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Abstract—In recent years, numerous studies have been fo-
cusing on metagenomic data to improve the ability of human
disease prediction. Although we face the complexity of disease,
some proposed frameworks reveal promising performances in
using metagenomic data to predict disease. Type 2 diabetes (T2D)
diagnosis by metagenomic data is one of the challenging tasks
compared to other diseases. The prediction performances for T2D
usually reveal poor results which are around 65% in accuracy
in state-of-the-art. In this study, we propose a method com-
bining K-means clustering algorithm and unsupervised binning
approaches to improve the performance in metagenome-based
disease prediction. We illustrate by experiments on metagenomic
datasets related to Type 2 Diabetes that the proposed method
embedded clusters generated by K-means allows to increase the
performance in prediction accuracy reaching approximately or
more than 70%.

Keywords—Unsupervised binning; K-means clustering algo-
rithm; metagenomics; metagenome-based disease prediction; Type
2 diabetes diagnosis

I. INTRODUCTION

Metagenomics (Environmental Genomics, Ecogenomics or
Community Genomics) is the study of genetic material recov-
ered directly from environmental samples. Metagenomics is di-
rectly the study of communities of microbial organisms in their
natural environments by applying modern genomic techniques
that pass the need for isolation and lab cultivation of individual
species [1], [2], [3], [4], [5], [6]. Reassembly of multiple
genomes has provided insight into energy and nutrient cycling
within the community, genome structure, gene function, popu-
lation genetics and microheterogeneity, and lateral gene trans-
fer among members of an uncultured community. The appli-
cation of metagenomic sequence information will facilitate the
design of better culturing strategies to link genomic analysis
with pure culture studies. Why do we study metagenomics? As
in [2] mentioned that Metagenomics has brought us discovery
of novel natural products, new antibiotica, new molecules with
new functions, new enzymes and bioactive molecules, what
is a genome or species, diversity of life, interplay between

human and microbes, how do microbial communities work
and how stable are they, holistic view on biology. Metage-
nomics cloned specific gene sequences (usually 16S rRNA
genes) to conduct data on the biodiversity of environmental
samples. With traditional genetic and microbiological studies
of genomes sequencing of microorganisms based on cultured
lineage samples, it was found that it would be impossible
to biodiversity of microorganisms. Therefore, metagenomics
plays an important role in helping humans discover microbial
diversity. In medicine, the microbial community plays a very
important role in protecting human health. Therefore, the
purpose of metagenomics is to understand the composition and
activity of complex microbial groups in environmental samples
through analysis of their DNA sequences. On the other hand,
there are numerous data on multiple genomes that we can carry
out a series of gene isolation projects depending on the purpose
of the research.

Metagenomic is an improved method compared to tradi-
tional microbiology, the research of metagenomes obtained
from genetic material from first samples, without the need
for laboratory cultures. This method is commonly used on the
human intestine because it is the place where the digestive
process, metabolism and has 10 times the total number of
cells of the body. Based on metagenomics, we can develop
algorithms to predict disease, determine a patient’s sensitivity
and then offer reasonable treatments. However, the disease is
complicated in diagnosis and prognosis and we only have a
limited amount of data to observe.

Type 2 diabetes (T2D) is a heterogeneous metabolic disor-
der that damages many organs of the body. The disease tends
to increase due to the influence of modern life, bad living
habits. Nowadays, the prediction is not highly accurate and
the treatment is commonly applied to patients diagnosed with
some similar manifestations. With that treatment, we find that
genetic diversity has not been effectively applied, leading to an
improvement in the health of some patients. The performances
on models for predicting T2D usually yield poor results.
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II. RELATED WORK

As mentioned above, metagenomics is an approach that
utilizes extraction of genomic information directly from the
environmental sample. So that, genetic information samples
are more representative for a given environment and supplies
a better insight into microbial environmental and metabolic
diversity. By using next-generation sequencing in metage-
nomics project to determine genetic potential in microbial
communities from a wealth of environmental niches, includ-
ing those linked with human body and relative with human
healthcare. Human microbiome in health and disease plays
a significant role that has recently been given considerable
observation [7], and distinct diseases have been associated with
gut microbiota [7], [8], [9], [10], [11], [12], [13], [14], [15].
With respect to, experience ’s Maja and et al [8] that a bias
in codon usage present throughout the entire microbial com-
munity by applying definitions of translational optimization
through codon usage adaptation on completely metagenomic
datasets. They can be used as a powerful analytical tool for
predicting community lifestyle-specific metabolism. Moreover,
Maja and et al demonstrate this approach combined with
machine learning, to classify microbiome samples in human
gut according to the pathological condition diagnosed in the
human host. In addition, predicting disease-relevant features in
microbial gut metagenomes by using the principle of utilizing
the prokaryotic translational optimization effect combined with
the machine learning based classification and enriched gene
datasets that explore a supportive method to analyzing metage-
nomic datasets. Authors in [8], [16] proposed methods using
machine learning and deep learning to do disease prediction
tasks and obtained promising results.

