
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

Performance Analysis of Machine Learning
Techniques for Smart Agriculture: Comparison of

Supervised Classification Approaches

Rhafal Mouhssine1, Abdoun Otman2, El khatir Haimoudi3
Computer Science Department, Laboratory of Advanced

Science and Technologies
Polydisciplinary faculty, University UAE, Larache, Morocoo

Abstract—Agriculture form one of the most important aspects
of life necessities, it is responsible to feed 7.7 billion person
for the time being, and it is expected to supply more than 9.6
billion individual in 2050, the thing that made classical farming
insufficient, and give birth to the notion of smart farming, and
the race has begun toward using the latest technologies in the
field. They integrate the Internet of Things (IoT), automation,
Artificial Intelligence (AI), etc. And as researchers from a country
that highly depends on agriculture, we have decided to also
contribute to this evolution, and we chose Machine learning (ML)
as our entrance to the field to satisfy the need for automated
classification of the different products produced by a farm.
In this work, we wanted to solve the problem of automatic
classification of agricultural products, without the need of any
human intervention, and we concentrate on the classification of
red fruits, due to our proximity to a location that its product is red
fruits. In other words, we are doing a comparative study among
the well-known approaches that are used in image classification,
and we are applying the best-found method to correctly classify
the pictures of red fruits. And this empirically leads us to achieve
great results as shown in the numerical result area.

Keywords—Support vector machine; K-nearest neighbor; deep
neural networks; convolutional neural networks; smart agriculture;
Cifar10

I. INTRODUCTION

The agriculture plays an important role in the economic
systems of several countries, and one of these is our country,
the Kingdom of Morocco, the agriculture forms one of the
most important incomes to the country. Thus, increasing the
effectiveness of the farming would also affect positively the
economy of the kingdom, and develop somethings means to
integrate the latest existing technologies in the field. And After
the last revolution of the AI appears a term called smart
farming, which directly affect the field of agriculture. But this
short term assembles many intelligent technologies, and some
of them already in use. But in this work, we chose to enter
this world by using computer vision and image classification
and use it to automatically classify the different species by the
means of images.

Image classification is the ability to choose a unique correct
label to the input image from a predefined set of categories,
and it’s considered one of the core problems in computer
vision which resides in the intersection of several fields of
studies: Mathematics, image processing, data mining, etc.
Image classification has a large variety of applications such

as object detection, segmentation, facial recognition, etc. and
those applications can be used in larger practical applications
like Surveillance Autonomous vehicles. Its complexity and its
effectiveness highly depend on the method used to solve the
problem since there are several methods that can be used to
solve that problem (image classification).

Fig. 1. Cifar10 dataset.

There have been several attempts to automate the process of
image classification, but have chosen the closest papers to our
work. In this area, Y. Abouelnaga and al tried on their work to
work on an assembled model that use several CNN models and
combine it with a KNN approach optimized by PCA (principal
component analysis), and they have achieved good results on
classifying the CIFAR-10 (Fig. 1) dataset [2]. In the same area,
L. H. Thai et al. have used SVM together with artificial Neural
networks to construct their model. They use feature-based sub-
images and feed them to neural networks, and they use the
SVM as the last layer that receives the results of the neural
nets. And this approach made them reach a precision of 86%
by applying their model on classifying human numerals [3]. As
one of the first attempts at using convolutional neural networks
Y. leCun et al. are one of the first ones who use convolutional
layers and subsampling in order to extract the right features
from images, even if the shape of the object inside the image
has a large range of variance. Such as handwriting, and this
made them achieve great results and inspire all the later
CNN users on both image classification and NLP [4]. And

www.ijacsa.thesai.org 610 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

to optimize the speed of training a neural Net and its variants
Sergey Ioffe et al. make the normalization of each layer, the
thing that made each layer learn independently. This addition
reduces the overfitting, enabled the use of a higher learning rate
and consequently makes the training faster and also enables the
use of a larger number of layers [13]. Also in the agricultural
area, Horea Muresan and Mihai Oltean have collected a new
high-quality dataset, concentrated only on fruits named fruit-
360, and to prove the quality of their dataset they apply a CNN
based classifier, and they have got great results [19].

