
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

155 | P a g e  

www.ijacsa.thesai.org 

WoT Communication Protocol Security and Privacy 

Issues 

Sadia Murawat1, Fahima Tahir2, Maria Anjum3, Mudasar Ahmed Soomro4 

Saima Siraj5, Zojan Memon6, Anees Muhammad7, Khuda Bux8 

Department of Electrical Engineering, Lahore College for Women University Lahore, Pakistan1 

Department of Computer Science, Lahore College for Women University, Lahore, Pakistan2, 3 

Department of Information Technology, Quaid-e-Awam University of Engineering4, 5 

Science and Technology, NawabShah, Pakistan4, 5 

Department of Information Technology, University of Sufism and Modern Sciences, Bhitshah, 70140, Pakistan6, 7 

Riphah Institute of Systems Engineering, Riphah International University, Islamabad, Pakistan8 

 

 
Abstract—In this paper, we have proposed a novel approach 

for the prevention of the Internet of Things (IoT) from fake 

devices and highlighted privacy issues by using third party 

Application Program Interface (RestAPI) in Web of Things 

(WoT). For the ease of life, the usage of IoT devices, sensors, and 

Radio-Frequency Identifications (RFIDs) increased rapidly. Such 

as in transport for monitoring vehicles, taxi services, healthcare 

for patient’s health condition monitoring, smart cars, smart 

grids, and smart homes, etc. Due to this for financial gain 

attackers are targeting these networks or protocol and 

adversaries are trying to damage the reputation of the 

organization or to steal intellectual property. From the last two 

decades or more, the injection vulnerabilities are more 

threatening security risks for the web application still exists. The 

new security challenges occur for the security professional or 

security researchers in the form of IoT or WoT (Web of Things) 

communication protocols implementation. These protocol 

Message Queuing Telemetry Transport (MQTT), Constrained 

Application Protocol (CoAP), WebSockets, and RestAPI have a 

different type of security issues. Respectively insertion of fake 

devices, authentication is not implemented in WebSocket 

connections, and user’s privacy can be leaked with the use of 

RestAPI without its validation. We have developed a program in 

Personal Home Pages (PHP) for the detection of new devices in 

the IoT network. With this, the user’s privacy and data will be 

protected along with some critical security issues of WoT 

underlying protocols. 

Keywords—Internet of Things; Web of Things; WoT; security 

issues; privacy issues; protocols MQTT CoAP 

I. INTRODUCTION 

As the IoT devices usage is growing rapidly day by day for 
the easiness in today’s busy life. These devices are used in 
different areas such as at the motorways for vehicle 
monitoring, auto fines for law violations, healthcare systems, 
smart cities, smart grid stations, cab services, and cargo 
services, etc. These devices or sensors have constrained low 
computational power, low power storage, and heterogeneous. 
There is a need fora standard for communication between these 
devices and secure protocols. Too many organizations are to 
develop the standard communication protocol for 
interoperability between heterogeneous IoT devices one of 
them is the World Wide Web Consortium (W3C) working 

group has developed WoT Metadata Thing Descriptive (TD). 
With the existence of different types of interaction protocols, 
software development languages, and information patterns 
which creates more complexity with the increasing cost of IoT 
devices configuration and interoperability [1]. Another end is 
creating great benefits for too many high-profit gains in the 
form of smart grid stations, smart homes, and smart cities with 
implementation of security devices which are estimated more 
than 10 billion dollars from smart homes only [2]. 

For the financial gains, user’s information theft, and to 
damage the reputation of organization the attackers are 
targeting the IoT devices or weakness of WoT communication 
protocols. There are too many types of communication models 
in a few of them are using web services standards such as 
RestfulAPI which is a client-server based model, the second 
method is used messaging of publishing and subscribe [3]. The 
WoT provides the facility to use old, current, and newly 
created tools and methods on the websites for the development 
of IoT devices with different application usage. With the help 
of WoT, the interconnection between Things is easier than 
before. The low-level protocol difficulties can be overcome 
with the use of web application technologies. Such as 
Hypertext Transfer Protocol (HTTP) and WebSocket would be 
used for the IoT devices. And the developer can develop an 
application that can communicate with IoT devices in the same 
method as for web services such as RestAPI for payment 
gateways or mobile applications. With the use of these 
functionalities, the devices can be accessed from anywhere via 
the Domain Name Server (DNS). But this method also needs a 
built-in web server within a constrained network of IoT devices 
[4]. This WoT architecture does not describe the 
implementation of the communication method between these 
Things, but this has simplified the deployment of IoT software 
applications [5]. Another advantage of this the interfaces and 
working of Things are explained very well, due to this the 
information collected from big data cloud and installation of 
different vendor’s devices with their monitoring has been made 
with low cost and administrative efforts. But this easiness and 
interoperability between heterogeneous devices, the existing 
security issues have not been eliminated. At the top of all the 
web application security issues such as Structured Query 
Language (SQL) injection, Cross-site Scripting attacks, session 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

