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Abstract—We propose a modified version of the Convex Hull 

algorithm for approximating minimum-length Hamiltonian cycle 

(TSP) in planar point sets. Starting from a full compact 

triangulation of a point set, our heuristic “carves out” candidate 

triangles with the minimal Triangle Inequality Measure until all 

points lie on the outer perimeter of the remaining partial 

triangulation. The initial candidate list consists of triangles on the 

convex hull of a given planar point set; the list is updated as 

triangles are eliminated and new triangles are thereby exposed. 

We show that the time and space complexity of the “apple 

carving” algorithm are O(n2) and O(n), respectively. We test our 

algorithm using a well-known problem subset and demonstrate 

that our proposed algorithm outperforms nearly all other TSP 

tour construction heuristics. 
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computational geometry; compact triangulation 

I. INTRODUCTION 

In this article we examine the following tour-construction 
heuristic for the planar TSP: take a compact triangulation of the 
planar set and then find the minimum Hamiltonian cycle 
embedded in the triangulation by progressively removing 
triangles of minimal Triangle Inequality measure until n-2 
triangles remain. We call this heuristic “apple carving” as this 
descriptor accurately describes the triangle removal process 
which is the basis of the algorithm. Possibility of using well-
known triangulations such as Greedy and Delaunay to generate 
heuristic tours was already explored by Reinelt [1], Stewart [2], 
and Letchford and Pearson [3]. These authors looked at 
triangulations as presenting a “good” subset of edges and 
utilized well-established TSP solutions engines like 
CONCORDE to solve for TSP. Our research is different in that 
we (a) utilize newly introduced Greedy Compact Triangulation 
(GCT) proposed recently by Dodig and Smith [4], and (b) 
utilize a modification of Convex Hull Heuristic on GCT 
triangles to approximate TSP. 

Our paper is organized as follows. First, we formally define 
the TSP and review the present state of its solution algorithms. 
Second, we introduce our approach. Third, we present our 
experimental methodology and review our experimental 
results. Finally, we highlight our conclusions and outline future 
research steps. 

II. LITERATURE REVIEW 

A. Traveling Salesman Problem 

Traveling salesman problem (TSP) is perhaps the best-
known and most-researched problem in combinatorial 
optimization. In its general form we are given a collection of 
cities and the distance to travel between each pair of them, and 
the problem then is to find the shortest route to visit each city 
and to return to the starting point [5]. TSP belongs to the class 
of NP-hard problems; in other words no polynomial-time 
algorithm exists that can solve the problem optimally in 
polynomial time, regardless of its complexity (i.e. the number 
of cities in the tour). The best result to date is a solution 
method, discovered in 1962, that runs in time proportional to 
n22n [6]. TSP has been fascinating both researchers and general 
public for more than sixty years. In 1954, three researchers 
from Rand Corporation had solved a long-standing public 
challenge to find the shortest tour through 48 US state capitals 
and DC, shown in Fig. 1 [5]. 

In purely mathematical terms, TSP is the problem of 
finding a Hamiltonian tour (cycle) of minimum weight in a 
complete edge-weighted graph. In our research, we consider a 
symmetric TSP, or STSP, in that we assume that edge-costs are 
symmetric, or, equivalently, that the graph is undirected. A 
special case of the TSP is obtained when the vertices of the 
graph correspond to points in the Euclidean plane, and distance 
between any two points is equal to the Euclidean distance 
between the corresponding points. The Euclidean TSP is a 
special case of the metric TSP, in which the costs obey the 
triangle inequality. Metric TSP was found to be strongly NP-
hard [7]. Related to, but distinct from, the Euclidean TSP is the 
planar graph TSP which is the focus of our research. This is the 
version of the TSP in which a planar graph G = (V, E) is given, 
with weights on the edges of E, and one seeks the minimum 
cost tour which uses only edges in E. Not only is this problem 
NP-hard, it is NP-hard even to test if a planar graph is 
Hamiltonian [7]. 

There is a multitude of planar TSP solution algorithms; few 
are exact algorithms, and many are heuristic algorithms. Since 
planar TSP is NP-hard, exact algorithms are exponential and 
heuristic algorithms are polynomial; selecting between exact or 
heuristic algorithms to solve for TSP presents a clear case of 
precision and time trade-off. 
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Fig 1. Newsweek Coverage of 49-City Tour through United States [5]. 