In this work, our objective will be to make a comparative
study between the well know methods that attempted to solve
the problem of image classification and to be more specific we
will use K-nearest neighbor, Support vector machine classifier,
Deep neural networks, and Convolutional neural networks, and
after each implementation, we will mention the strengths and
weaknesses of each method. and it’s worth mentioning that
all our tests will depend on the well known Cifar10 dataset,
since their images have small dimensions (32X32X3), and it
will let us experiment with our tests without the need for the
clouds and expensive hardware. Despite the fact that it’s hard
to achieve good results with such highly pixelated images. And
after choosing the right classifier and prove it by results we
will apply it on our main problem which is the classification
of red fruits, seeing their our importance to our country and
especially to our country.

The rest of this paper will be organized as follows: we will
begin by a study case section and, in the coming section, we
will describe the K-Nearest neighbor its formal implementa-
tions, its applications on image classification and the results
achieved with it as well as its weaknesses. Then we will devote
the next section to the shallow learning method (Support vector
machine) and its performance on the cifar10 dataset. After that,
we will study the uniform neural networks, the difficulties to
build a robust deep neural network and its performance in
the same dataset. And we will leave the last section to the
strongest method which is the Convolutional neural network
and its performance of cifar10, and finally, we will conclude
by a global conclusion which summarizes our work and gives
an idea about our future perspectives.

II. STUDY CASE

The kingdom of morocco depends largely on agriculture
and it’s one of the principal incomes of the country, according
to Wikipedia, the agricultural sector in morocco accounts for
approximately 13-15% of GDP (gross domestic product) as
shown in (Fig. 2) and employs about 40% of the national
workforce, and if we take the year 2011 as an example, we find
that Morocco’s GDP is 221 billion dollars and the agriculture
has contributed to it by 15% [1].

Thus, improving the Quality or Quantity of agriculture
directly affect the GDP of the country. For this reason,
farming and agriculture, in general, is a strong power that
can effectively ameliorate the income of the country. And
for this work, we are trying to enter this interesting sector
by the gate of smart farming, and we are trying to take
advantage of our proximity to an agricultural area that takes a
special care of the red fruits, and the possibility that we can
enough information about the subject, to orient our objective

Fig. 2. GDP of Morocco.

to classify the different species of the red fruits after studying
and analyzing the different existing approaches, and dedicate
the best-found method to our case study.

III. K-NEAREST NEIGHBOR CLASSIFIER

K-nearest neighbor is a simple algorithm that stores all
available cases and classifies new cases based on a similarity
measure (e.g., distance functions, Fig. 3). A case is classified
by a majority vote of its neighbors, with the case being
assigned to the class most common among its K nearest
neighbors measured by a distance function.

Fig. 3. Distance functions.

if K = 1, then the case is simply assigned to the class of its
nearest neighbor. In general, a large K value is more precise as
it reduces the overall noise. To choose the optimal value for K
is best done by first inspecting the data, and cross-validation
is another way to retrospectively determine a good K value
by using an independent dataset to validate the K value, but
historically, the optimal k for most datasets has been between
3-10. that produces much better results than 1NN.

A. K-Nearest Neighbor and Image Classification

The K-Nearest neighbor classifier is by far the most simple
machine learning classifier used in image classification. This
machine-learning algorithm doesn’t actually learn anything. To
use it we simply flatten the images and turn them into vectors
before passing them to the kNN classifier, which simply keeps
them in memory without any processing. In other words, it
keeps all the hard work to the prediction step. When we ask
the classifier to predict the class of a new image, it calculates

www.ijacsa.thesai.org 611 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

the distance between that new image and all the datasets which
already kept in memory using one of the distance functions.
Then it chooses the most k similar ones to the image. Next, it
decides which class is more suited for this image.

B. Experiments and Results

In the beginning, it’s hard to decide the most suited value
of k to our problem nor the most effective distance function.
So in our experiments, we used one of the most well-known
methods which is cross-validation to decide the most effective
hyperparameters to our problem (image classification), but
we didn’t focus that much on the distance function we just
used the most known one (euclidean distance). After running
several tests and experimenting several values of k we found
approximately the same results for k between 3-10, but the best
accuracy we have got is approximately 29%. But according
to the best-known results, K-Nearest neighbor can reach 35%
accuracy if it’s used with the right distance function and right
value of K. and there are also other ways such as principal
component analysis which could improve its performance
furthermore. Moreover, KNN nearest neighbor could be used
in combination with convolutional neural networks to increase
its accuracy[2].