K-means clustering is an unsupervised learning algorithm.
From the input data without the label to be clustered and the
number of clusters to be divided, we will use the algorithm to
divide the data into clusters of similar properties. Applications
of clustering algorithms have been used commonly to resolve
data clustering. Based on clustering methods, we can obtain
a meaningful intuition of the structure of the data. Moreover,
we can use “Cluster-then-predict”. That means, we observe
generated clusters, then different models will be built for vari-
ous subgroups if there exists a wide variation in the behaviors
of a variety of subgroups. Numerous studies in biological
computation tasks have been applying k-mean to do specific
analyses. Authors in [17] used k-mean to process Microarray
data for bioinformatics tasks. [18] also implemented k-mean
to cluster biological sequences by first converting them into an
intermediate binary format where Hamming distance is used
as the metric of comparison. The research in [19] presented
enhanced k-mean to do Bioinformatics Data Clustering. In
2019, a study [20] introduce a modified sparse K-means
clustering method to detect risk genes involved with Type II
Diabetes Mellitus. From some previous results, we can see
potential benefits to leverage k-mean in bioinformatics tasks.

In recent years, the application of machine learning al-
gorithms to study metagenomic has become popular and the
accuracy of diagnosis has been improved over time. In this
article, we propose the application of the K-means clustering
algorithm in the binning approach to improve the accurate
results in predicting T2D. We leverage k-mean clustering as a
tool to support binning data. By identifying clusters which can

exist in the data, we hope to improve the performance via using
a binning approach. Our study’s contribution is multi-fold:

• We present results of various binning approaches on
Type Diabetes disease using metagenomic data which
appear as a very big challenge for diagnosis.

• The work aims to illustrate a potential advantage
of using clustering algorithms to identify breaks for
binning approaches to obtain a better result in T2D
prediction compared to other binning methods.

• The results reveal high performances of state-of-the-
art in deep learning algorithms, the Convolutional
neural network, compared to traditional neural net-
works such as Multi-Layer Perceptron. Convolutional
Neural networks can work efficiently even on one-
dimensional data.

• Most cases, machine learning outperforms deep learn-
ing algorithms. For numeric data formed in 1D, clas-
sical machine learning reveals a robust prediction
ability.

• Previous studies have not investigated the efficiency
of classic machine learning with binning approaches.
Our study proves by using Random Forest that it is
possible be the best choice to select machine learning
combining approaches to improve prediction perfor-
mance on numeric species abundance datasets.

The remaining of this study, we present a short description
of two considered T2D datasets in Section III. Furthermore,
methods which we choose will be introduced in Section IV.
Experimental Results of our proposed methods in this paper
are illustrated in Section V. Finally, Section VI and Section
VII discuss the results and summarize important remarks for
this research.

III. DATA BENCHMARKS FOR METAGENOMIC ANALYSIS

We run the experiments on metagenomic abundance data
that indicates how present (or absent) is an OTU (Operational
taxonomic unit) in human gut. The abundance datasets are
obtained using default parameters of MetaPhlAn2 described
as detailed in [14].

A little more detail of the process of generating abundance
shown in Fig. 1, the stool sample collected from human is
fetched into machines to extract total Deoxyribo Nucleic acid
(DNA). DNA then is sequenced to create millions of reads. The
new generation sequencing techniques can process millions
of sequencing reads in parallel. These reads are mapped to a
catalog of references including all known gut microbial genes
and known bacterial at levels of species, genus and so on.
The techniques also indicate the presence and abundance of
each gene and each species in any samples. As revealed in
numerous studies, species abundance and genes abundance can
distinguish patients and healthy controls. Moreover, genes and
species can be leveraged to develop robust tools for diagnosis
and prognosis.