B. Exact Algorithms 

Branch-and-bound algorithm is an exact algorithm based 
on the IP formulation of TSP. This algorithm consists of two 
steps, (a) branching, which means splitting the problem into 
sub-problems, and (b) bounding, which means calculating 
lower and/or upper bounds for the objective function value of 
the sub-problem. The branching is performed in the following 
algorithm by separating the current subspace into two parts 
using the integrality requirement. Using the bounds, 
unpromising sub-problems can be eliminated. LP-relaxation of 
the problem is formed by relaxing integer requirements. In the 
algorithm, a list of sub-problems is maintained. A sub-problem 
is fathomed (totally solved) and removed from the list only 
when it has an integer solution that is best so far and becomes 
the new incumbent solution, or its optimum LP-solution 
objective is worse than the current incumbent value, or its LP-
problem is infeasible. 

Held-Karp algorithm is a dynamic programming algorithm 
utilizing graph theoretical representation of TSP. In a way, it is 
an intelligent brute force method in that it utilizes recursive 
formulation to find minimal distance paths between points. It 
was proposed independently by Bellman [6] and by Held and 
Karp [8]. This algorithm utilizes an optimization property of 
TSP in that every sub-path of a path of minimum distance is 
itself of minimum distance, which is easily proven by 
contradiction. The algorithm computes the solutions of all sub-
problems, starting with the smallest, and looks up solutions 
already computed when requiring solutions for smaller 
problems. At the end, computing minimum distance tour 
means using the final equation to generate the initial node, and 
then repeating for all other nodes. Held-Karp is exhaustive, in 
that all sub-problems need to be solved; it has the time 
complexity of O(2nn2) and the space complexity of O(2nn). 

C. TSP Heuristics 

In simplest terms, TSP heuristics can be divided into two 
distinct categories. Tour construction heuristics execute a 
sequence of operations until a valid tour is obtained, at which 
point the heuristics stop and report the constructed tour. Tour 
improvement heuristics start with a valid tour (an output of a 
tour construction heuristic, for example) and iteratively 
improve the tour cost, typically via local search, until some 
stopping criterion is reached [5]. Solution quality of tour 

improvement techniques far exceeds quality of solutions 
achieved by tour constructions [5]. 

Nearest Neighbor heuristic is perhaps the best-known tour 
construction heuristics [9]. It starts with a random city, adds the 
nearest non-visited city, and keep adding new non-visited cities 
in the same fashion until all cities are included. When all of the 
cities are included it returns to the initial city. It has the time 
and the space complexity of O(n2) and O(n), respectively [10]. 

Greedy heuristic gradually constructs a tour by repeatedly 
selecting the shortest remaining edge and adding it to the tour 
as long as it does not create a cycle with less than n edges nor 
increase the degree of any node (city) to more than two [10]. 
Greedy heuristic has the time complexity of O(n×log2n), which 
makes it more efficient than Nearest Neighbor [10]. The space 
complexity of Greedy matches that of Nearest Neighbor 
heuristic [10]. 

Cheapest Insertion heuristic starts with the shortest edge 
which becomes the initial sub-tour. Then it selects a city not in 
the current sub-tour, having the shortest distance to any one of 
the cities in the sub-tour. It finds an edge in the sub-tour such 
that the cost of inserting the selected city between the edge 
cities will be minimal, and keeps inserting shortest-distance 
remaining cities until none remain. Cheapest Insertion has the 
time complexity of O(n2×log2n) and is more computationally 
intensive then Nearest Neighbor and Greedy [11]. 

Convex Hull heuristics starts by finding the convex hull of 
a point set and making it an initial sub-tour. For each remaining 
point it finds its cheapest insertion, adds the city with the least 
cost/increase ratio, and keeps repeating this process with 
remaining points until none remain. It is also more 
computationally intensive with the time complexity of 
O(n2×log2n) [12]. 

Christofides heuristic builds a minimal spanning tree 
(MST) of the planar point set. It then creates a minimum-
weight matching (MWM) on points having an odd degree, adds 
the MST together with the MWM, creates an Euler cycle from 
the combined graph, and finally traverses it taking shortcuts to 
avoid already included points. This heuristic has the best worst-
case performance guarantee of all TSP heuristics as it never 
produces tours worse than 1.5 times the optimal [13]. On the 
other hand, it has the time complexity equal to O(n3) [13]. 