156 | P a g e  

www.ijacsa.thesai.org 

hijacking, integrity issues of information, click hijacking, link 
redirections, and usage of third party Application Program 
Interface (APIs) with well-known vulnerabilities, etc. Along 
with these security issues the new problems have occurred with 
the use of MQTT, WebSocket and CoAP communication 
protocols between webservers and these devices. Like 
WebSocketis not supporting the authentication method for 
communication. If an attacker can get information regarding 
sensors and webservers are communicating via WebSocket and 
their parameters. Then he can insert his own devices on that 
targeted network and capture the useful information or he can 
perform Denial of Service (DoS) attack by creating too many 
fake connection requests on that targeted network. Another 
protocol the MQTT has too many security issues such as 
authentication, authorization, confidentiality, and integrity. 
Because this protocol is designed for the low power processing 
devices to decrease the overhead of processing messages 
exchange between devices. As the MQTT protocol is used with 
the applications for process messages incorrectly, some critical 
security issues can occur like as fake devices insertion, DoS 
attack, or remote code execution attack [6]. The third one is the 
CoAP protocol which works at the application layer and 
similar to HTTP for the compatibility of current web 
applications. For the efficient performance, enhancement, and 
low overhead of some critical operations on low power-
constrained devices the proxies are used by this protocol. For a 
secure version of CoAP such as Secure Socket Layer/Transport 
Layer Security (SSL/TLS) for HTTPS, the Datagram Transport 
Layer Security (DTLS) protocol is used for communication 
which is known as CoAPs protocol [7]. But the security of 
DTLS can be breached as its communication finished at 
proxies [8]. As the proxies have the functionality of packet 
holding, replay messages, and manipulation of messages 
between end-users and servers. Due to this the Man-in-the-
Middle (MITM) attack or DDoS attack can be performed by 
compromising the security of proxy. So in this paper, we will 
focus on the prevention from the fake devices on the IoT 
network that is using WoT. The automated program for the 
detection of fake devices or insertion of any new devices 
within an IoT network. 

The reset of paper is divided as follows: Section 2 will 
describe the related work done in this area. In Section 3 the 
WoT architecture model will be discussed. Section 4 we will 
discuss the security issue of the protocol used under the 
umbrella of WoT for heterogeneous IoT devices. In Section 5 
the proposed solution will be described for the prevention of 
fake devices. In the last Section 6, this paper will be concluded. 

II. RELATED WORK 

In the late first decade of the 21st century, the WoT was 
proposed by the scholar in research, from their onwards too 
many research work has been done. How to connect these 
heterogeneous IoT devices with existing web application 
protocols? With these efforts the WoT architecture and 
frameworks have been developed, those where changed in the 
form of the WoT communication methods and working 
prototypes defined [9]. The usage of RestAPI has been 
proposed as a good solution for WoT-based communication 
services [10]. The author [11] have suggested the framework 
which is known as WoT STORE for allowing upload and 

discovery of applications used for the W3C-compatible Things. 
This framework supports two types of applications such as 
Thing Application (TA) for the facilitation of deployment the 
Thing action detail by their TD, and Mashup Applications 
(MA) activating the connections and information extraction 
from a different type of Things. Similar to the HTTP protocol 
the CoAP architecture has been proposed by a scholar with 
proxies for better performance [12]. The method has been 
developed that is known as Thing discovery, which is used for 
the division of two sub-issues like as indexing of resources and 
finding those resources on the search base with keywords or 
content [13]. To overcome the issue of finding resources the 
decentralized device discovery method has been added into the 
CoAP protocol on multicast-based communication [14], which 
has only functionality of named-based finding. The scholar 
mainly discussed the security of devices as the main part of 
that area and considered the layer as secure which is similar to 
the Transmission Control Protocol/Internet Protocol (TCP/IP) 
protocol that consists of security systems and techniques for 
the IoT networks [15]. Another scholar has proposed a solution 
for confidentiality as the main feature [16] which deals with 
devices have less processing power should use asymmetric 
cryptographic algorithms for the authentication process. And 
this process requires less processing power for this new method 
of authentication which is based on the function of hashing or 
OR operations. 

