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Abstract—The objective of this study is to implement deep 

neural network (DNN) models to classify autism spectrum 

disorder (ASD) patients and typically developing (TD) 

participants. The experimental design utilizes functional 

connectivity features extracted from resting-state functional 

magnetic resonance imaging (rs-fMRI) originating in the 

multisite repository Autism Brain Imaging Data Exchange 

(ABIDE) over a significant set of training samples. Our 

methodology and results have two main parts. First, we build 

DNN models using the TensorFlow framework in python to 

classify ASD from TD. Here we acquired an accuracy of 75.27%. 

This is significantly higher than any known accuracy (71.98%) 

using the same data. We also obtained a recall of 74% and a 

precision of 78.37%. In summary, and based on our literature 

review, this study demonstrated that our DNN (128-64) model 

achieves the highest accuracy, recall, and precision on the 

ABIDE dataset to date. Second, using the same ABIDE data, we 

implemented an identical experimental design with four distinct 

hidden layer configuration DNN models each preprocessed using 

four different industry accepted strategies. These results aided in 

identifying the preprocessing technique with the highest 

accuracy, recall, and precision: the Configurable Pipeline for the 

Analysis of Connectomes (CPAC). 
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I. INTRODUCTION 

The complexity of the human brain is staggering. It is 
made up of hundreds of billions of neurons with trillions of 
connections making the brain neural function very 
complicated. Before the development of neuroimaging 
methods, the only way to understand the workings of brain 
neural function was to examine individual brains that had been 
damaged by a stroke, infection, or injury. Early discoveries 
about the localization of the neural function in the brain were 
made through these initial studies. However, due to many 
practical difficulties, the research on neurocognition of the 
brain has been limited [1]. 

To better understand the relationship between neural 
function and brain processes researchers began looking for a 
way to image its function. With the rapid growth of functional 
magnetic resonance imaging (fMRI), modern cognitive 
neuroscientists now have an imaging tool which overcomes 
the limitations of earlier neurocognition studies. 

The initial development of the fMRI technique was driven 
by researchers interested in the brain's response to external 

mental stimuli. As a result, most initial research has focused 
on responses to external task-evoked activity. In 1995, Biswal 
et al. [2] found that correlations in resting state activity can 
also provide meaningful insight into the neural function even 
without external events or mental stimuli. Since then, the 
subsequent studies on brain function using resting-state fMRI 
(rs-fMRI) data has exploded. For example, recent studies have 
shown that rs-fMRI has become an essential technique to 
analyze the brain’s spontaneous activity and intrinsic 
functional connectivity [3]. 

Autism spectrum disorder (ASD) is a brain disorder which 
is characterized by the impaired development of social 
interactions and communication skills. Recent epidemiological 
studies have shown that the prevalence of ASD has increased 
dramatically over the past few decades. Early diagnosis of 
ASD is essential in increasing the probability of providing 
early intervention. In turn, early intervention could provide a 
suitable treatment plan and aid in the later rehabilitation of 
ASD patients [4]. 

Although genetic and environmental factors are suspected, 
the exact etiology of ASD remains unknown. Generally, ASD 
patients are diagnosed using symptom-based clinical criteria 
requiring a significant amount of behavioral assessments. 
Current practice guidelines include structured observations of 
the child's behavior; extensive parental interviews; testing of 
cognition, speech and language, hearing, vision, and motor 
function; a physical examination; the collection of medical 
and family histories, etc. [5]. Numerous studies suggest that 
social and communicative impairments are the core symptoms 
of ASD. However, the neuropathology of these symptoms is 
still unestablished. Further research in this area can provide 
useful information to better understand neuronal pathology in 
patients with ASD. 