Match-Twice-and-Stitch heuristic [14] uses two sequential 
minimum-weight matchings to construct the cycles. The first 
matching returns the usual minimum-cost edge set with each 
point incident to exactly one matching edge. The second 
matching returns the minimum-cost edge set with each point 
incident to exactly one matching while ignoring the edges 
found in the first matching. The first phase results in multiple 
sub-tours. The second phase stitches the constructed cycles to 
form the TSP tour, with the exact (slow) and approximate (fast) 
patching procedure to join two cycles. A minimum spanning 
tree (MST) calculation determines a way to stitch all cycles 
into a tour. It is the best construction heuristics reported, with 
the different versions of the heuristic reporting average tour 
lengths between 4.8% (slowest) to 7.1% (fastest) over HK 
bound. It has the time complexity of O(n2) [14]. 
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Tour improvement algorithm such as 2-opt removes two 
edges from the feasible tour and reconnects the two paths 
created if the new tour will be shorter. There is only one way to 
reconnect the two paths and still have a valid tour. It continues 
removing and reconnecting the tour until no 2-opt 
improvements can be found. Algorithm works the same for any 
path connecting k points, however the time performance 
severely lags starting at 5-opt. Its worst-case performance 
guarantee is known, as it is guaranteed to produce results not 
more than two times the optimal [10]. The main weakness of 
the 2-opt tour improvement heuristic is that it covers local 
improvements for pairs of 2 nodes only. This was subsequently 
addressed in newer k-opt algorithms, where k > 2, chief among 
them the Lin-Kernighan heuristic with the time complexity of 
O(n2.2) [10]. 

Solutions generated by TSP heuristics are typically 
compared to the Held-Karp (HK) lower bound. This lower 
bound is the solution to the LP relaxation of the IP formulation 
of the TSP, which can be found in polynomial time by using 
the Simplex method and a polynomial constraint-separation 
algorithm [15]. A HK lower bound averages about 0.8% below 
the optimal tour length [15]; however, its guaranteed lowest 
bound is only 2/3 of the optimal tour. Fig. 2 summarizes 
typical performance of the most-significant TSP heuristic 
algorithms. 2-opt, 3-opt, and Lin-Kernighan heuristics are the 
tour improvement heuristics, and all of the others are tour 
construction heuristics. 

 

Fig 2. Typical Performance of Best-known Heuristics [10], [14]. 

III. OUR APPROACH 

A.  Improved Greedy Compact Triangulation (iGCT) 

iGCT of a planar point set S is created by GCT Algorithm 
[4]. This algorithm progressively inserts most-compact empty 
triangles into the triangulation not intersecting empty triangles 
in S previously inserted and achieves local optimality by 
performing weight-reducing edge flipping [4]. Compactness of 

an empty triangle T with area A(T) and perimeter P(T) in 
planar point set S is measured as follows [16]: 

CI(𝑇)  =
4𝜋𝐴(𝑇)

[𝑃(𝑇)]2              (1) 

Dodig and Smith showed that GCT approximates 
Minimum Weight Triangulation (MWT) in a variety of planar 
point set configurations, thereby making its edges compelling 
candidates for our proposed TSP heuristic [4]. MWT is defined 
as the full triangulation of a planar point set S having the 
lowest total edge length out of all full triangulations of a planar 
point set S. Dodig and Smith have also confirmed that the 
optimal TSP solution is frequently fully embedded in iGCT 
(61% of the time), and that the minimum perimeter polygon 
fully contained in iGCT is nearly optimal, or 0.36% longer 
than optimal. Fig. 3 shows full embeddedness of the optimal 
TSP tour in iGCT for berlin52, one of the TSPLIB problems 
for which the optimal TSP is known. 

B. Apple Carving Algorithm 

There are 2n - h - 2 triangles in both iGCT and MWT 
triangulations of a planar set S of n points, where h represents 
the number of points on the Convex Hull of S, or CH(S) [16]. 
We know that the perimeter length of CH(S) is less than the 
perimeter length of TSP polygon for this planar point set due to 
Isoperimetric Inequality principle. Following Steiner proof of 
Isoperimetric Inequality, we can “carve out” from CH(S) a 
triangle on the perimeter of full triangulation with the lowest 
Triangle Inequality Factor and have high degree of confidence 
that minimum perimeter polygon is still fully contained in the 
resulting partial triangulation. We can continue carving out 
eligible triangles with the lowest Triangle Inequality Measure, 
until all points are at the perimeter of the partial triangulation. 
We give priority to removing triangles whose absolute Triangle 
Inequality, or TI, is not only lowest, but also “optimal”. 
“Optimal” TI on any point is defined as the lowest TI of all 
triangles containing this point. We consider this method to be 
the basis of the “apple carving” algorithm. In fact, this method 
is very similar to the Convex Hull heuristics, through Convex 
Hull Heuristics does not follow a pre-defined tour building 
roadmap such as the one provided by the compact triangulation 
[12]. “Apple carving” algorithm pseudocode is given in Fig. 4. 