For finding out any default protocol settings the new tool 
has been proposed which are known as SecKit [17] and it is a 
chain of security toolkit process-based. This tool only tries to 
implement few security policies against the default 
configuration of the MQTT protocol. To find the 
vulnerabilities in applications the fuzzing method of testing is 
used [18] in this process wrong values are inserted into input 
data fields for targeted applications and after that, these are 
monitored for their outcomes. The fuzzing is further divided 
into two main types [19]: mutation-based and generation-based 
fuzzing. In mutation-based, the testers are using the mutation 
method on current information samples for creating test cases. 
In the second type, the test cases are generated from the start 
for the selected protocols or file formats. The author [20] have 
used the mutation-based fuzzing for the security testing of 
applications which are using the MQTT protocol. As per the 
author to decrease the effort and time for testing the security of 
the application this method has been selected as compared to 
the complex process of generation-based fuzzing. This process 
is focused only on the MQTT protocol application security. 
The author [21] has developed a Snap4City IoT framework 
which works on MQTT over TLS. But this protocol has still 
two main issues first: The MQTT client should work with 
Transmission Control Protocol (TCP) and the connection 
should remain active at all times with its broker. Second: the 
MQTT contain long characters of string names which may not 
be supported by all IoT device in that network. Too many 
techniques have been developed already for decreasing the 
overhead of DTLS headers. One of them is the 6LoWPAN [22] 
method has been suggested for compressing the Headers to 
decrease the overhead of DTLS for the CoAPs. Another author 
said that the DTLS header compressing may create an issue for 
the security bits of CoAPs. The same as the compressing 
method has been applied [23]. For the improvement of a 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

157 | P a g e  

www.ijacsa.thesai.org 

handshake between two parties for authentication, digital 
certificates are used along with DTLS. But this certificate-
based authentication considered not a practical approach for the 
low processing power IoT devices. The researcher [24] has 
defined that the DTLS is not a good option for the CoAP due to 
the usage of proxy and at the development time this protocol 
was not designed for the low processing power devices. As the 
DTLS uses six messages for the connection which is not ideal 
for the resource-constrained devices. The authors have 
suggested the heavy processing should be offloaded for the 
trusted gateways which are suing the DTLS handshaking based 
on digital certificates for the IoT devices [25]. The in-line 
security suites implementation is also known as radio security 
suites which facilitate the full security stack. The author [26], 
has added in his in-line security functions for cryptographic 
processes. As per standard body (IETF) [27], the WebSocket 
have not a method of authentication and for secure 
communication. The WebSocket protocols are using the frame-
masking technique to prevent proxy cache poisoning attacks, 
but due to this process security firewalls and sandboxes are 
unable to detect any malicious data in WebSocket connections 
[28]. The WebSocket is allowing connection requests to any 
host and for any TCP port connection request also. By 
exploiting this functionality, the attacker has to just apply the 
process of port scanning and network scanning for the 
organization's local area network for creating a connection 
request with the targeted user [29]. When the attacker can run 
subjective JavaScript code inside the internet browser, he is 
likewise ready to start a WebSocket association with 
discretionary assistance. After this, the aggressor can use the 
current WebSocket channel to control the internet browser 
progressively inside the points of confinement of JavaScript 
[30]. As per our study a lot of work has been done regarding 
the WoT underlying protocols security but not for the insertion 
of the fake device in IoT network. So we have worked in this 
area with an automated program developed in NodeJS for 
detection of any new IoT devices in-network and that will 
generate an alert to a system administrator. 

III. WOT ARCHITECTURE MODEL 

A. Maintaining the Integrity of the Specifications 

For the communication between heterogeneous IoT 
devices, the W3C has designed the WoT model [31]. This 
communication will take place without any consideration of 
which type of current stack and network protocol is in use. For 
the detection of different types of IoT network communication 
interfaces, the WoT TD and metadata patterns have been 
developed. The devices using a WoT runtime and a WoT 
scripting API which normalizes the communication between 
different devices at the same layer can define the network 
interfaces of current devices or create new interfaces with the 
help of TD. It moreover supports semantic explanations 
dependent on connected information [32] supporting incredible 
hunt and inferencing capacities. The WoT architecture has 
given three main sections those can be categorized in different 
configuration and technologies as per requirements of 
installations at site. The overview of the WoT architecture 
model is shown in Fig. 1. 

 

Fig 1. WoT Architecture Model. 

B. Thing 

Application software which may be defined as physical or 
virtual IoT devices for the communication interface of the 
network RestAPI. Every Thing is interrelated with the TD [33]. 
The Thing configuration details, connection types, 
communication methods, and security settings will be encoded 
into the TD metadata tag. The WoT Thing works as a server 
for the networks that only respond to the request but do not 
start communication itself. Such as a Thing can be a house 
main gate or electricity controller. That controller may have too 
many functions for communication which can be operated on 
that house main gate, for example, to open the door or close it 
and that may provide communication interfaces with the 
network to activate these functions. 