We evaluated our approach on the disease of Type 2
Diabetes with two datasets. The first one (T2D1) includes 344
Chinese individuals [22], and 96 western women are in other
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Fig. 1. Quantitative metagenomic data to explore human gut microbiome [21]

TABLE I. BINNING APPROACHES PERFORMANCE COMPARISON IN
AVERAGE OF ACCURACY (VAL ACC) AND MATTHEWS CORRELATION

COEFFICIENT (VAL MCC) ON TEST SETS USING MULTI-LAYER
PERCEPTRON

Datasets T2D1 T2D2
#Samples 344 96
#Features 572 381
#patients who affected by T2D 170 174
#controls/healthy individuals 53 43

dataset (T2D2) [23]. The datasets are characterized by bacterial
species abundance. For each sample in each dataset, species
abundance is a relative proportion and formed as a real number.
The total abundance of all features in each sample is equal to 1.
More details are shown in Table I. We consider to investigate
on T2D because it is considered as one of the most changeling
disease prediction tasks.

Let D be the set of considered datasets, D = {d1, d2}, with
d1 = T2D1, d2 = T2D2, d = 1..2

Si = {s1, s2, ..., sn} includes n samples corresponding to
di

Fi = {f1, f2, ..., fm} includes m features corresponding to
di

Pi = {p1, p2, ..., pk} includes k patients who affected by
T2D corresponds to di

Ci = {c1, c2, ..., ck} includes x controls / healthy individ-
uals that correspond to di

Matrix(C) =

(
d1 S1 F1 P1 C1

d2 S2 F2 P2 C2

)

=

(
T2D1 344 572 170 53
T2D2 96 381 174 43

)
Total abundance of all features in one sample is sum up to

1:
k∑

i=1

fi = 1

With:

• k is the number of features for a sample.

• fi is the value of the i-th feature.

IV. BINNING APPROACHES

A. Binning Approaches for Metagenomic Data

Some binning approaches were introduced in [24] includ-
ing Species bins (SPB) based on species abundance distribution
on 6 datasets, binning based on equal width and the method
based on equal frequency.

• Species Bins (SPB) are conducted from data distribu-
tion of six metagenomic bacterial species abundance
datasets related to various diseases. Authors in [25]
observed that original species abundance almost fol-
lows the zero-inflated distribution. When they con-
vert data with a scaler using log-transformed (with
logarithm base 4), the scaled data is more normally-
distributed (see a example of the raw species abun-
dance and log-transformed (with logarithm base 4)
of two considered datasets of T2D shown in Fig. 2).
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Fig. 2. Species abundance distribution of two considered T2D datasets. The
top chart show original species abundance data distribution illustrates

zero-inflated distribution. The other reveals a normally-distributed when we
do log-transformed (with logarithm base 4) on this data.

From that, authors proposed breaks for binning where
each break is the one that in the logarithm base 4 is
equivalent to a fold increase from the previous bin. A
little more detail, the first breaks will start at 0 and
10−7 (the minimum values of six considered datasets),
the next break will be 4 ∗ 10−7 and so on. This bins
seem to be efficient for the prediction.

• A commonly-wided way is equal width binning
(EQW). This technique is rather simple. The breaks
are identified based on the width of the considered
range of values. Let’s say, we want to discretize 5 bins
for a range of [Min,Max] with Min=0 and Max=0.5.
The width of each bin is equal and computed by
Max−Min

5 = 0.1. Breaks in this example will be
0, 0.1, 0.2, 0.3, 0.4.

• Binning based on frequency of values is also an effec-
tive method. The method is equal frequency binning
(EQF) where each bin can contain approximately the
number of elements. Therefore, the interval width can
be very different. The breaks can be 0.1, 0.11, 0.2, 0.5
and so on, for example, depending on the value
distribution.

• The last binning described in this section is binary
bins. This method only considers whether the value
of that feature is greater 0 or not. Since it determines
the Presence of feature in the samples, we also call it

“PR”.