 

Fig 3. Optimal TSP (Shaded) Fully Contained in GCT for berlin52 Problem 

[4]. 
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INPUTS 

 

1. Planar point set S with n points; S has h points on CH(S). 

2. iGCT(S) with 2n – h – 2 triangles; each Triangle(a, b, c) and Edge(a, b) in iGCT satisfies a ≤ b ≤ c 

BEGIN Apple Carving Algorithm 

 

        1. Initialize variables 

        2. Import point coordinates 

        3. Initialize iGCT 

                FOR each triangle i in iGCT 

                        SimpleTriangle(i) := Triangle(a, b, c) 
                        CountTriangles(a) +=1; CountTriangles(b)+=1; CountTriangles(c) +=1 

                        IF TIA (a, SimpleTriangle(i)) < min_TI (a) THEN 

                             min_TI(a) := TIA(a, SimpleTriangle(i)) 
                        ENDIF 

                        CountEdges(a,b) += 1; CountEdges(a,c) += 1; CountEdges(b,c) += 1 

                        Apple ← SimpleTriangle(i) 
                NEXT i 

        4. Initialize Candidate List 

                FOR each Edge(a, b) 
                        IF CountEdges(a, b) = 1 THEN 

                                CandidatesList ←  Edge(a, b) 

                                VisitedCities ← a, b  
                                TourLength += Distance(a, b) 

                        ENDIF 

                NEXT 

        5. Carve triangles from Polygon (Apple) 

                change_recorded := 1 

                WHILE VisitedCities < n AND change_recorded == 1 
                        change_recorded := 0 

                        Let k be the index of a triangle containing the candidate edge Edge(a, b) such that: 
                                a) CountTriangles(a) > 1 AND CountTriangles (b) > 1 AND CountTriangles(c) > 1, 

                                b) Min_TI(c) == TIA(c, SimpleTriangle(k)) 

                                c) SimpleTriangle(k) == Triangle(a, b, c) with the min_TI(c) for all triangles satisfying a) and b) 
                        IF SimpleTriangle(k) doesn’t exist THEN 

                                Let k be the index of a triangle containing any candidate edge Edge(a,b) such that: 

                                        d) CountTriangles(a) > 1 AND CountTriangles(b)>1 AND CountTriangles(c) > 1, 
                                        e) SimpleTriangle(k) = Triangle(a, b, c) with the lowest TIR(c, SimpleTriangle(k)) for all triangles 

                                            satisfying d) 

                        ENDIF 
                        Apple → SimpleTriangle(k) 

                        CandidatesList ← Edge(a,c), Edge(b,c) 

                        CandidatesList → Edge(a,b) 
                        CountTriangles(a) -= 1; CountTriangles(a) -= 1; CountTriangles(a) -= 1 

                        VisitedCities ← c 

                        TourLength := TourLength - Distance(a, b) + Distance(a, c) + Distance(b, c) 
                        VisitedCities += 1; change_recorded := 1 

                WHILE END 

        6. Correct infeasibility conditions (if any) 

                IF VisitedCities < n THEN 

                        FOR each point c NOT in VisitedList 

                                Let a and b be points in S such that  
                                        f) Edge(a,b) is in CandidatesList, 

                                        g) Triangle(a,b,c) has the lowest TIA(c, Triangle(a,b,c)) for any pair of points a and b satisfying f) 

                                VisitedCities ← c 
               CandidatesList ← Edge(a,c), Edge(b,c) 

                                CandidatesList → Edge(a,b) 

                                TourLength = TourLength - Distance(a, b) + Distance(a, c) + Distance(b, c) 

                                VisitedCities += 1 

                        NEXT c 

                ENDIF 

        7. Record the polygon tour 

                FOR each Edge(a, b) in CandidatesList 

                        Predecessor(b) := a 
                NEXT 

 

END Apple Carving Algorithm 

 