C. Thing Description 

An object runs on WoT is known as TD and it activates the 
communication with their network interfaces. The WoT TD is 
developed in machine language syntax which gives power to 
clients for discovery and finds out the functionalities of Things. 
With these facilities, it is deployed in too many ways as 
communicate with Things and that will enable communication 
across the IoT devices. Such as, it may be a web browser or 
any web application or mobile app on client mobile phone 
which allows them to activate the communication for given 
house main gate or electricity controller. The TD supports 
classic JavaScript Object Notation (JSON) libraries or 
JavaScript Object Notation for Linked Data (JSON-LD) 
formats for processing as an information model. The utilization 
of a JSON-LD processor for handling a TD moreover 
empowers semantic preparing including the change to 
Resource Description Framework (RDF) significantly 
increases, semantic induction and achieving assignments given 
dependent on ontological terms, which would cause Clients to 
carry on increasingly independent. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

158 | P a g e  

www.ijacsa.thesai.org 

D. WoT Gateway 

An object is considered as the client-server setup and it is 
also known as Servient. It gives single or more WoT Thing 
interfaces as a server and it will function as a client also for 
activating communication with other WoT. The WoT gateway 
provides single or more TDs and related protocol binding 
processes. This binding process will be started with the TD for 
specific IoT protocol, like ass HTTP, WebSocket, MQTT, and 
CoAP. The WoT Runtime and WoT Scripting RestAPI all are 
hosted at the gateway. For the high-level programming 
languages (Java Scripting, NodeJS) the WoT scripting RestAPI 
are deployed for logical operations and this is optional 
functionality at this layer. Such as it may be a service running 
on gateway for the smart home and that gives the function of 
“door locking” services for house main gate, electricity 
management control, home security alarm with their network 
interfaces. 

IV. WOT PROTOCOLS SECURITY ISSUES 

For the easiness of life, the IoT has played a vital role such 
as for a healthy diet, daily workouts monitoring, patient health 
monitoring, cab services, vehicle tracking, and much more. By 
this usefulness, the industry has gain financial benefits which 
can be considered as the main advantage but at the same time, 
new security problems have occurred with this fast-growing 
field. As the high vulnerability security risks are already 
existing for web applications such as injection type of attacks, 
session hijacking, data manipulation and more are already 
defined in Section 1 of this paper. Underlying those security 
issues new problems have been occurring with the WoT 
protocols. Which are creating security issues for the user's data 
leakage or tempering and their privacy? 

A. MQTT Protocol 

The MQTT protocol operates at the application layer of IoT 
architecture which depends on applications. This protocol is 
most widely used for wireless networks and low power 
processing devices. Its communication is based on the publish-
subscribe technique (Fig. 2) and work with the low overhead of 
packet exchange between communicating parties. 

The MQTT protocol is customized for better performance 
to gather information at the center point and analyze 
interconnected IoT devices and smartphones for which 
applications are running on these devices for the datacenter. 
The smartphone apps are using the MQTT protocol for sending 
and receiving messages by utilizing an MQTT library. These 
messages are forwarded by the messaging server of MQTT. 
After this, the control of delivering messages is transferred to 
MQTT client and server for the smartphone apps and 
administration of network for little tasks. As the easy process 
of implementation and for used most popular applications such 
as Facebook using it in their chatting app, Amazon for their 
web services, and many more open source apps or tools are 
also using MQTT. But at the same time, it has some critical 
security issues that also should be fixed or prevented for the 
security of user data and privacy. Few of them are discussed 
are and we are focused on preventing fake device insertion on 
IoT network. As major security issues with MQTT, it does not 
support authentication by default and it can lead to masking 
any targeted user identification. By doing this an attacker can 

insert his device and transfer malicious information or capture 
user’s data. For this, we have proposed an automated program 
for the detection of any new device insertion in IoT network 
and that is explained in Section 5. 

B. CoAP Protocol 

The CoAP is also an application layer protocol that is used 
in low power processing devices, low storage of battery, and 
for the IoT networks with limited resources. It is based on a 
web application protocol model in which the request-response 
method is used. For the support of current web applications, 
this protocol has been designed as a copy of the HTTP 
protocol. And for the best performance, scalability, and 
decreasing overhead of more processing power-consuming 
operations on limited resource devices the proxies are being 
used in this protocol. The CoAPs is known as a secure version 
of CoAP and the DTLS is used in this version for the TCP 
layer to encrypt the traffic for two parties. The CoAP overview 
“Fig. 3” of deployment for the smart city devices or sensors. 

