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Abstract—Machine learning is being applied to almost all
corners of our society today. The inherent power of large amount
of empirical data coupled with smart statistical techniques makes
it a perfect choice for almost all prediction tasks of human
life. Information retrieval is a discipline that deals with fetching
useful information from a large number of documents. Given that
today millions, even billions, of digital documents are available,
it is no surprise that machine learning can be tailored to this
task. The task of learning-to-rank has thus emerged as a well-
studied domain where the system retrieves the relevant documents
from a document corpus with respect to a given query. To
be successful in this retrieving task, machine learning models
need a highly useful set of features. To this end, meta-heuristic
optimization algorithms may be utilized. The aim of this work
is to investigate the applicability of a notable meta-heuristic
algorithm called simulated annealing to select an effective subset
of features from the feature pool. To be precise, we apply
simulated annealing algorithm on the well-known learning-to-
rank datasets to methodically select the best subset of features.
Our empirical results show that the proposed framework achieve
gain in accuracy while using a smaller subset of features, thereby
reducing training time and increasing effectiveness of learning-
to-rank algorithms.
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I. INTRODUCTION

Information retrieval (IR) is a process of retrieving the
relevant information from a huge collection of data. Given the
sheer amount of digital documents available today, this task
is inherently quite difficult. An IR system works as follows.
A query is submitted by the user of the system, and the task
of the system is to return a ranked list of documents to the
user based on the query. The user expects that highly relevant
documents are in the top portion of the ranked list. Hence, the
job of the system is to decide which document is relevant to the
query and to what degree. To accomplish this task, researchers
have been using heuristic scoring functions [1].

Machine learning can be thought of a discipline of applied
statistics [2]. Given sufficient amount of empirical or historical
data, these techniques are able to predict the outcome of unseen

events. Various paradigms of machine learning are practised.
Amongst these, supervised machine learning is mostly used
by common people. In this setting, the training data consists
of various information about different events along with the
known labels. The job of the training module is to learn the
pattern (in the form of a function) of the data that decides the
labels. This function or model is then used to predict the labels
of the unseen data, which is called the testing or evaluation
module.

Learning-to-rank (LtR) is a relatively new area emerged
in early 2000 as a successful marriage between information
retrieval and machine learning [3]. In this framework, the
training examples are query-document pairs, the features are
the output scores of various scoring functions (such as tf-idf,
bm25 score, etc.), and the labels are relevance scores assigned
usually by humans. A model learnt from these data can then be
used to generate relevance scores for documents with respect
to a user’s query. Fig. 1 depicts the scenario.

Today not only are data sets getting bigger and bigger,
but also new data types have also been keeping to emerge,
such as web-based data streams, genomics and proteomics
micro arrays, and social media and system biology networks
[4]. Therefore, the choice of features in a supervised machine
learning setting is of utmost importance [5], [6]. One the
one hand, we want to incorporate as much information as
possible in our training set so that the learning algorithm
can easily decide which aspects of the training data plays
role in producing the labels. On the other hand, if irrelevant
and misleading information is as features, the learning module
will find it difficult to extract the pattern of the data, thereby
reducing predictive accuracy. Moreover, if we can reduce the
number of features, the training time in the learning phase will
be minimized. For these reasons, a lot of research in supervised
machine learning has been devoted to feature selection process
[7]. The goals of feature selection include: creating easier
and more comprehensible models, and enhancing data mining
efficiency and helping to clean and understand data better [8].
It should be noted here that the feature selection is an NP-hard
problem [9]. More details about these works will be elaborated
in the next section.

The rest of the paper is organized as follows. In Section II,
we briefly discuss existing works related to our area. In
Section III, we discuss our framework in detail. Section IV
presents the experimental settings and discusses the findings.
Finally, Section V concludes the paper.
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Fig. 1. An LtR-based IR system [10].

II. BACKGROUND AND LITERATURE REVIEW

In this section, we discuss the existing works related to
our field which is feature selection in machine learning and
learning-to-rank using traditional and meta-heuristic methods.
We thus identify the gap in the existing literature.

A. Feature Selection in Supervised Machine Learning

We discuss the relevant papers of this subsection in two
categories: (1) using traditional methods, and (2) using meta-
heuristic algorithms.

1) Using Traditional Methods: By traditional methods of
feature selection we mean filter, wrapper, embedded, for-
ward/backward elimination, etc. methods [11].