C. Limitations

This approach has several flaws. Apart from its low accu-
racy, it also suffers from the extensive memory usage, which
means that with a large dataset we will have problems to store
the dataset, and also it has another major flaw, it has to do
all the work in the prediction time so that the user must wait
for the classifier to compare its image to all the dataset and
calculate the distance between them and give it the most k
nearest classes to the image, and this kind of behavior is not
acceptable in real-time applications.

IV. PARAMETERIZED CLASSIFIERS

Using parameterized classifiers (Fig. 4) helps us overcome
the major flaw of K-Nearest Neighbor because in this case all
the time-consuming tasks are done in the training stage. Once
the training is complete, we can discard all the training dataset
and free the memory, we just preserve the learned parameters
W and b. And since we can have these parameters (w and b),
we quickly predict the new test data since all we have to do
is a simple linear transformation:

f(xi,W, b) =Wx+ b

A. Train a Linear Classifier

To train this type of models we only need to adjust the
parameters W and b in a way that helps us achieve the best
possible accuracy, and we do accomplish so with help of a loss
function (quantifies how well our prediction agree with the
ground-truth label) which we try to minimize using Stochastic
gradient descent or one of if its variants.

Fig. 4. Linear classfier.

B. Loss Function

The loss function is one of the most important pieces of
all parameter based classifiers, and as we have previously
mentioned, the loss function tells us how good our prediction
compared to the ground truth label [6]. For linear classifiers,
we can use multiple loss functions, but the most commonly
used are this two:

• Multi-class Support vector machine, also known as
hinge loss: inspired from the famous support vector
machine classifier [5]:

sj =Wxi + b

Li =
∑
j 6=yi

max(0, sj + syi
+ 1)

• cross-entropy: which used with softmax (Fig. 5) clas-
sifier that uses probabilities to describe the confidence
of each class:

sj =Wxi + b

Li = − log(
esyi∑
j e

sj
)

www.ijacsa.thesai.org 612 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

Fig. 5. Softmax classifier.

After calculating the loss function Li of each example
in the batch (or minibatch), we do calculate its mean L =
1
n

∑n
i=1 Li , to get a more global view, and converge in the

direction of all the training examples, instead of zigzagging
in the direction of each training example at each iteration and
consequently slow down the training.

C. Limitations

Although linear classifiers are much better than K-nearest
neighbor method and overcomes most of its flaws, in terms
of accuracy they still suffer, in our case we have tried the
two versions of linear classifiers (the svm based, and softmax
classifier), we didn’t exceed 45% in both cases, despite the all
the efforts we did to tune parameters and experiment with the
combinations of hyperparameters.

V. NEURAL NETWORKS

Neural networks are the most effective machine learning
algorithm, and it can easily outperform almost any other
machine learning algorithm in any task that involves learning,
and its architectures has a wide range of variants (DNNs,
CNNs, RNNs, AutoEncoders, GANs. . .), which make it makes
it capable to perform a large variety of tasks such as Object
detection, Image recognition, Regression, compression . . . , and
it’s used in almost any modern applications that require some
sort of intelligence. Even the most simple form of a Neural
network (shallow Network) which consists of only two layers
(hidden, output), is considered as a universal function, and
in theory, it could approximate any existing mathematical
function.

Neural networks share a lot of the common notions of
the classical methods of machine learning (especially the
ones that uses trainable parameters) such as normalization,
loss functions, activation functions, optimization techniques
(gradient descent, stochastic gradient descent), but Neural Nets
are characterized by another type of notions that are specific
to them like the fact that they could contain a large number of
layers, and that they use backpropagation to train an arbitrary
number of layers, which make them special and give them
high flexibility that enables them to adjust to any kind of data.
The powerful architectures of Neural Nets made them prove
their effectiveness and attract the curiosity of the researchers
which consequently made them one of the most active research

Fig. 6. Simple shalow network.

areas. They have focused on every detail of Neural Nets. There
are researches in weight initialization, activation functions,
regularization, normalization, and even in the right number of
layers. Thus, in this work, we have included the most recent
terms and tried to use the latest studies and the best choices
to construct our own neural network and use it to classify
the Cifar10 dataset, and the following subsections describe the
elements that we have used in our implementations.

A. Regularization

Neural networks are considered the most flexible machine
learning algorithms and can adapt with any type of data as
discussed previously, but this flexibility comes with a cost:
Overfitting (Fig. 7), In other words, they memorize the training
data which make them unable to generalize and recognize new
data, and that’s where the term of regularization could help to
prevent this Phenomenon.