As we can see this network has used proxy for the 
interaction on traditional Internet and that can be compromised 
by an attacker or prone to cyber-attack. As the communication 
between two devices or client-server drops at the proxy, it can 
be captured by an attacker for any malicious intent such as 
forward fake information, monitor user activates, and spoof 
user devices and insert his own devices on this network. 

C. HTTP Protocol 

The HTTP protocol is also application layer protocol and 
the TCP handshake has been used for the connection 
establishment between client and server. This protocol works 
on the request-response method (Fig. 4) for transferring any 
data. 

 

Fig 2. MQTT Protocol. 

 

Fig 3. CoAP Protocol Overview. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

159 | P a g e  

www.ijacsa.thesai.org 

 

Fig 4. HTTP Protocol Basics. 

With the usage of TCP protocol, it can avail all benefits of 
this protocol such as message delivery authentication, flow 
control, delivery of messages in proper order, and prevention 
from congestion [34]. This issue might be probably the greatest 
obstruction in receiving the web protocols in the usage of WoT 
for an open IoT environment dependent on open principles. 
This web application protocol has too many types of security 
issues such as, click hijacking, injection attacks, third part APIs 
for known vulnerabilities, and exposing user data if these 
applications are using an old version of frameworks. 

D. WebSocket Protocol 

WebSocket is a protocol that communicates in two-way 
directions for the real-time application on TCP interactions 
(Fig. 5). As the WebSocket connection has been established 
between client and server after that they can sync their links to 
forward information. 

At the start of WebSocket development, it was proposed 
standard along with HTML5 WebSocket API. But now it is 
developed as a separate entity from HTML5 specs [35].  The 
WebSocket protocol is a network layer protocol and it is 
mainly developed for the web browsers and web servers but 
not limited to these applications it can be utilized in other 
required services also. The main source for the security of web 
services is Transport Layer Security (TLS) to scramble traffic 
and the same policies have been applied for the web browsers 
as a built-in feature. As we have already mentioned that the 
WebSocket protocol is different from HTTP so that it can 
shake the security of web applications. The WebSocket 
channel allows the attackers for a cache poisoning attack via 
transparent proxy. To prevent this attack, The WebSocket 
working group introduced the frame-masking technique. By 
doing this now firewalls are unable to detect the traffic due to 
frame-masking and that traffic can be legitimate or malicious. 
Another security issue with this protocol is it does not provide 
authentication or scrambling method for communicating 
parties [36]. Due to this disadvantage, an attacker can exploit it 
and insert his fake device for monitoring traffic or expose the 
privacy of users. 

 

Fig 5. WebSocket Communication Protocol. 

V. PROPOSED SOLUTION AND DISCUSSION 

There is a big challenge for the intercommunication 
between heterogeneous IoT devices such as sensors, RFIDs, 
smartphones, and tracking devices, etc. Currently, too many 
organizations are to develop a standard method for 
communication to share the required information between 
these devices. One of them is W3C have developed WoT 
architecture by their working group. They have followed the 
policy of do not reinvent the wheel use already developed 
protocols for the old and new devices. By doing this the cost of 
old device replacement will be saved along with administrative 
efforts. With this benefit of cost-saving and there will be no 
need to develop new tools and technologies for this rapidly 
growing IoT networks. At the same time, the too many types of 
security issues occur some of them are old ones and the new 
ones also. As authors [37] have used deep earning method for 
the detection devices on a network. For this they need already 
data set, images of those devices, and payloads of network 
transmission. But we are focused on the prevention of fake 
devices insertion in IoT networks. The program has been 
developed in PHP for the detection of the new device within a 
targeted network. With this, the user’s data and their privacy 
issues will be fixed along with the physical insertion of 
unwanted devices. 

A. A Function for New Device Auto Detection 

As the MQTT, WebSocket, and CoAP are more vulnerable 
to the insertion of fake devices because these protocols are not 
providing authentication by default. So for the protection of 
networks from fake devices, we have developed a program for 
the detection of new devices. The function is given in Fig. 6, 
will detect new devices as these are inserted. This function will 
get a Unique Identification Number from the connection 
request of that new device at a targeted network. 

After that this will look into databases is that already exists 
or not. If the record against that device already exists, then 
operations will be performed normally. If no record exists, then 
it will save all required information into databases. That new 
device connection request information will be saved into JSON 
encoder format regarding connection is established or not and 
this information will be used for future action against that 
device. 

B. Alert Generation Function 

As in the previous function, we have saved connection 
request information into a database and the same data has been 
saved into connection file in JSON format. This new device 
information will be forwarded to the administrator of that 
targeted network via email (Fig. 7). The administrator will be 
notified with Short Message Service (SMS) also (we have 
added dummy email addresses and phone numbers). This 
process has been applied for as much as quick action against 
that newly detected device. 

