epochs
are changed to conduct the experiment.

Step 2. The process function is not used at the input and
output.

Step 3. The transfer function of the logistic sigmoid is set
to both the layers

Step 4. All of the data is used for training.

Step 5. After creating the network, performance function is
set to |msesparse|, the values of the performance function are
set. The sparsity and the mean squared error with L2 weight
are used to regularize the performance.

Step 6. The parameters are altered to conduct the
experiment.

5) Training second autoencoder: The features generated

from the previous auto-encoder are used to train the second

auto-encoder.
Step 1. The second auto-encoder is trained.

Step 2. The |view| command is called once again to view
the diagram of the autoencoder. The first and Second auto-
encoder are similar but the size of the layers is different.

6) Create and configure empty network: As before, a

version of the second auto encoder is created with the final

layer removed.
Step 1. The number of inputs and layers are set.

Step 2. The first and the only layer are connected to the
first input and also connect to the output.

Step 3. A connection for bias term to the first layer is
added.

Step 4. The size of the input and first layer is set.

Step 5. The first layer uses the logistic sigmoid function.

Step 6. The first layer of the trained auto-encoder copies
the weights and biases.

Step 7. The diagram of the network can be seen by the
|view| function. With the last layer removed, it is equivalent to
the second auto encoder.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

609 | P a g e
www.ijacsa.thesai.org

Step 8. The second truncated auto encoder passes the
previous set which is used to extract the second set of features.

7) Create and configure final softmax layer: The original

vectors in the speech training dataset had 784 dimensions.

After passing them through the first auto encoder, this was

reduced to 100 dimensions. After using the second auto

encoder, this was reduced again to 50 dimensions. The 50

dimensional vectors are classified into different classes to

carry out the training of the final layer. A softmax layer is

created for the training of the final softmax layer. The output

of hidden layer from the second auto encoder is used for its

training. As the softmax layer only consists of one layer, it is

created manually.
Step 1. Creation of the empty network.

Step 2. The number of inputs and layers are set.

Step 3. The first and the only layer is connected to the first
input and also connected to the output.

Step 4. A connection for the bias term to the first layer is
added.

Step 5. The size of the input and first layer is set.

Step 6. All of the data is used for training.

Step 7. The cross-entropy performance function is used.

Step 8. The number of training functions and training
epochs is changed to conduct the experiment.

8) Train Empty Network Softmax Layer
Step 1. The training of the softmax layer is carried out.

Supervised learning is used to train the softmax layer unlike
the auto-encoders.

Step 2. |view| command is called to view the diagram of
the softmax layer.

Step 3. A multilayer neural network is formed.

Step 4. In isolation, the training of the three separate
components of the deep neural network is carried out. To view
these three components are useful at these points. They are the
networks |autoencHid1|, |autoencHid2|, and |finalSoftmax|.

9) Create and configure final softmax layer: Multilayer

neural network is formed to join together these layers. The

neural network is created manually, the weights and biases

from the auto encoder and softmax layers are copied and the

settings are configured after the creation of the network.
Step 1. An empty network is created.

Step 2. One input and three layers are specified.

Step 3. The 1st layer is connected to the input.

Step 4. The 2nd layer is connected to the 1st layer

Step 5. The 3rd layer is connected to the 2nd layer.

Step 6. The output is connected to the 3rd layer.

Step 7. A connection for the bias term to the first layer is
added.

Step 8. The size of the input is set.

Step 9. Same as the layer in autoencHid1, the size of the
first layer is set.

Step 10. Same as the layer in autoencHid2, the size of the
second auto encoder is set.

Step 11. Same as the layer in final softmax layer, the size
of the third layer is set.

Step 12. Same as in 1st auto encoders, the transfer function
for the first layer is set.

Step 13. Same as in 2nd auto encoder, the transfer function
for the second layer is set.

Step 14. Same as in Softmax layer, the transfer function
for the third layer is set.

Step 15. Use all of the data for training

Step 16. Copy the weights and biases from the three
networks that have already been trained

Step 17. Use the cross-entropy performance function

Step 18. The experiment can be conducted by changing the
number of training epochs.

Step 19. |view| command can be used to see the diagram of
the multi-layer network.

10) Test the final autoencoder network: The test set is used

to compute the results with the full deep neural network. Now,

the test samples have to be reshaped, as was done for the

training set.
Step 1. The test samples feature set is loaded.

Step 2. Confusion matrix is used to visualized the results.
Overall accuracy can be calculated by the numbers in the
bottom right hand square of the matrix.

Step 3. The Deep Neural Network is tuned finely. Back
propagation application on the whole multi-layer network is
used to improve the results for the deep neural network. This
process is called fine tuning. Finally the supervised training is
used to tune this network by retaining it on the speech training
data set.

III. RESULTS

The experimental results in this section are based on
Confusion Matrix of categorical classification as shown in
Fig. 4.