Fig. 7. Overfitting phenomenon.

There two major types of regularization L2 regularization
and Dropout, there’s also L1 regularization but its not prefer-
able.

1) L2 regularization: is the most known, and it’s not
exclusive to neural networks, it’s also used with a large variety
of machine learning algorithms, it’s simply an addition of the
Frobenius norm of the weight matrix to the loss functions,
which decays the weights and consequently encourages the
simple version of the neural network model, the thing that
prevents overfitting to some extent. and since the L2 regular-
ization encourage small weights, it also does another important
job that serves positively some non-linearities such as sigmoid
and tanh, because it confines the weights in the small portions
where it can make use of the linear area of the non-linearities
as shown in (Fig. 8), this thing accelerates the learning process
because the gradient isn’t dead, in contrast to areas where |w|
are large.

www.ijacsa.thesai.org 613 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

Fig. 8. Linear portion of the sigmoid

2) Dropout: does also a similar job and make each time a
simple version of the neural network, by deactivating a number
of neurons on each layer according to so some pre-specified
probability (Fig. 9) and it does the work because it prevents
the model to rely on any specific feature, and make it take
different paths each time so that it can finally generalize well
[10].

Fig. 9. Dropout

B. Input Normalization

Input normalization/standardization is a simple preprocess
of the input data, that can be summarized by the following
equations:

µ =
1

m

m∑
i=1

xi (1)

σ2 = xi (2)

x̂i =
xi − µ√
σ2 + ε

(3)

Input normalization is an important process for a large
variety of machine learning algorithms. It does work because
it prevents the large variance between input features, which
could cause the data to be sensible to the parameter update and
risk to make the gradient overshoot in some directions. Input
normalization also makes the input data zero mean, which
inhibits the parameter update to be in the same direction.

C. Optimization

The optimization is the most important building stone of
the learning process of a neural network. Almost always meant
by optimization gradient descent and its variants in the context
of the literature of neural network training, we could train
our model using another kind of optimizers such as nature-
inspired algorithms(meta-heuristics), but by far the gradient
descent and its variants are the most suited to train neural
nets. The original version of gradient descent is considered
to be too slow because at each iteration it needs to explore
all the training data to make one step. As a major successor
of gradient descent is the mini-batch stochastic version of
gradient descent, which doesn’t need to traverse all the data,
it just takes a random prefixed amount of training data from
the training set and evaluate the loss and then take a step.
Although, SGD make a good job in replacing Gradient descent,
it has some drawbacks. SGD makes a parameter update with
just a subset of the training set, which makes the direction of
the update has some variances, and thus, the path taken by
SGD, will oscillate toward convergence, and those oscillations
forces us to use a small learning rate which consequently slows
down the learning process. For this reason, there were several
attempts to solve this problem, the most famous ones are:
sgd+momentum [7], RMSprop [8], and Adam [9].

D. SGD + Momentum

The idea behind SGD+momentum is that it adds a little
momentum to the gradient, by adding a new term called
velocity, which is simply the exponentially weighted average
of the gradient. In one side it helps us escape from the critical
points where the gradient could die, and in the other side
it tends to average out the oscillations in the directions that
aren’t towards minima, which make by making them smooth,
and since the motion, toward the minima, is stable it doesn’t
affect the velocity toward convergence, instead, it accelerates
the learning process and it allows us to use larger learning rate.
The following equations are the simple modification made to
the update when we use SGD+momentum:

V∂W = βV∂w + (1− β)∂W (4)
V∂b = βV∂b + (1− β)∂b (5)
W =W − αV∂W (6)
b = b− αV∂b (7)

E. RMSprop

RMSprop is from the family of adagrad (adaptive gradient)
optimizers. This type of optimizers tries to adjust the learning
rate of each parameter independently, by performing smaller
updates to the frequently occurring features, and larger updates
for parameters associated with infrequent features, the thing
that make them able to handle sparse data very well, but
given the cumulative nature of the term that tries to adapt the
learning rate, it creates the problem of continuously decreasing
the learning rate, which leads to halting the learning process.
That’s why RMSprop along with other algorithms come as
extensions to the original adagrad algorithm, as an attempt to
fix this disadvantage, in the case of the RMSprop, it simply
tries to replace the accumulative term by a running average
which makes it decay with time, and forget about the old values
as shown in following equations:

www.ijacsa.thesai.org 614 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

S∂W = βS∂W + (1− β)∂W 2 (8)
S∂b = βS∂b + (1− β)∂b2 (9)