With this, we can decrease the damage of data security 
breaches and user’s privacy. In the current era this too much 
quick process of notification regarding any activity on the 
network to administrators. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

160 | P a g e  

www.ijacsa.thesai.org 

C. Log Collection and Storage Function 

The third function is regarding the storing of new devices 
connection request activity logs. This function is more 
important for the checking of any malicious activities and for 
tracking the footprints. The function will first look for the log 
file is exists or not. If the log file does not exist, then it will 
create a new log file for that new device on a system with a 
TXT format (Fig. 8). 

Furthermore, this will store all related information to a new 
connection of that device for future use. This will help a lot to 
the system administrator for the information regarding how this 
device has been added to the network and what are the 
intentions of an attacker. By these all action we can 
successfully block unwanted devices on our targeted IoT 
network. 

As in this program, the database has been created for the 
registered devices against their unique number (for example, 
which may be a serial number, MAC address, or other self-
generated unique for these devices). The unique number has 
been generated from e-tag number, vehicle number, and last 
year paid tax number. With this, we have blocked fake devices 
or any tampered e-tag on vehicles by looking into databases 
with the help of this program. 

 

 

Fig 6. Auto Detection Function for New Devices. 

 

Fig 7. Notification Function for Administrators. 

 

Fig 8. Log Gathering and Saving Function. 

VI. CONCLUSION 

As the security issues are increasing day by day for the IoT 
devices and with this, the industry is facing another issue of 
interoperability between these devices. Which have raised too 
many questions for the scholars, security professionals, and 
standard bodies in this area? So that back in 2007 the W3C has 
proposed framework with the name of WoT and its main 
architecture has been developed in 2017 and which is still in 
the development phase. It is a good framework for 
communication between heterogeneous devices. They have 
recommended no new protocols but suggested existing and 
already developed protocols such as MQTT, CoAP, HTTP, and 
WebSocket. These recommendations were for the current web 
technologies and web services like RestAPI. As web 
applications are facing too many critical security issues of 
injection, session hijack and much more. New security issues 
have been raised with the use of these IoT protocols. As the 
MQTT protocol does not provide an authentication method by 
default. Due to this weakness, an attacker can scan the network 
for this protocol and if he found it then easily impersonate his 
device to that targeted network. The CoAP is working similarly 
as HTTP does and uses proxies for good performance and 
usability. The secure version of CoAP is known as CoAPs 
which uses DTLS and these secure connections drop at a 
proxy. If that proxy server gets compromised then an attacker 
can do anything on that targeted network like break 
authentication, forward fake information, and insert his fake 
device. Another most widely used protocol is WebSocket for 
the sensors or RFID devices. This protocol also does not 
provide any authentication method due to this an attacker can 

$this->logNewDevice($uqid); // Save the new device connection is file 

                $this->notifySystemAdmin($uqid); // Notifying sytem admin 

about device connection 
            } 

            echo json_encode(array('success' => 1, 'response' => 'Device 

connection establised')); 
        } else { 

            echo json_encode(array('status' => 0, 'response' => 'Device did 

not recognised')); 
} 

    } 

  function checkDeviceRegistered($uqid)     { 
        $res = $this->db->from('devices')->where(array('uqid' => $uqid))-

>get()->row(); // Checking/Fetching in DB 

      if (!empty($res)) 
       return false; 

       else 

            return true;    
 } 

 

 
 

 

function registerDevice($uqid) 

    { 
        $this->db->insert('devices', array('uqid' => $uqid)); // 

Adding/Inserting new entery to DB 

   } 
function deviceConnection()    { 

$uqid = isset($_POST['uqid']) ? $_POST['uqid'] : ''; // Getting the 

Unique Identification number from request 
        if (!empty($uqid)) { 

            if ($this->checkDeviceRegistered($uqid)) { // Checking the device 

already registered in DB                // True 

                //Do something if device already registered 

 
                $this->logDeviceConnection($uqid); // Save the request in the 

file 

            } else {                 // False 
                //If device is not registerd this code will execite 

                $this->registerDevice($uqid); // Registering/storing device 

information in System/DB 
 

 

 
 

 

function notifySystemAdmin($uqid) 
    { 

        $subject = 'Connection Alert'; 

        $message = 'Device with Unique ID ' . $uqid . ' just got registered 
with your system'; 

        sendEmail($subject, $message, 'from@test.com', 'to@test.com'); // 

Sending Email to Admin 
        sendSMS($message, '0xxx2112212'); // Sending SMS to Admin 

    } 
 

function logNewDevice($uqid) 

 { 
        $file = "new_devices.txt"; 