B. Binning based on K-means Algorithm

With different distributions of data, the clustering algorithm
is a crucial tool to identify groups in data. Determining
groups for binning, we hope to improve the performance by
identifying various areas which have high data density. K-
means clustering is a common method in cluster analysis and
data mining. The purpose of this method is to partition n
elements into clusters such that each element of the cluster has
the closest mean value, acting as the cluster’s prototype. This
method is performed based on the smallest Euclidean distance
between the elements and the central element of the group.
Assume each object has m attributes. Each object’s properties
are like coordinates of an m-dimensional space; each object is
a point on that space. Euclidean distance is calculated by the
formula:

∂ji =

√√√√ m∑
s=1

(xis − xjs)2

With

• ai = (xi1, xi2, ... xim) i = 1..n - the ith object to be
classified

• cj = (xj1, xj2, ... xjm) j = 1..k - central element group
j

The central element is determined by the average of the
elements in the group. Initially, these elements will be ran-
domly selected and after each addition of objects to groups,
the central elements will be recalculated. To calculate cij -
the j coordinate of the group i central element, we have the
formula:

cij =

∑t
s=1 xsj

t

With:

• j = 1..m (m is the number of properties)

• xsj - jth attribute of element s (s = 1..t)

Binning with K-means clustering, we will get better results
than the methods mentioned earlier. Suppose we need to
binning with n = 10 (the numbers of bins). This method is
performed as follows:
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Algorithm 1 Algorithm for identifying the list of binning
breaks based on clustering algorithm, K-Means
Input: n - number of clusters, matrix C to find bin breaks
Output: B - array containing list of n bin breaks found
Begin

Step 1: Initialize data
- Convert matrix C to 1-dimensional array.
- Remove 0 or uncountable values in array.
- Sort the array in ascending values.

Step 2: Using the K-means algorithm with a total
number of clusters n - 1. We have array A containing the
grouped elements.

Step 3: Construct array B containing n bin breaks
- Find n - 2 bin breaks by calculating the average of

two boundaries in two adjacent groups.

B[i] =
(max(A[i− 1]) +min(A[i]))

2

With: i = 1..n− 1
- Add 0 and 1 to array B.
- Sort the array in ascending values

End

For easier comparisons, all binning approaches in this study
are implemented with the same number of bin (10 bins) for
all classifiers. We underline that the breaks for binning are
conducted using the training sets to avoid overfitting issues.

V. EXPERIMENTS

For comparing the efficiency binning approaches in im-
proving T2D prediction performance on various learning al-
gorithms, each learning architecture is presented in each sepa-
rated table. Table II gives results using MLP while Table III
illustrates the performance of CNN1d. The last table (Table
IV), we present the best results with Random Forest and also
compare to state-of-the-art in MetAML [14]. The datasets used
was described in Section III. The details of models used in
the experiments and results are presented as following.

A. Learning Models for Comparison

In order to evaluate and compare the efficiency on a
wide range of learning models, we propose to use 3 different
learning algorithms. A state-of-the-art in machine learning is
Random Forest that is implemented to run the experiments on
the datasets. Moreover, as a traditional neural network, Multi-
Layer Perceptron (MLP) is also leveraged for the comparison.
We also evaluate one-dimensionality convolutional neural net-
work (CNN1D) on considered datasets.

• Previous studies, most successful methods applied to
numeric omics datasets are known mainly Random
Forest (RF). Authors in [14] introduced MetAML
using Random Forest and obtained the best results
among considered algorithms. Applying the same pa-
rameters proposed in [14], we use 500 trees for this
algorithm for the learning.

• The MLP is used in this study with parameters pro-
posed in [16] including one hidden layer and 128
neural.

• CNN1D consists of one one-dimensional convolu-
tional layer of 128 filters followed by a max pooling
of 2 and ending by a fully connected layer. MLP and
CNN1D use Adam optimizer function with a batch
size of 16. Other parameters are also the same with a
default learning rate of 0.001 and epoch patience of 5
for early stopping technique (for reducing overfitting
issues).

B. Metrics for Comparison

The performances are assessed by 10-fold cross validation.
We compute Average Accuracy and Average Matthews Cor-
relation Coefficient (MCC) as performance measurement for
evaluating the generalization of the classifiers. Training and
test sets are exactly the same for each classifier, or we can
say that the same folds are used for all classifiers. With this
technique, the changes when comparing performance of any
two classifiers could be computed directly as the difference in
metrics within each test fold.

Accuracy is a common measurement for models’s per-
formance while MCC is considered as a good performance
evaluation score for biology datasets and helps to evaluate
whether the model is going well or not. As in [28], the
authors said that “among the common performance evaluation
scores, MCC is the only one which correctly takes into account
the ratio of the confusion matrix size”. Matthews correlation
coefficient score is computed as following formula:

With:

• TP stands for True Positive

• TN is True Negative

• FP: False Positive

• FN: False Negative

Matthews Correlation Coefficient score is computed by:

MCC =
TP.TN − FP.FN√

(TP + FP ).(TP + FN).(TN + FP ).(TN + FN)

And Accuracy = TP+TN
TP+TN+FP+FN

The model reaches the best when mcc = 1 while the worst
value is mcc = −1. Authors in [28] recommended using this
metric for evaluating the algorithm performance.