W =W − α ∂W√
S∂W + ε

(10)

b = b− α ∂b√
S∂b + ε

(11)

F. Adam

Adaptive momentum is one of the most effective algorithms
that used to optimize NNs, and recently it becomes the
standard. Adam optimizer doesn’t reinvent the wheel, instead,
it’s simply a combination of the concepts of the two previously
discussed optimizers, it takes advantage of both of them, and it
almost always outperforms them in practice. and the following
equations show how it combines the two set of equations of
the SGD+momentum and RMSprop:

V∂W = β1V∂w + (1− β1)∂W (12)

S∂W = β2S∂W + (1− β2)∂W 2 (13)

V̂∂W =
V∂W

(1− βt
1)

(14)

Ŝ∂W =
S∂W

(1− βt
2)

(15)

W = W − α Ŝ∂W√
Ŝ∂W + ε

(16)

There are more optimizer and more alternatives, that we haven’t
discussed here such as nestrove algorithm which is an extension to
sgd+momentum, and we didn’t mention them because they aren’t
used in practice, but as shown in (Fig. 10), the Adam optimizer is
the most powerful.

Fig. 10. Optimizers comparison

G. Deep Neural Networks

Deep neural networks are simply a version of neural networks
(Fig. 6) with more than one hidden layer (Fig. 11). In principle,
you don’t need a deep neural network. And given enough training
data, a large neural net with only one hidden layer can approximate
any mathematical function. But the problem with extremely large
single hidden layered neural networks is the lack of generalization,
they could memorize but this is not enough. If we test a super-wide

shallow network with new data, it won’t do well, even if it could
memorize all the training data. and this is not useful in a real-world
scenario.

Fig. 11. Deep Neural Network

In the other hand, a deep neural net with multiple hidden
layers learns in a different way, the first layers learn to recognize
basic things such as edges in the case of pictures, and the deeper
layers learn more complicated things that are constructed from
combinations of the things learned in the earlier layers, and this
gives multi-layered neural nets the ability to generalize better, and
this serves better a practical application. Deep neural networks are
extremely useful, they generalize well, learn better and achieve
better results, but the complexity in there architecture comes
with a cost, they are hard to train in comparison to the other
simple shallow networks, deep neural networks use the same
principle as the other regular networks, but in case of DNN, there
are some other things that should be considered, like the weight
initialization and batch normalization to simplify the learning process.

H. Weight Initialization

One of the starting points to take care of while building your
network is to initialize your weight matrix correctly. Weight initial-
ization also plays an important role in training Deep Neural networks,
it might seem evident, and we might think that we could initialize
weights with just some random values or just initialize them with
zero. But it’s not that simple, if we do initialize them with zero, we
will get the same output results, and eventually get the same results
which will lead us to update the weights with the same values, and
also if we think to initialize them with the extremely small values we
will risk having weights decays in deeper layers as shown in (Fig.
12), and if we initialize them with large numbers, we will suffer from
having vanishing gradients especially with some non-linearities such
as sigmoid and tanh.

Fig. 12. Weight decay in deep layers

www.ijacsa.thesai.org 615 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

That’s why weight initialization is considered to be an important
task and gets the attention of many researchers, and it’s one of the
widest areas of researches that concerns neural networks, but the most
known two methods are the one called xavier initialization [11], and
another extension [12] to it that works better with relu activation
variants. And the initialization equation of those two methods are as
follows:

W [l] = random(W)(from− normal − distribution) ∗ 1√
nl−1

W [l] = random(W)(from− normal − distribution) ∗ 2√
nl−1

where nl−1 is the size of the input from the previous layer.

I. Batch Normalization

Training Deep Neural Networks is complicated Due to the dif-
ferences in distributions of the inputs of each layer caused by the
constant changes of the parameters of previous layers, and this makes
training process becomes too hard, and to make progress we have
to lower the learning rate and be too careful when we initialize the
parameters, the thing that make the training too slow. We refer to this
phenomenon as an internal covariate shift and address the problem
by normalizing each layer’s inputs (Fig. 13). When we introduce
normalization and normalize each training mini-batch, we can use
a larger training rate and be less cautious about the initialization
process. And it also acts as a regularizer. Also, batch normalization
allows each layer of a network to learn by itself a little bit more
independently of other layers.