Karegowda et al. [12] propose a supervised feature selec-
tion approach called wrapper approach. Wrappers take a subset
of the function set, evaluates the output of the classifier on
this subset, and then evaluates another subset on the classifier.
Four different classifiers, namely Decision tree C4.5, Naı̈ve
Bayes, Bayes Network and Radial Basis are used. Eleven
attributes identified by different wrappers were compared using
different classifiers in the validation step. Their experiment
discovers that no single standard wrapper approach is the best
for different data sets.

Liu et al. [11] explain the importance of feature selection
in data mining and briefly describe the methods of feature
selection which is filter, wrapper and embedded model. For
dimension reduction in data mining, the impact of feature
selection is explained. There are brief explanation on feature
weighting algorithms or subset selection, single data source
algorithms, multi-source feature selection, detecting feature
dependency, among other topics. Two research issues with
selection features are explored.

Fan et al. [13] discusses the process of selecting features
for data sets with millions of features.

2) Using Meta-Heuristic Algorithms: Heuristic optimiza-
tion algorithms have been designed to solve large-scale opti-
mization problems [14]. Most of these algorithms are nature-
inspired. These methods differ from heuristic algorithms in
the sense that the heuristic algorithms, working in a purely

greedy manner, oftentimes stuck in local optima of the search
space whereas the meta-heuristic algorithms use various types
of randomization, even sometimes at the cost of apparently
bad move, to get out of local optima. The focus of the meta-
heuristic algorithms is to find an optimal solution for given
problem by exploring maximum number of useful positions of
the search space landscape in a given time frame.

Many researchers have investigated meta-heuristic algo-
rithms for feature selection in machine learning. Below we
describe some of them.

Emary et al. [15] propose a grey-wolf optimization (GWO)
– a meta-heuristic algorithm inspired by natural instinct of
wolves – based feature subset selection approach. Three pa-
rameters of the algorithm are used to decide the fitness of
a candidate feature subset. The GWO algorithm iterates by
exploring new regions within the function space and leverages
solutions before near-optimal solution is reached. The opti-
mization approach is based on k-nearest neighbor.

Sayed et al. [16] propose an extension of crow search
algorithm. Features are selected based on the chaotic crow
search algorithm (CCSA). CCSA is an upgraded version of
crow search algorithm which is a nature based evolutionary
algorithm. The paper use ten different chaotic maps for opti-
mization. 20 data sets with different features and parameters
are examined.

Aljarah et al. [17] explores the grasshopper optimization al-
gorithm. A bio-inspired optimization technique is introduced to
optimize the performance of Support Vector Machine (SVM)
classifier, a powerful supervised machine learning technique.
The model’s main objective is to maximize SVM’s classifi-
cation accuracy with the minimum number of features. The
suggested solution is tested on 18 public datasets and the result
is satisfactory.

One of the most effective meta-heuristic algorithms to
date is simulated annealing (SA) [18]. Being popular for its
capability to find good quality solutions, SA is used by many
researchers in multifarious machine learning domains. Gheyas
and Smith [19] present a combination of two algorithms.
The capability of better exploration in the search space of
simulated annealing and the rapid convergence behavior of
genetic algorithm are combined to find the feature subset more
quickly and precisely. 11 synthetic and 19 real-world high-
dimensional data sets to conduct the experiments.

Mafarja and Mirjalili [20] design a hybridization of whale
optimization algorithm (WOA) and simulated annealing for
feature selection. Whale optimization algorithm has some
unique properties such as fewer parameters to control (since
it requires only two key internal parameters to be modified),
simple implementation and high versatility. The SA algorithm
is wrapped with the WOA algorithm in an attempt to find the
best solution throughout the neighborhood solutions. 18 data
sets are examined for performance evaluation.

Barbu et al. [21] investigates feature selection methods
using medical image data set where there is a massive number
of features. The authors propose an algorithm that is suitable
for big data computing due to its simplicity and ability to
reduce the problem size throughout the iterations. The authors
show that unlike its competitors such as boosting, the amount
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of data which the algorithm requires to use for training is much
smaller, making it suitable for large-scale problems.

B. Feature Selection in Learning-to-Rank

Learning-to-rank has a wide area of application. Feature
selection plays a vital role in building up a learning-to-rank
model. Besides searching, image processing, big data learning
and in classification of tweets are also included in the area of
learning-to-rank implementation.