C. Experimental Results

1) Evaluation binning approaches with MLP: We are con-
sidering two diseases T2D1 and T2D2 with results using
MLP in Table II. As a result, the binning approach with K-
means in both diseases achieved val acc and val mcc values
higher than all other approaches EQW, PR, SPB. Considering
dataset dataset T2D1, K-means is significantly higher than
SPB. Specifically, val acc is higher than val acc of SPB is
0.034 and of val mcc is 0.044. For approaches like EQW, PR
or EQF, the K-Means approach returns values with relatively
good disparities. Considering dataset dataset T2D2, val acc of
K-means is more than 0.069, val mcc is 1.46 times higher than
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TABLE II. BINNING APPROACHES PERFORMANCE COMPARISON IN
AVERAGE OF ACCURACY (VAL ACC) AND MATTHEWS CORRELATION

COEFFICIENT (VAL MCC) ON TEST SETS USING MULTI-LAYER
PERCEPTRON

val acc val mcc Dataset Approach
0.686 0.379 T2D1 k-means
0.681 0.371 T2D1 EQW
0.663 0.353 T2D1 PR
0.658 0.34 T2D1 EQF
0.652 0.335 T2D1 SPB
0.727 0.459 T2D2 k-means
0.714 0.437 T2D2 EQW
0.667 0.339 T2D2 PR
0.705 0.414 T2D2 SPB
0.652 0.314 T2D2 EQF

TABLE III. BINNING APPROACHES PERFORMANCE COMPARISON IN
AVERAGE OF ACCURACY (VAL ACC) AND MATTHEWS CORRELATION

COEFFICIENT (VAL MCC) ON TEST SETS USING CNN1D

val acc val mcc Dataset Approach
0.692 0.392 T2D1 k-means
0.678 0.363 T2D1 EQW
0.677 0.367 T2D1 PR
0.652 0.323 T2D1 EQF
0.649 0.316 T2D1 SPB
0.740 0.473 T2D2 k-means
0.707 0.413 T2D2 EQW
0.700 0.397 T2D2 PR
0.687 0.382 T2D2 SPB
0.674 0.346 T2D2 EQF

EQF. The value of EQW in this disease is the second most in
approach and is 0.022 different from when using K-Means. In
summary, the results when binning with K-Means cluster using
Multi-Layer Perceptron, we will get the best results compared
to the remaining methods.

2) Evaluation binning approaches with Convolutional Neu-
ral Network on 1D data: Table III shows the performance
using CNN1D. When using the One-Dimensional Convolu-
tional Neural Network, the results of K-Means are 0.692 for
val acc, 0.740 for val mcc, respectively. Both results are better
than using Multi-Layer Perceptron (val acc = 0.686, val mcc
= 0.727). In T2D1, the result of K-Means is much higher than
the next EQW value, namely 0.014 difference for val acc and
0.076 for val mcc compared to K-Means. The value of val acc
of K-Means compared to the lowest value in this disease of
SPB is 0.076 and of val mcc is 0.043. In T2D2, the lowest
valued approach for this disease is EQF. Val acc value is more
than 0.066, val mcc of K-Means is 1.367 more than EQF.
The difference between the values of EQW and K-Means is
quite good, respectively 0.033 for val acc, 0.06 for val mcc.
In summary, when using the One-Dimensional Convolutional
Neural Network, the K-Means approach results in better results
when using the Multi-Layer Perceptron and this result is still
the best result compared to the other approach.