Fig. 13. Batch Normalization

Batch normalization normalizes the output of a previous activation
layer by subtracting the batch mean and dividing by the batch standard
deviation. However, after this shift/scale of activation outputs by
some randomly initialized parameters, the weights in the next layer
are no longer optimal. SGD (Stochastic gradient descent) undoes
this normalization if it’s a way for it to minimize the loss function.
Consequently, batch normalization adds two trainable parameters to
each layer (Fig. 14), so the normalized output is multiplied by a
“standard deviation” parameter (gamma) and add a “mean” parameter
(beta). In other words, batch normalization lets SGD and its variants
do the denormalization by changing only these two weights for each
activation, instead of losing the stability of the network by changing
all the weights.

The Batch normalization operation is simply governed by the
following equations [13]:

Fig. 14. Batch Normalization equations

Where γ and β are trainable variables.

We have implemented this notion in our own version of the
neural network, and experiment with different sizes of batches to see
the differences that batch normalizes make and how it accelerates the
training phase, and we have summarized our experiments in (Fig. 15).

Fig. 15. Batch Normalization Effect

As shown in the figure above, despite the clear acceleration of
the training, it’s clear that the size of the batch has a huge effect
on the effectiveness of batch normalization which could make a
problem, that’s why there where several attempts to solve it, such
as layer normalization [14] and also recently appears an activation
function that’s his author claims that it eliminates the need of
the batch normalization [15], but all those claims are still under
test and the batch Norm still prove its effectiveness for the time being.

J. Deep Neural Networks and Cifar10

After implementing our own version of the neural network, that
we have tried to insert all the above-discussed concepts in it, and
we’ve tried to experiment with the best possible options, we have
adjusted our network to classify Cifar10 dataset, that we chose it to be
our criterion of the performance of our classifiers. Then after building
the most convenient version and after a series of hyperparameters
tuning to find the best combinations of hyperparameters, we test and
we get an accuracy that exceeds 55%. And that’s kind of disappointing
after all this work, but that’s happened because we’ve ignored the fact
that the dataset is images. And here comes the role of another type
of Neural Network called Convontional neural networks, which more
suited to this kind of dataset (images).

VI. CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural network is just a deep Neural network
with a different structure, and it has been proven empirically that
CNN is by far the most effective Neural Network architectures for

www.ijacsa.thesai.org 616 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

image classification, it even outperforms the human performance
on classifying the imageNet dataset on 2015 [12]. This kind of
powerful performance on image recognition tasks enabled the CNNs
to achieve great results in bigger use cases such as object detection,
and segmentation. The Convnets benefit from all the features and
ideas of the usual deep neural network, they use all the techniques
explained in the previous section. But they use two additional layers
(convolution and pooling), which are the real cause behind the
outstanding performance of CNNS.

A. CNN History

The concept that has lighted the idea of Convolutional Neural
Networks has begun decades ago with the conclusions of the two
famous research papers titled: “Receptive Fields of Single Neurons
In The Cat’s striate cortex” in 1959 and “Receptive fields, binocular
interaction and functional architecture in the cat’s visual cortex” in
1962, made by Hubel and Wiesel. they observed that the neurons
have a hierarchical organization, and that earlier layers response
to light orientations, and later layers response to light orientations
and movements, and the last set of layers (that contains the most
complex types of neurons) responds to movements and endpoints.
Then in 1980, Fukushima [16] has built the first example of a
network architecture model that has this idea of simple and complex
cells. afterward, in 1998 they built the first model that applies
backpropagation and gradient-based learning to train a CNN and they
were able to do a good job on document recognition [17], and also did
well on digit recognition, but it wasn’t able to scale to more complex
data until the appearance of the AlexNet [18] in 2012, which has
been able to achieve great results, scale to larger and complex data,
and make use of the latest hardware.

B. Convolutional Layer

The convolutional layer is the most important part of a convolu-
tional network and it’s the one that does contain the most valuable
set of parameters. The Convolutional layer’s parameters consist of a
set of learnable filters (also called kernels or feature detectors); every
filter contains a small set of weights spread vertically and horizontally
and through a specified depth (Fig. 16). A usual size of the first layer
is 5X5X3 or 3X3X3.