Novakovic et al. [22] combine ranking methods and clas-
sification algorithms to find the optimal feature subset. Four
supervised algorithms, namely IB1, Naı̈ve Bayes, C4.5 Deci-
sion Tree and Radia basis and statistical and entropy-based
ranking methods are used. Filter-based methods are used for
evaluating each subset of features, and irrelevant features
are discarded. Duan et al. [23] use advanced greedy feature
selection algorithm while exploring the earning-to-rank on
tweets. Lai et al. [24] transform the feature selection problem
into a joint convex optimization formulation which minimizes
ranking errors as well as simultaneously conducting feature
selection. Their framework can incorporate various feature
similarity and imporance measures. Geng et al. [25] also pose
the feature selection problem as an optimization problem by
defining a loss function involving feature importance, and then
solves it efficiently.

From the above review of existing works related the theme
of this paper which is feature selection methods for learning-
to-rank, we see that although simulated annealing have been
studied to some extent for feature selection in supervised
machine learning framework, to the best of our knowledge it
has not been investigated in a learning-to-rank paradigm. Our
work attempts to fill this gap in the literature.

III. METHODOLOGY

In this paper, we focus on finding the optimal subset of
features of training data of LtR problem that is likely to yield
a higher ranking accuracy during evaluation. For this optimiza-
tion purpose, we utilize simulated annealing algorithm.

A. Simulated Annealing

Simulated annealing is usually used to solve NP-complete
problems such as our feature subset selection problem, The al-
gorithm basically combines two methods, namely hill climbing
and random walk [14], [26].

Hill climbing is a greedy algorithm that only search for
the local best solution. Hill climbing reaches a solution by
recursively choosing the best neighbor based on an evaluation
function, until there is no immediate better neighbor than the
current one. When there is more than one best successor, a
random selection is made from the set of best successors. For
this nature of hill climbing algorithm, it often gets stuck in a
local optimal point.

To overcome the problem of local optima of hill climbing
algorithm, the idea of random walk is introduced [27]. The
walk starts at a certain fixed node and moves randomly to
a neighbor of the current node at each step. This method,

however, has its own limitation because it may arbitrarily jump
from one point to another in the search space.

Simulated annealing algorithm combines the merits of both
hill climbing and random walk. It applies randomization in a
way that allows occasional “bad” movements in an attempt
to reduce the likelihood of getting stuck in a mediocre yet
locally optimal solution. Specifically, the working procedure of
simulated annealing is as follows. A random state is selected
first. It then randomly selects a neighbor state (depending on
the specific problem at hand, the definition of neighborhood
is devised beforehand). If the selected neighbor state is better
than the current state in terms of a utility function (again,
decided beforehand), then the neighbor becomes the current
state and the algorithm iterates over. But if the selected
neighbor is worse than the current state, then the algorithm still
gives it a chance to be selected as the (next) current state by a
probability; the probability depends on the difference between
the two states (current and neighbor) and the time during which
the algorithm has been in its operation. More specifically, the
higher the difference, the less the probability of choosing the
(bad) neighbor, and the earlier stage the algorithm is in, the
higher the said probability. Mathematically this probability is,

probability = e
∆E
T ,

where,

∆E = neighbor state quality − current state quality,

and, T = temperature, which is reduced in every iteration
from a very high value to zero. In essence, if the quality of
neighbor state is worse than the current state, then the neighbor
is selected (or not) with the probability e

∆E
T .

Although simulated annealing offers a way to overcome
the striking bottleneck of hill climbing algorithm, but a large
amount of time is oftentimes the price to be paid [28]. The
idea of considering less value node is that, by doing it, the
algorithm gets to explore more area in solution space by not
getting stuck in a local optima.

Simulated annealing is known to work better than the bare
local search algorithm most of the time. The procedure of
simulated annealing is depicted in Fig. 2. To know more details
about this exciting algorithm, the interested reader is requested
to go though [29].

Fig. 2. Simulated annealing algorithm [30]. “schedule” in line 3 is a
monotonically decreasing function of T . “successor” in line 5, in our
context, means neighbor. “Value” in line 6 implies quality of a state.
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B. Proposed Framework

In this subsection we detail our algorithm that we use for
selecting the best subset of features using simulated annealing
technique. The procedure consists of broadly three constructs
which are described below.