With the rise of neuroimaging researchers are now using 
fMRI data to analyze ASD. Many studies suggest that the 
social and communicative impairments are associated with 
functioning and connectivity of cortical networks [6-8]. In 
neuroimaging, researchers often use multi-voxel pattern 
analysis (MVPA) to investigate how a pattern of brain activity 
is related to different cognitive states [9-11]. For the fMRI 
data analysis, machine learning classifiers are promising 
methods to perform MVPA. A growing number of studies has 
shown that machine learning classifiers can be used to extract 
useful information from neuroimaging data [12]. 
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A significant number of these machine learning studies use 
traditional algorithms for classification such as support vector 
machines (SVMs), decision tree, naïve Bayes, and others. 
However, recent research in deep learning methods shows that 
in the case of high-dimensional datasets such as fMRI data, 
deep learning models are much more efficient than traditional 
machine learning methods [13-15]. Recently, deep neural 
networks (DNN) have been successfully applied to both 
voxel-based classification [16] and functional connectivity-
based classification [17, 18]. Nonetheless, many challenges 
still lie in the application of DNN to fMRI data classification. 
For example, an important prerequisite for deep learning is to 
provide a significant number of training samples [19]. In most 
fMRI data analysis, the number of training samples is limited 
to several hundred. To address this challenge, the Autism 
Brain Imaging Data Exchange (ABIDE) initiative has 
aggregated functional and structural brain imaging data 
collected from laboratories around the world. From this 
valuable resource we have downloaded over one thousand rs-
fMRI samples for our study. 

The goal of this paper is twofold: First, build deep-learning 
models in TensorFlow to classify ASD patients and typically 
developing (TD) participants using the rs-fMRI data from a 
large multisite data repository ABIDE. Second, identify the 
most promising preprocessing pipeline in ABIDE for these 
models. 

II. DATA SOURCES, METHODOLOGY AND EXPERIMENTAL 

DESIGN 

A. The ABIDE Dataset 

The ABIDE (Autism Brain Imaging Data Exchange) 
repository consists of 1112 datasets, including 539 individuals 
with ASD and 573 typically developing (TD) controls. These 
1112 datasets are composed of structural and resting state 
fMRI data along with the corresponding phenotypic 
information. In accordance with the Health Insurance 
Portability and Accountability Act of 1996 (HIPAA) 
guidelines, over 1000 functional connection group projects, 
and the instrument neutral distributed interface (INDI) control 
protocol, all data sets have been completely anonymized (i.e., 
do not contain protected health information). More details 
about the dataset are available at: 
http://fcon_1000.projects.nitrc.org/indi/abide/. 

From these 1112 subjects, 1035 subjects are screened as 
qualified candidates for our study since these subjects have 
complete phenotypic information. In these 1035 subjects, 
there are 505 ASD and 530 TD subjects, of which 157 females 
and 878 males. The summary information of the screened 
1035 subjects is displayed in Table I. Table I contains the 
summary phenotypical information of the ASD and TD such 
as gender, age, and lab site name. 

B. Preprocessing 

Datasets from ABIDE were preprocessed by using four 
different preprocessing pipelines: Connectome Computation 
System (CCS), Configurable Pipeline for the Analysis of 
Connectomes (CPAC), Data Processing Assistant for Resting-
State fMRI (DPARSF), and the Neuroimaging Analysis Kit 

(NIAK). Table II provides an overview of the different 
preprocessing steps for the above four pipelines. 

TABLE I. ABIDE DATA PHENOTYPICAL INFORMATION SUMMARY 

Site 
Count Count 

Total 
Age 

Range ASD TD M F 

Caltech 19 18 29 8 37 17~56 

CMU 14 13 21 6 27 19~40 

KKI 20 28 36 12 48 8~13 

LEUVEN 29 34 55 8 63 12~32 

MAX_MUN 24 28 48 4 52 7~58 

NYU 75 100 139 36 175 6~39 

OHSU 12 14 26 0 26 8~15 

OLIN 19 15 29 5 34 10~24 

PITT 29 27 48 8 56 9~35 

SBL 15 15 30 0 30 20~64 

SDSU 14 22 29 7 36 9~17 

Stanford 19 20 31 8 39 8~13 

Trinity 22 25 47 0 47 12~26 

UCLA 54 44 86 12 98 8~18 

UM 66 74 113 27 140 8~29 

USM 46 25 71 0 71 9~50 

YALE 28 28 40 16 56 7~18 

TOTAL 505 530 878 157 1035 6~64 

TABLE II. ABIDE PREPROCESSING PIPELINES 

Step CCS C-PAC DPARSF NIAK 

Drop first “N” 

Volumes 
4 0 4 0 

Slice timing 

correction 
Yes Yes Yes No 

Motion 

realignment 
Yes Yes Yes Yes 

Motion 24-param 24-param 24-param scrubbing 

Tissue signals 

mean WM 

and  
CSF 

signals 

CompCor 
(5 PCs) 

mean WM 

and  
CSF 

signals 

mean WM 

and CSF 
signals 

 