Categories: Normal and Autistic

Total Samples: 188

Target Samples:

Normal 94 Autistic 94

Output Sample Classes:

Normal:175 Autistic:13

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

610 | P a g e
www.ijacsa.thesai.org

Fig. 4. Confusion Matrix of Categorical Classification.

Here 1= Normal , 2 = Autistic Results

Green are accurate hits per class, Red are error /miss per
class.

Our results are 23 Normal hits, missed as Autistic and 20
Autistic hits, missed as Normal.

The Error Histogram is shown in Fig. 5.

Fig. 5. Error Histogram of Categorical Classification.

Bins are sample for views. The algorithm has 45.7% error
due to less number of dataset.

The emotional classification is presented in Fig. 6.

Categories: Normal and Autistic

Total Samples: 94

Target Samples:

Angry :24 Happy :24 Neutral: 24 Sad :22

Output Sample Classes:

Angry : 0 Happy :94 Neutral: 0 Sad: 0

Fig. 6. Confusion Matrix Emotional Classification.

Here 1= Angry, 2 = Happy, 3 = Neutral, 4 =Sad

Green are accurate hits per class, Red are error /miss per
class. The result is all Angry, Neutral and Sad are missed as
Happy and all Happy are hits. The error histogram is shown in
Fig. 7.

Fig. 7. Error Histogram of Emotional Classification.

IV. CONCLUSION

This paper evaluated the performance of deep auto encoder
for four different emotions of normal and autism children.
Experimental frame work were comprised on total 94 speech
emotions sample in four different emotions and make used of
confusion matrix to demonstrate results in term of
classification accuracy. Experimental framework of
categorical classification produced overall accuracy of 52.65%
and the overall emotional classification of speech produces
26.1% accuracy which shows very low percentage of
classification accuracy of emotions. Authors are focusing on
improving classification accuracy by increasing the emotions
corpus of the children.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

611 | P a g e
www.ijacsa.thesai.org

REFERENCES

[1] Y.L.Cun , Y. Bengio, G.Hinton, “Review on Deep Learning”, Nature,

vol. 521,pp.436-444.2015.

[2] A. Krizhevsky, I. Sutskever, G. Hinton, “ImageNet classification with
deep convolutional neural networks”,, In Proc. Advances in Neural

Information Processing Systems, vol. 25, pp. 1090–1098, 2012.

[3] C. Farabet, C.Couprie, L.Najman,Y.LeCun, "Learning Hierarchical
Features for Scene Labeling," in IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol.35, No.8,pp.1915-1929.2013.

[4] J. Tompson., A.Jain, Y. LeCun, C. Bregler, “Joint training of a
convolutional network and a graphical model for human pose

estimation”, In Proc. Advances in Neural Information Processing
Systems , vol. 27,pp. 1799–1807.2014.

[5] C.Szegedy et al.,“Going deeper with convolutions”, Computer Vision
Foundation,pp.1-9.2015.

[6] T. Mikolov ,A. Deoras, D. Povey,L. Burget, J.Cernock, “Strategies for

training large scale neural network language models”, In Proc.
Automatic Speech Recognition and Understanding,pp.196–201,2011.

[7] G. Hinton, et al., “Deep neural networks for acoustic modeling in speech

recognition”. IEEE Signal Processing Magazine, vol. 29,pp.82–97.2012.

[8] T.Sainath, A.R.Mohamed ,B. Kingsbury, B.Ramabhadran, “Deep
convolutional neural networks for LVCSR”, In Proc. Acoustics, Speech

and Signal Processing , pp.8614–8618, 2013.

[9] A. Graves, N. Jaitley, A.R.Mohamed. “Hybrid Speech Recognition with

Deep Bidirsctional LSTM”, in proc. of IEEE workshop on Automatic
Speech Recognition and Understanding, pp 273-278, 2013.

[10] K. Han, D. Yu, I.Tashev,“Speech Emotion Recognition using deep

neural network and extreme learning machine”, in Proc. of the
international speech communication and association conference, pp.223-

227, 2014.

[11] H. Lee, L.Yan , P. Dham, A.Y.Ng, “Unsupervised feature learning for
audio classification using convolution deep belief networks, Neural

Information Processing System, pp.1096-1104.2009.

[12] S.S. Mousavi, M.Schukat, E.Howlay, “Deep Reinforcement Learning:
An overview”, In Proc. of SAI Intelligent System Conference

(Intellisys), pp. 426-440.2018.

[13] Y.Bengio, “Learning deep architectures for Artificial Intelligence”,
Foundations and trends in Machine Learning, vol.2, No.1, pp.1–127.

2009.

[14] S.K.Pandey, H.S Shekhawat, S.R.M Prasanna, "Deep LEarning

Techniques for speech emotion recognition: A Review", IEEE Proc. on
International Conference on Radioelectronika, Czech Republic, pp:1-5,

July 2019.

[15] P.Wei, Y.Zhao, "A novel speech emotion recognition algorithm based
on wavelet kernel sparse classifier in stacked deep auto-encoder

model", Springer: Pers Ubiquit Comput 23, pp. 521–529, 2019.