3) Random Forest obtains promising results with the pro-
posed binning, compared to state-of-the-art MetAML: We
also used the Random Forest for results comparison in Table
III. Similar to the previous two tables, when binning with
K-means we obtain very good results compared to using
other approaches. A previously used framework, MetAML, K-
means, gave val acc more than 0.036 for T2D1 and 0.056 for
T2D2. Considering T2D1, K-means val acc is more than 0.04
and val mcc is 0.07 more than SPB. The second result in the

TABLE IV. BINNING APPROACHES PERFORMANCE COMPARISON IN
AVERAGE OF ACCURACY (VAL ACC) AND MATTHEWS CORRELATION

COEFFICIENT (VAL MCC) ON TEST SETS USING RANDOM FOREST

val acc val mcc Dataset Approach
0.700 0.400 T2D1 k-means
0.686 0.383 T2D1 PR
0.680 0.370 T2D1 EQF
0.674 0.357 T2D1 EQW
0.660 0.330 T2D1 SPB

0.664 T2D1 MetAML
0.759 0.515 T2D2 k-means
0.736 0.483 T2D2 PR
0.720 0.440 T2D2 EQW
0.690 0.370 T2D2 EQF
0.652 0.306 T2D2 SPB

0.703 MetAML

Fig. 3. Performance Comparison in Average Accuracy of different binning
approaches including EQF, EQW, K-means, PR and SPB. Standard

deviations are shown in error bar.

table for both diseases is the PR approach. The difference in
value between K-means and PR is quite good. K-means has
val acc more than 0.014, val mcc is more than 0.017 than
PR. Considering T2D2, val acc is 0.107 and val mcc is 1.683
times higher than SPB results. K-means has val acc more than
0.023, val mcc is more than 0.032 than PR. In short, when
choosing K-means as an approach, we will get better results
than some common approaches such as PR, EQW, EQF or
SPB, especially the approach used was MetAML.

4) Random Forest obtains better results compared to neural
networks: The chart in Fig. 3 shows the results being con-
ducted from two datasets of T2D. We use five approaches for
testing, namely, EQF, EQW, K-Means, PR, SPB. Considering
T2D1 disease, the K-means approach has the largest Average
Accuracy value, reaching 0.7. SPB has a value of Average
Accuracy is 0.66, this is the smallest value and smaller
than K-Means 0.34. Similarly, for T2D2 disease, the Average
Accuracy of K-Means value is 0.759, the highest among the
remaining approaches. This value is higher than the next PR
value of 0.023. The Average Accuracy of SPB is less than
0.107 compared to K-Means.

The chart in Fig. 4 shows the results Average MCC value
on 2 datasets of T2D and 5 approaches. K-Means has the
highest Average MCC value on both datasets and 0.4 for T2D1
and 0.515 for T2D2. Average MCC value of K-Means greater
than SPB in T2D1 is 0.07, 1,683 times that of T2D2. The
disparity with the next high value of PR is also quite clear,
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Fig. 4. Performance Comparison in Average MCC of different binning
approaches including EQF, EQW, K-means, PR and SPB.

namely, 0.017 for T2D1 and 0.032 for T2D2.

VI. DISCUSSION

From collected results, we can see that RF obtains the
best among considered models. These results are similar to
[25] where authors also have attempted to apply deep learning
but the performance in T2D disease is still worse than RF.
This reflects a fact as mentioned in [26]: “the deep learning
approaches may not be suitable for metagenomic applications”.
As stated in [27], we are facing challenges when applying
deep learning to solve biological and clinical tasks because
of limited data availability, result interpretation and hyper-
parameters tuning for deep learning algorithms.

Although PR only considers whether a bacterial species
exists in a patient or, it revels a better performance (using RF)
than several other binning methods such as SPB, EQW, EQF.
From results, we can propose medical examinations for T2D
only determining the existence of bacterial species in human
body for the diagnosis. These examinations can be simpler
than computing quantitative compositions of bacterial.

In most situations, SPB performs poor performance com-
pared to the others because SPB was conducted from species
abundance distribution from various diseases. Each disease
should be considered independently because one disease can
have its own complexity, characteristics as well as data density.

VII. CONCLUSION

We introduce a novel binning approach using a classical
clustering algorithm such as K-means. As shown from the
comparison results among considered existing binning ap-
proaches such as binning based on species distribution, based
on width and frequency and binary bins, we can see the
encouraging results in use of clustering methods for identifying
breaks for binning to enhance the prediction performance.

The analysis of two architectures of one-dimensional con-
volutional neural network and Multi-layer Perceptron shows
that convolutional neural network not only achieve a good
performance on images but also obtain a promising result
compared to traditional neural network such as MLP.

As some results in previous studies, classic machine learn-
ing such as Random Forest still works better more complex
models such as MLP and CNN1D in T2D diagnosis by metage-
nomic data. Further research can investigate more deeper and
sophisticated models to improve the performance.