Fig 4. Apple-Carving Algorithm Pseudocode.
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C. Measure of Sub-optimality 

We define 𝜀𝑃′′
𝐴 (𝑠) as the absolute deviation (from the 

optimal TSP) of the perimeter length of the polygon found via 
“apple carving” algorithm, and express it mathematically as 
follows: 

𝜀𝑃′′
𝐴 (𝑠) =

𝑃𝐿(𝑃′′(𝑆)))−𝑃𝐿(𝑇𝑆𝑃(𝑆))

𝑃𝐿(𝑇𝑆𝑃(𝑆))
× 100%, ∀𝑆 𝑖𝑛 𝑅2 (2)

Where S is a given point set, and P’’ is the Hamiltonian 
cycle found by the “apple carving” algorithm. 

D. Time Complexity 

Theorem 1 The time complexity of the “apple-carving” 
algorithm is O(n2). 

Proof: Step 2 of the “apple carving” algorithm has the time 
complexity of O(n), since in this step we initialize arrays of n 
points. Step 3 of the “apple carving” algorithm has the time 
complexity of O(n), as we also know that there are O(n) 
triangles in a full triangulations of a planar point set S of n 
points [16]. Step 4 of the “apple carving” algorithm loops 
through no more than n candidate edges, and therefore has time 
complexity of O(n). Step 5 of the “apple carving” algorithm 
removes up to n – h triangles from iGCT. In each removal step, 
we evaluate up to 2n – h – 2 candidate triangles that can be 
removed. This guarantees time complexity of O(n2) for Step 5. 
Step 6 of the “apple carving” algorithm has time complexity of 
O(n2). We know this because there are not more than n points 
that need to be evaluated against up to n candidate 
edges/triangles. Finally, step 7 of the “apple carving” algorithm 
assigns predecessors for each of n points in S by looping 
through not more than n edges in the candidate lists, 
guaranteeing the time complexity of O(n). 

This proves that the time complexity of the “apple carving” 
algorithm is 4O(n) + 2O(n2) = O(n2).                            

Theorem 2 The time complexity of the “apple-carving” 
algorithm and iGCT algorithm together is O(n4). 

Proof: Time complexity of the stand-alone “apple carving” 
algorithm is O(n2). Dodig and Smith proved that the time 
complexity of the iGCT algorithm is O(n4) [4]. 

This proves that the time complexity of the “apple carving” 
algorithm is O(n2) + O(n4) = O(n4).                                          

E. Space Complexity 

Theorem 3 The space complexity of the “apple-carving” 
algorithm is O(n). 

Proof: Number of points in a planar point set S is defined 
as n. The number of triangles in any full triangulation of S is 
known to be 2n – h – 2, where h is the number of points 
belonging to CH(S) [17]. The number of edges in any full 
triangulation of S is known to be 3n – h – 3, where h is the 
number of points belonging to CH(S) [17]. This implies that 
the variables in “apple carving” algorithm tracking both visited 
cities and candidate edges cannot have the space complexity 
greater than O(n). 

This proves that the space complexity of the “apple 
carving” algorithm is O(n).                                                         

IV. EXPERIMENTAL METHODOLOGY 

A. Objective 

Our experimental objective was to test the validity of the 
proposed tour construction algorithm experimentally by 
analyzing how well the length of the resulting Hamiltonian 
cycle approximates the length of the optimal TSP. 

B. Hypothesis 

We hypothesize that the “apple carving” algorithm will 
outperform the traditional Convex Hull algorithm. We further 
hypothesize that the “apple carving” algorithm will outperform 
most of the traditional tour construction heuristics. 

C. Data Sets 

To perform our experiments, we selected 18 problem sets 
from TSPLIB, a well-known online problem library created to 
provide researchers with a broad set of test problems from 
various sources and properties for which the optimal TSP 
solutions are known [18]. We have chosen 11 problem sets 
which are given with points in general position (att48, 
berlin52, ch130, eil51, eil76, eil101, gr96, gr137, rat99, 
rat195, rd100). This was important as point sets in general 
position do not have 3 or more co-linear points. We have also 
chosen 7 problem sets with a significant number of co-linear 
points (lin105, pr76, pr107, pr124, pr136, pr144, u159). This 
was done to test performance of our framework in both point 
set configurations. 