• Notion of a state. Here a state in the search space
means a subset of features. Ultimately we search for
the best subset of features that, when learnt using these
features, yields the best predictive accuracy.

• Definition of neighborhood. A state’s neighbor is
defined as altering some features indexes of the current
state randomly.1

• Quality of a state expressed as a function. Here we
employ a heavily used IR evaluation metric called
Normalized Discounted Cumulative Gain (NDCG)
(will be elaborated in Section IV) as the quality of
a state. The higher the NDCG of a model learnt from
a training data (consisting of only the k features in
question), the better.

Armed with these constructs, we are now in a position to
detail our framework. Here is how it works. The procedure
takes the number of features to select, k, as parameter, from
the available pool of features. It then initially chooses random
k features which is considered as the initial state in the search
space. It then builds the training set using only these selected
features, and trains an LtR algorithm on these data. The learnt
model is then evaluated on test data (obviously using only
the reduced subset of features in question) and stores the
NDCG value as the quality of the current state. After that the
neighbor state is chosen as per the rule aforementioned rule.
The NDCG value in the evaluation stage is computed using
the training data triggered by the neighbor state. The difference
in these two NDCG values are then used to decide whether
to make the neighbor state current state. The procedure stops
when, for a particular k value, a predefined maximum number
of iterations is reached. This entire procedure is repeated
for various k values. While we retain and compare NDCG
performance of various k values against corresponding random
feature subset selection, ultimately the corresponding feature
subset of highest performing k value that gives the best NDCG
value across all the iterations is suggested to use instead of
all available features. In our implementation we start with
k = 1 and increase it one by one until we reach the number
of available features.

IV. EMPIRICAL RESULTS

For the experiments, we use six popular data sets, namely
MQ2007, MQ2008, TD2004, HP2004, NP2004 and Ohsumed.
These data sets have been made publicly available by Mi-
crosoft2. The data sets contain a varying number of features
which are as follows: MQ2007 and MQ2008: 46, TD2004,
HP2004, and NP2004: 64 and Ohsumed: 45. The data sets
come with predefined chunks for training, validation and

1We note here that there could be other definitions which we intend to
investigate as future work.

2https://www.microsoft.com/en-us/research/project/letor-learning-rank-
information-retrieval/.

test sets. We maintain these chunks for the sake of better
compatibility with the existing research works. To know more
details about these datasets, please see [31], [32].

The RankLib LtR implementation3 is used for evaluating
our proposed framework. As for LtR algorithm, we choose
LambdaMart because numerous research such as [33], [34]
show that tree-ensemble methods in general, and specifically
LambdaMart, perform oftentimes better than other LtR algo-
rithms.

As mentioned earlier, as evaluation metric we use NDCG.
NDCG is a ranking performance evaluation metric that gives
a gradually higher score (out of 1) to a list having the highly
relevant documents in the top portion of it. To know more
about NDCG and other IR evaluation metric, please see [3].

For each of the six data sets, we generate a plot as follows.
For a particular k value starting from 1 and ending in the
number of available features, we generate two new training sets
– one with the features suggested by the random selection pro-
cess (i.e., by choosing random k feature indexes) and the other
with the features prescribed by simulated annealing algorithm
(i.e., by choosing k features of the solution state returned by
the SA algorithm after 100 iterations). The LambdaMart LtR
algorithm is then learnt for each of the generated training sets,
and then the two learnt models are evaluated on the test set
(obviously comprising with the same features of each case).
Thus we get two NDCG values for a particular k value: one
for the random selection process and the other for the SA
algorithm. This way all possible k values are examined, and
finally the graph is generated (for this data set) by plotting
these two curves. Fig. 3, 4, 5, 6, 7, and 8 show these plots
for the six data sets. Now, we analyze each of the six plots in
details.

1) MQ2007 Data Set: Fig. 3 shows that the curve fluctuate
initially at a higher degree which is gradually quelled. This is
because when the number of features is small, the benefit of
SA algorithm is not evident. Then as the number of features
increases the curve get relatively flatter. From the graph we
can say that instead of taking all the 46 features, we can get
the best accuracy with only 26 features as prescribed by the
SA algorithm

2) MQ2008 Data Set: Fig. 4 shows that for MQ2008 data
set from the beginning the efficacy of SA approach is evident.
With almost only 20 features suggested by the SA algorithm
we can reach the accuracy of the training set having all 46
features.