Fig. 16. Convolution operation

To perform the convolution operation, we slide each filter across
the width and height of the input volume and compute the dot
products between the entries of the filter and the input at any
position, and this operation will produce a 2-dimensional activation
map that gives the response of that filter at every spatial position, and
eventually, through training process the network will learn filters that
activate when they see some type of visual feature.

C. Pooling Layer

The pooling layer reduces the number of parameters and calcula-
tions in the network. Thus, it improves the efficiency of the network

and avoids over-learning. The pooling layer receives several feature
maps and applies to each of them a pooling operation, which used
to reduce the size of the images while preserving their important
characteristics. For this, the image is cut into regular cells, then the
maximum value is kept within each cell (Fig. 17). In practice, small
square cells are often used to avoid losing too much information. The
most common choices are adjacent cells of size 2X2 pixels that do
not overlap. The same number of feature maps is preserved, but these
feature maps are much smaller.

Fig. 17. Pooling operation

Thus, the pooling layer makes the network less sensitive to the
position of features: the fact that a feature is a little higher or lower,
or even that it has a slightly different orientation should not cause a
radical change in the classification of the image.

D. CNN Architectures

CNN has proven that it is the most efficient image classifier
since the 2012 imageNet international competition using AlexNet
architecture [18], which is very similar to LeNet architecture which
used in 1998 for digit recognition, But AlexNet after 14 years was
able to take advantage of the computational power of GPUs, and
consequently could be used for more powerful and realistic datasets,
such as ImageNet. And after the great performance achieved at
that time by AlexNet, the world’s attention has turned again toward
ConvNets, and all the subsequent winners used one of the variants of
CNN.

Until now, dozens of CNN architectures have appeared, But the
top architectures that we’re able to positively affect the evolution of
CNN were 3: VGGNet 2014, GoogLeNet 2014, ResNet 2015.

1) VGGNet (Visual Geometry Group Net): was ranked sec-
ond in 2014 competition, but it used a distinctive interesting idea with
regard to the receptive field of the filters used in convolutional layers,
so instead of using 5X5, 7X7 or 11X11 like in the case of AlexNet,
VGG uses only two 3X3 receptive fields to replace the 5X5 filter,
and five 3X3 to replace the 11X11 receptive field (Fig. 18). This
way it could effectively replace the large filters without hurting the
performance, in the case of 11X11 filter we get 121 parameters, and
VGG achieves the same results with only 3X3X5 = 45 parameters[20].

www.ijacsa.thesai.org 617 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

Fig. 18. AlexNet vs VGG

2) GoogLeNet: also known by the name of Inception V1, and
it is the winner of 2014 competition, GoogLeNet is formed from a
number of inception modules (Fig. 19), and each one of this modules
contains a number of parallel convolutional layers, that uses filters
with different receptive fields and a pooling layer in addition to a
concatenation layer which sums up the output of the parallel layers
depth-wise [21].

Fig. 19. Inception module

This way googleNet was able to increase the number of layers
to 22, with 12 times less number of parameters in comparison to
AlexNet.

3) ResNet: winner of 2015 competition, and the first one who
outperform the human capability of classifying imageNet dataset (Fig.
20), with only 3.57 error.

Fig. 20. Evolution of CNNs.

ResNet was able to dramatically increase the depth of the neural
networks with an innovative idea which simplifies the f(x) that

needed to be learned by each layer (Fig. 21), this happens by adding
an identity function to the residual f(x), which means that the layer
only needs to learn a ∆ = H(x)− x [12].

Fig. 21. Residual.

This way resNet was able to go very deep and use 152 layers.
ResNet was also able to affect the normal deep neural networks and
made them able to attain 1000 layers.

Fig. 22. Comparison of accuracy [22].

In the subsequent years, the architectures that could win the
famous ILSVRC competition were only some kind of a hybridisation
or reformulation of this architecture, and Inception v4 is an example
of a hybridisation of resNet and googLeNet that gives the best
performance in term of accuracy. And (Fig. 22 and 23) are an
overview of the performance of this architectures.

Fig. 23. General comparison of CNN architectures [22].

www.ijacsa.thesai.org 618 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

E. Experimental Results

After studying the theory behind convolutional neural networks,
we have made an application that took advantage of all the notions
discussed in the usual neural networks, and additional features of
the convolution neural network, and after spending a fair amount of
time searching we have found the hyperparameters and structure that
would best suit our test dataset (cifar10) and give as a precision that
exceeds 90% as shown in Table I.