D. Programming 

To achieve our experimental objectives we have 
programmed iGCT Algorithm in VBA for Excel. This 
algorithm takes a planar point set as an input, and produces a 
Hamiltonian cycle of S as an output. It also calculates the 
length of P’’ found by “apple carving” algorithm in order to 
compare to the optimal TSP lengths for each of the problems in 
our problem set. All of our experiments were performed on 
Latitude 5490 laptop with Intel Core i5-8250U CPU @ 
1.60GHz with 8GB of RAM, running Windows 10 64-bit 
operating system. 

V. RESULTS 

Experimental results for 18 given problem sets can be 
found in Table I. 

On average, polygons produced by the “apple carving” 
algorithm in our test problems are 8.1% longer than optimal 
TSP solutions. For gr137 problem, the absolute error is the 
lowest at 1.9%, and for pr124 problem, the error is the highest 
recorded at 15.9%. If we exclude point sets of 3 or more co-
linear points, the absolute error drops to the average of 6.1%, 
with the maximum error recorded for ch130 problem at 11.2%. 
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TABLE I.  EXPERIMENTAL RESULTS 

Set S TSP P’’ 𝜀𝑃′′
𝐴

 
Co-

linear 

1 att48 108,159 118,702 9.8%  

2 berlin52 7,544 7,711 2.2%  

3 ch130 6,111 6,793 11.2%  

4 eil51 430 453 5.3%  

5 eil76 545 578 5.9%  

6 eil101 642 701 9.2%  

7 gr96 512 534 4.3%  

8 gr137 729 743 1.9%  

9 lin105 14,383 15,207 5.7% Yes 

10 pr76 108,159 112,152 3.7% Yes 

11 pr107 44,301 49,653 12.1% Yes 

12 pr124 59,030 68,069 15.3% Yes 

13 pr136 96,770 108,573 12.2% Yes 

14 pr144 58,535 67,867 15.9% Yes 

15 rat99 1,219 1,265 3.7%  

16 rat195 2,333 2,517 7.9%  

17 rd100 7,910 8,426 6.5%  

18 u159 42,075 47,354 12.6% Yes 

VI. CONCLUSIONS AND NEXT STEPS 

We have introduced a simple algorithm that takes a full 
triangulation (iGCT) of a planar point set and reduces it to a 
simple polygon by removing triangles with low Triangle 
Inequality Measure starting from triangles on the convex hull 
of this point set. We have proved that the time complexity of 
the “apple carving” algorithm is O(n2). We have also shown 
that the space complexity of the algorithm to be O(n). We have 
then demonstrated that, on average, polygons produced by this 
“apple carving” algorithm in our test problems are 8.1% longer 
than optimal TSP solutions. If we exclude point sets of three or 
more co-linear points, the absolute error drops to the average of 
6.1%, with the maximum error recorded at 11.2%. 

Based on these results and our literature review we 
conclude that “apple carving” algorithm produces better quality 
of solutions than any other construction heuristics other than 
match-twice-and-stitch heuristic, as evident in Fig. 5. Here it is 
important to note that the “apple carving” average results have 
been adjusted up by 0.8%, since HK lower bound is on average 
0.8% lower than the optimal TSP solution [15]. 

Our initial research hypothesis that the “apple carving” 
algorithm will produce results superior to that of the classical 
Convex Hull Algorithm were met (9% average error for “apple 
carving” versus 12% average error for Convex Hull algorithm). 
We were also able to demonstrate that the “apple carving” 
algorithm performs significantly better than all the classical 
tour construction heuristics and is only slightly outperformed 
by Match-twice-and-stich heuristic introduced in 2004 [14]. 

 

Fig 5. Typical Performance of Cited Heuristics over HK Lower bound 

(Including “Apple Carving” Algorithm Results). 

Limitations in our work lie in the number of TSPLIB 
instances we used (i.e. 18 problems), as well as in the relatively 
small problem sizes employed (i.e. maximum of 195 points). 
To improve quality of our experiments we intend to expand our 
tests to all named TSPLIB instances, which will also allow us 
to compare how our algorithm performs on problems of 
varying size. 

Finally, our future work will focus on fine-tuning the 
“apple carving” algorithm and adding the improvement steps 
of switching the relevant triangles in and out of the solution 
polygon depending on whether adding or removing related 
triangle pairs will result in desired tour improvements. Triangle 
pairs would be relevant and suitable for “swapping” in and out 
of the resulting polygon if the share at least one point, and their 
“swap” would not result in a loss of solution feasibility. 
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