        $myfile = fopen($file, "a") or die("Unable to open file!"); // 

Opening/Getting the file new_devices.txt to log 
$str = "\n\nNew Device with Unique ID " . $uqid . " connected at " . 

date('Y-m-d H:i:s'); 

        fwrite($myfile, $str); //Writing/Adding the string/$str to file 
    } 

 

    function logDeviceConnection($uqid) 
    { 

        $file = "devices_log.txt"; 

        $myfile = fopen($file, "a") or die("Unable to open file!"); // 
Opening/Getting the file devices_log.txt to log 

$str = "\n\nDevice with Unique ID " . $uqid. " make a connection at " . 

date('Y-m-d H:i:s'); 
        fwrite($myfile, $str); // Writing/Adding the string/$str to file 

    } 
 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

161 | P a g e  

www.ijacsa.thesai.org 

easily insert his fake device by just after a successful scan of a 
targeted network for this protocol. The second issue with this 
protocol is that its sessions are not closed until the server to 
client close them. Then this protocol is vulnerable to DoS 
attack also for too many connection requests. So that we have 
proposed a novel approach in this paper for the detection of 
fake devices automatically with the help of the PHP program. 
The unique numbers are also generated for the detection of 
tampered devices in case of these are installed at client-side. 
Our proposed solution has detected fake devices in real-time 
just by looking into system’s databases. This program is 
generating alerts to administrators via email and SMS for that 
targeted network. The logs of that new device connection 
request are also saved at the system for future actions. 

ACKNOWLEDGMENT 

Authors are thankful to referees for fruitful comments 
regarding our paper. 

REFERENCES 

[1] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, 
“Industrial Internet of Things: Challenges, Opportunities, and 
Directions”, IEEE Transactions on Industrial Informatics vol. 14, no. 11, 
pp. 4724-34, July 2, 2018. 

[2] D. Mary, “http://www.ndpanalytics.com/report-interoperability-and-iot”, 
Last accessed 2020/01/23. 

[3] M. McCool, and E. Reshetova, “Distributed Security Risks and 
Opportunities in the W3C Web of Things”, Workshop on Decentralized 
IoT Security and Standards (DISS), 2018. 

[4] D. Guinard, V. Trifa, and E. Wilde, “A Resource-Oriented Architecture 
for the Web of Things”, IEEE Internet of Things (IoT), pp. 1-8, 2010. 

[5] Web of Things (WoT) Architecture, “W3C Proposed Recommendation 
30 January 2020, https://www.w3.org/TR/wot-architecture/”, last 
accessed 2020/02/04. 

[6] K. Kaspersky, and A. Chang, “Remote Code Execution through Intel 
CPU Bugs”, InHack in The Box (HITB), Malaysia Conference, 2008. 

[7] E. Rescorla, and N. Modadugu, “Datagram Transport Layer Security 
Version 1.2”, RFC 6347, 2012. 

[8] G. Selander, J. Mattsson, F. Palombini, and L. Seitz, “Object Security of 
Coap (Oscoap)”, Internet Engineering Task Force (IETF) Internet-Draft 
work in progress, 2017. 

[9] A. Kamilaris, and M. I. Ali, “Web of Things Platforms” Truly Follow 
the Web of Things?”, IEEE 3rd World Forum on the Internet of Things 
(WF-IoT), pp. 496-501, 2016. 

[10] F. Paganelli, S. Turchi, and D. Giuli, “A Web of Things Framework for 
Restful Applications and Its Experimentation in a Smart City”, IEEE 
Systems Journal vol. 10, no. 4, pp. 1412-23, 2014. 

[11] L. Sciullo, C. Aguzzi, M. Di-Felice, and T. S. Cinotti, “WoT Store: 
Enabling Things and Applications Discovery for the W3C Web of 
Things”, 16th IEEE Annual Consumer Communications & Networking 
Conference (CCNC), pp. 1-8, 2019. 

[12] L. Mainetti, V. Mighali, and L. Patrono, “A Software Architecture 
Enabling the Web of Things”, IEEE Internet of Things Journal, vol. 2, 
no. 6, pp. 445-54, 2015. 

[13] Y. Zhou, S. De, W. Wang, and K. Moessner, “Search Techniques for the 
Web of Things: A Taxonomy and Survey”, Sensors, vol. 16, no. 5, pp. 
600, 2016. 

[14] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application 
Protocol (CoAP)”, Internet Engineering Task Force (IETF) RFC-7252, 
2014. 

[15] T. Heer, O. Garcia-Morchon, R. Hummen, S. L. Keoh, S. S. Kumar, and 
K. Wehrle, “Security Challenges in the IP-based Internet of Things”, 
Wireless Personal Communications, vol. 61, no. 3, pp. 527-42, 2011. 