Using classic clustering algorithm K-means with default
parameters in binning gives encouraging results. This could
promote studies to go deeper in use of clustering methods
to generate breaks for binning. This illustrate that there are
potentials in exploring density data to improve not only for
T2D disease but also for other diseases.
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[11] Karlsson FH, Fåk F, Nookaew I et al, Symptomatic atherosclerosis
is associated with an altered gut metagenome. Nat Commun 3:1245.
doi:10.1038/ncomms2266. 2012.

[12] Qin N, Yang F, Li A et al, Alterations of the human gut microbiome
in liver cirrhosis. Nature 513:59–64. doi:10.1038/nature13568. 2014.

[13] Turnbaugh PJ, Gordon JI, The core gut microbiome, energy balance and
obesity. J Physiol 587:4153–4158. doi:10.1113/ jphysiol.2009.174136.
2009.

[14] E. Pasolli, D. T. Truong, F. Malik, L. Waldron & N. Segata; Machine
Learning Meta-analysis of Large Metagenomic Datasets: Tools and
Biological Insights; PLoS Comput. Biol. 12, p. e1004977. 2016.

[15] Steve Miller, Charles Chiu, Kyle G. Rodino, Melissa B. Miller; Point-
Counterpoint: Should We Be Performing Metagenomic Next-Generation
Sequencing for Infectious Disease Diagnosis in the Clinical Laboratory?.
DOI: 10.1128/JCM.01739-19. Journal of Clinical Microbiology. 2020.

[16] Thanh Hai Nguyen, Jean-Daniel Zucker. Enhancing Metagenome-based
Disease Prediction by Unsupervised Binning Approaches. The 2019 11th
International Conference on Knowledge and Systems Engineering (KSE-
IEEE), ISBN: 978-1-7281-3003-3, pp 381-385. 2019.

[17] Hanaa M. Hussain et al. FPGA implementation of K-means algorithm
for bioinformatics application: An accelerated approach to clustering
Microarray data. 2011 NASA/ESA Conference on Adaptive Hardware
and Systems (AHS). 2011.

[18] Timothy et al. K-Means Clustering of Biological Sequences. ADCS
2017: Proceedings of the 22nd Australasian Document Computing Sym-
posium. 2017.

www.ijacsa.thesai.org 636 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

[19] Jasmin T. Jose1 et al. Case Study on Enhanced K-Means Algorithm
for Bioinformatics Data Clustering. International Journal of Applied
Engineering Research ISSN 0973-4562. 2017.

[20] Vijayalakshmi K., Padmavathamma M. (2019) Design and Implementa-
tion of Modified Sparse K-Means Clustering Method for Gene Selection
of T2DM. In: Computational Intelligence and Big Data Analytics.
SpringerBriefs in Applied Sciences and Technology. Springer, Singapore.
2019.

[21] Stanislav Dusko Ehrlich. The human gut microbiome impacts health
and disease. PubMed. 339(7-8):319-23. doi: 10.1016/j.crvi.2016.04.008.
PMID: 27236827. 2016

[22] Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ,
Fagerberg B, et al. Gut metagenome in European women with normal,
impaired and diabetic glucose control. Nature 2013;498(7452):99–103.
pmid:23719380. 2013.

[23] Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A. 2013 metagenome-
wide association study of gut microbiota in type 2 diabetes. Nature

2012;490(7418):55–60. pmid:23023125. 2012.
[24] Le Chatelier E, Nielsen T, Qin J et al Richness of human gut

microbiome correlates with metabolic markers. Nature 500:541–546.
doi:10.1038/nature12506. 2013.

[25] Thanh Hai Nguyen et al.; Disease Classification in Metagenomics with
2D Embeddings and Deep Learning; In Proceedings of CAp, France
2018.

[26] G. Ditzler, R. Polikar & G. Rosen; Multi-Layer and Recursive Neural
Net- works for Metagenomic Classification; IEEE Trans. Nanobioscience
114, p. 608–616. 2015.

[27] Fioravanti, D., Giarratano, Y., Maggio, V. et al. Phylogenetic convolu-
tional neural networks in metagenomics. BMC Bioinformatics 19, 49.
https://doi.org/10.1186/s12859-018-2033-5. 2018.

[28] Baghban, H. and Rahmani, A.M. A heuristic on job scheduling in
grid computing environment. In Grid and Cooperative Computing, 2008.
GCC’08. Seventh International Conference on (pp. 141-146). IEEE.
October, 2008.

www.ijacsa.thesai.org 637 | P a g e