3) Ohsumed Data Set: Fig. 5 shows that the curve of
Ohsumed data set tends to vary almost from beginning to end
for all the k values. It can be concluded that initially there
is a significant difference between the random selection score
and SA score. But after coming to about 18 features, the gap
diminishes onward. Therefore, from our experiment we can
say that using a subset of 18 features instead of all 45 features
may be time-efficient.

4) NP2004 Data Set: Fig. 6 demonstrates that from around
k = 8, i.e., using only 8 or more features with simulated
annealing is almost invariably better than the random selection

3https://sourceforge.net/p/lemur/wiki/RankLib/
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Fig. 3. MQ2007 data: comparison between random selection and simulated
annealing in terms of NDCG.

Fig. 4. MQ2008 data: comparison between random selection and simulated
annealing in terms of NDCG.

approach. Moreover, using 39 features outperforms the setting
of using all 64 features.

5) HP2004 Data Set: Fig. 7 demonstrates similar trend
that of NP2004 in terms of performance comparison between
random selection and simulated annealing approaches. In par-
ticular, after k = 8 it appears that SA approach almost always
outperforms the random selection approach. Taking a subset
of only around 22 features is likely to beat the performance
of 53 features.

6) TD2004 Data Set: Fig. 8 shows largely similar trend to
that of HP2004 and NP2004. From around 8 features, the SA
approach seems to outperform the random selection approach.
Moreover, it appears that using only around 23 features yield
equivalent accuracy to that of using all 64 features.

A. Discussion

The following points can be drawn from the analysis of
experimental results.

Fig. 5. Ohsumed data: Comparison between random selection and simulated
annealing in terms of NDCG.

Fig. 6. NP2004 data: comparison between random selection and simulated
annealing in terms of NDCG.

• For all six data sets, a smaller subset of features work
quite well as compared to the setting of using all avail-
able features. This indicates that blindly incorporating
as many features as possible may not improve the
accuracy of LtR systems, rather a careful selection
of features is needed.

• Broadly, all six data sets appear to reap benefit of the
simulated annealing feature selection method over the
random selection method. It should be noted that we
have used a basic SA algorithm. Recent variations of
SA algorithm and other meta-heuristic algorithm may
yield further improvement.

• Fluctuation is present in all the plots which is natural
given the simulated annealing is a randomized algo-
rithm. If we average the results of several runs, the
fluctuation will be minimized.

• The nature of the features selected by the random
selection and simulated annealing based selection has
not been investigated.
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Fig. 7. HP2004 data: Comparison between random selection and simulated
annealing in terms of NDCG.

Fig. 8. TD2004 data: Comparison between random selection and simulated
annealing in terms of NDCG.

• More iterations in simulated annealing may uncover
further insights into our findings.

In essence, we can say that if our proposed framework is
deployed, we are able to not only discover better feature subset
to learn an LtR model but also to reduce the training time.
This investigation thus suggests that commercial IR systems
such as search engines that deploy LtR system may apply
feature selection methods more seriously and wisely using
sophisticated techniques like simulated annealing.

V. CONCLUSIONS AND FUTURE WORK

Recently the area of ranking in information retrieval has
earned a lot of attention in the field of machine learning.
Learning-to-rank paradigm that is a blend between information
retrieval and supervised machine learning has gained much
momentum in the research community due to the success in
satisfying users of information retrieval systems such as search
engines. Performance of these algorithms heavily depend on
the features or attributes used in the learning module. Hence
a careful selection of features is needed. In this work we

have deployed a effective and efficient meta-heuristic algorithm
called simulated annealing to select a better subset of features
from the available ones. Our experiments on benchmark data
sets reveal that using simulated annealing we can extract an
effective yet smaller subset of features that performs quite well
as compared to the baseline (i.e., the setting where all features
are used). This investigation suggests that the features should
be chosen carefully so as to improve the predictive accuracy
of the LtR algorithms as well as to reduce training time.

This work generated at least three-pronged future research
avenues. Firstly, in this work we have examined only one,
albeit highly effective and hence popular, LtR algorithm. It
is natural to be curious about performance of other LtR
algorithms when plugged in into our proposed framework.
Secondly, larger LtR data sets need to be investigated. Thirdly,
while we have explored the classical simulated annealing
algorithm, other contemporary meta-heuristic algorithms may
deserve such investigation.
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