[16] A. Esfahani, G. Mantas, R. Matischek, F. B. Saghezchi, J. Rodriguez, A. 
Bicaku, S. Maksuti, M. G. Tauber, C. Schmittner, and J. Bastos, “A 
Lightweight Authentication Mechanism for M2M Communications in 
Industrial IoT Environment”, IEEE Internet of Things Journal, vol. 6, 
no. 1, pp. 288-96, 2017. 

[17] R. Neisse, G. Steri, and G. Baldini, “Enforcement of Security Policy 
Rules for the Internet of Things”, 10th IEEE International Conference 
on Wireless and Mobile Computing, Networking and Communications 
(WiMob), pp. 165-172, 2014. 

[18] H. Yang, Y. Zhang, Y. P.  Hu, and Q. X. Liu, “IKE Vulnerability 
Discovery Based on Fuzzing”, Security and Communication Networks, 
vol. 6, no. 7, pp. 889-901, 2013. 

[19] M. Sutton, A. Greene, and P. Amini, “Fuzzing: Brute Force 
Vulnerability Discovery”, Pearson Education, 2007. 

[20] S. Hernández-Ramos, M. T. Villalba, and R. Lacuesta, “MQTT 
Security: A Novel Fuzzing Approach”, Wireless Communications and 
Mobile Computing, 2018. 

[21] C. Badii, P. Bellini, A. Difino, and P. Nesi, “Smart City IoT Platform 
Respecting GDPR Privacy and Security Aspects”, IEEE Access, vol. 8, 
pp. 23601-23623, 2020. 

[22] S. Raza, D. Trabalza, and T. Voigt, “6LoWPAN Compressed DTLS for 
CoAP”, IEEE 8th International Conference on Distributed Computing in 
Sensor Systems, pp. 287-289, 2012. 

[23] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt, “Lithe: 
Lightweight Secure CoAP for the Internet of Things”, IEEE Sensors 
Journal, vol. 13, no. 10, pp. 3711-20, 2013. 

[24] F. A. Alhaidari, and E. J. Alqahtani, “Securing Communication between 
Fog Computing and IoT Using Constrained Application Protocol 
(CoAP): A Survey”, Journal of Communications, vol. 15, no. 1, 2020. 

[25] R. Hummen, J. H. Ziegeldorf, H. Shafagh, S. Raza, and K. Wehrle, 
“Towards Viable Certificate-Based Authentication for the Internet of 
Things”, Proceedings of 2nd ACM Workshop on Hot Topics on 
Wireless Network Security and Privacy, pp. 37-42, 2013. 

[26] R. Daidone, G. Dini, and M. Tiloca, “On Experimentally Evaluating the 
Impact of Security on IEEE 802.15.4 Networks”, International 
Conference on Distributed Computing in Sensor Systems and 
Workshops (DCOSS), pp. 1-6, 2011. 

[27] L. Fette, and A. Melnikov, “The WebSocket Protocol (RFC 6455)”, 
Internet Engineering Task Force, 2011. 

[28] M. Shema, S. Shekyan, and V. Toukharian, “Hacking with 
WebSockets”, BlackHat USA, 2012. 

[29] S. Shah, “HTML5 Top 10 Threats Stealth Attacks and Silent Exploits”, 
BlackHat Europe, 2012. 

[30] M. Schmidt, “HTML5 Web Security 1.0”, Compass Security AG, 2011. 

[31] K. Kajimoto, M. Kovatsch, and U. Davuluru, “Web of Things (WoT) 
Architecture”, First Public Working Draft, W3C, 2017. 

[32] T. Heath, and C. Bizer, “Linked Data: Evolving the Web into a Global 
Data Space”, Morgan & Claypool, Google Scholar Digital Library, 
2011. 

[33] T. Kamiya, and S. Käbisch, “Web of Things (WoT) Thing Description”, 
W3C, Working Draft, 2017. 

[34] N. Naik, and P. Jenkins, “Web protocols and challenges of web latency 
in the web of things”, In Eighth International Conference on Ubiquitous 
and Future Networks (ICUFN) IEEE, pp. 845-850, 2016. 

[35] I. Hickson, “The WebSocket API, W3C Candidate Recommendation, 
World Wide Web Consortium (W3C)”, URL: http://www. w3. 
org/TR/WebSockets, 2012. 

[36] I. Fette, and A. Melnikov, “The WebSocket Protocol”, IETF, RFC 6455, 
2011. 

[37] J. Kotak, and Y. Elovici, ”IoT Device Identification Using Deep 
Learning”, arXiv preprint arXiv:2002.11686, 2020. 

 

http://www.ndpanalytics.com/report-interoperability-and-iot
https://www.w3.org/TR/wot-architecture/