TABLE I. CLASSFIER PERFORMANCES

Method KNN Linear Classifier Neural Network CNN
accuracy 28% 45% 55% >90%

Despite our knowledge about the important types of architectures,
and the way to achieve good results in image classification, we
weren’t able to experiment with these architectures and use them
with Bigger and more realistic datasets such as imageNet, because
of the lack of the adequate hardware. and we were forced to use the
simple form of the convolutional neural network, but it was sufficient
to get great results in the Cifar10 dataSet, and we also thought to
apply these notions on a real use case that we could benefit from. So
we chose to use it in agriculture and classify a dataset of red fruits
since our nearby area (Larache city) is suitable for planting red fruits.
Thus, we chose a subset (only red fruits Fig. 24) of a famous dataset
that classifies fruits [19].

Fig. 24. Sample from red fruits set.

To accomplish this task, we adapt our convolutional neural
net model to classify this subset by adjusting hyperparameters and
preprocessing the raw images of the dataset. By doing so we have
achieved a precision that reaches 99.9% because of the simple nature
of the data set. And as presented in (Fig. 25) all the guesses of the
model are correct.

Fig. 25. Cnn model predections.

VII. CONCLUSION

In this work, we have experimented and tested a fair amount of
classifiers that are used to recognize images, and we have known
the strengths and weaknesses of each one of them, we have also
studied in depth neural networks and convolutional neural networks
and achieved good results in classifying our chosen datasets. And we
are looking forward to do more, we want to explore all the variations
of neural nets, and also apply them in more interesting fields of study
like object detection and segmentation, and also use them in a real
applications that could directly affect our everyday life.

REFERENCES

[1] Fanack, Independent online media organization committed to publishing
and disseminating balanced and informed analysis about the Middle East
and North Africa, consulted on 22-19-2019.

[2] Y. Abouelnaga, S. Ali, H. Rady, and M. Moustafa. CIFAR-10: KNN-
based Ensemble of Classifiers. 2016.

[3] L. H. Thai, T. S. Hai, N. T. Thuy, Image Classification using Support
Vector Machine and Artificial Neural Network, 2012.

[4] Y. LeCun, P. Haffner, L. Bottou, and O. Bengio, Object Recognition with
Gradient-Based Learning, 1998.

[5] C. Cortes and V. Vapnik. Support-Vector Networks. In: Mach. Learn.
pages 273-297. Sept. 1995.

[6] A. rosebrock. Deep learning for computer vision with python. 1st Edi-
tion., 2017. [online]. Available: https://www.pyimagesearch.com/deep-
learning-computer-vision- python-book.

[7] N. Qian, On the Momentum Term in Gradient Descent Learning Algo-
rithms., In: Neural Netw. 12.1 , pages 145-151, Jan. 1999.

[8] S. Ruder. An overview of gradient descent optimization algorithms. 2017.
[9] P. Kingma, J. L. Ba, ADAM: A method for stochastic optimization. 2017.
[10] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,

Dropout: A Simple Way to Prevent Neural Networks from Overfitting.
2014.

[11] X. Glorot, Y. Bengio, Understanding the difficulty of training deep
feedforward neural networks. 2010.

[12] K. He et al., Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification. 2015.

[13] S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. 2015.

[14] J. L. Ba, J. R. Kiros, Geoffrey E. Hinton, Layer Normalization. 2016.
[15] G. Klambauer, T. Unterthiner, A. Mayr, Self-Normalizing Neural Net-

works. 2017
[16] K. Fukushima, Neocognitron, A Self-organizing Neural Network Model

for a Mechanism of Pattern Recognition Unaffected by Shift in Position.
1980.

[17] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, Gradient Based
Learning Applied to Document Recognition. 1998.

[18] A. Krizhevsky, I. Sutskever and G. E. Hinton, ImageNet Classification
with Deep Convolutional Neural Networks. 2012.

[19] H. Mureşan, M. Oltean, Fruit recognition from images using deep
learning. 2018.

[20] K. Simonyan, A. Zisserman, Very deep convolutional networks for
large-scale image recognition. 2015.

[21] C. Szegedy et al., Going deeper with convolutions. 2014.
[22] A. Canziani, E. Culurciello, A. Paszke. An analysis of deep neural

network models for practical applications. 2017.

www.ijacsa.thesai.org 619 | P a g e