Motion 

realignment 
Yes Yes Yes Yes 

Low-frequency 

drifts 

linear and  

quadratic 

trends 

linear and  

quadratic 

trends 

linear and  

quadratic 

trends 

discrete 

cosine 

basis with 
a 0.01 Hz 

high-pass 

cut-off 

Functional to 

Anatomical 

boundary-
based  

rigid body 

(BBR) 

boundary-
based  

rigid body 

(BBR) 

rigid body rigid body 

Anatomical to 

Standard 

FLIRT + 

FNIRT 
ANTs DARTEL CIVET 

http://fcon_1000.projects.nitrc.org/indi/abide/
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C. Region of Interests 

A common method for analyzing fMRI data involves 
extracting signals from a specified region of interests (ROIs). 
These ROIs can be used to examine activity within a set of 
voxels that are functionally coherent [20]. From preprocessed 
blood oxygenation level dependent (BOLD) images for each 
subject, the mean time-series were extracted from a ROI based 
atlas. In our previous studies [21], we drew our ROIs from 
seven different brain atlases: Automated Anatomical Labeling 
(AAL), Eickhoff-Zilles (EZ), Harvard-Oxford (HO), Talaraich 
and Tournoux (TT), Dosenbach 160, Craddock 200 (CC200), 
and Craddock 400 (CC400). By applying traditional classifiers 
such as SVM, logistic, and Ridge regression (used to quantify 
the overfitting of data through measuring the magnitude of 
coefficients), the classification results show that CC400 is the 
most promising atlas since it achieved the highest accuracy, 
recall, and precision. Therefore, in this study all the ROIs are 
extracted from the CC400 atlas. 

For the CC400 atlas, functional parcellation was 
accomplished using a two-state spatially constrained 
functional procedure applied to preprocessed resting-state 
data. Labels were generated for each of the resulting ROIs 
from their overlap with AAL, EZ, HO, and TT atlases using 
the cluster naming script distributed with the pyClusterROI 
toolbox. More details about the atlas are available at: 
http://preprocessed-connectomes-project.org/abide/. 

D. Feature Extraction from rs-fMRI data 

Resting-state fMRI research focuses on measuring the 
correlation between spontaneous activation patterns of brain 
regions. During a resting-state experiment, subjects are 
instructed to relax and think of nothing while the spontaneous 
brain activity level was measured throughout the experiment. 
In 1995, Biswal et al. revealed a groundbreaking insight in 
their studies that the left and right hemispheric motor cortex 
shown a high correlation between their fMRI BOLD time-
series at the resting-state [22]. Subsequent studies confirmed 
this groundbreaking result, which shows not only the high 
level functional connectivity between the left and right 
hemispheric motor networks but also between regions of other 
known functional networks (e.g., the primary visual network 
and auditory network) [23-25].All these studies demonstrate 
that the resting-state brain network shows highly correlated, 
spontaneous activity between these regions. 

Our brain is a network consisting of different regions, each 
having independent tasks and functions, which are intimately 
interconnected functionally and structurally. Functional 
communication between brain regions plays a key role in 
cognitive processes making the functional connectivity of the 
human brain very important. Recent advances in functional 
neuroimaging have provided new tools to measure and explore 
functional interactions between brain regions thus accelerating 
research of the brain’s functional connectivity. In the past 
decades, an increasing number of neuroimaging studies has 
begun to investigate functional connectivity by measuring the 
co-activation level of rs-fMRI time-series between 
anatomically separated brain regions [26]. These studies 
bridge the gap in exploring how functional connectivity relates 

to human behavior and how they may be altered by 
neurological disease [27-29]. 

In this study, functional connectivity extracted from the 
BOLD time-series signal means was used to classify ASD and 
TD subjects. From these time series we can calculate the full 
connectivity matrices using Pearson correlation of pairwise 
brain regions. Each connectivity feature (or entry) in the 
connectivity matrix is a Pearson correlation coefficient. The 
Pearson correlation coefficient is an indicator of the 
correlation between two brain regions. The coefficients range 
from -1 to 1. A coefficient value close to -1 indicates that the 
brain region is inversely correlated; a coefficient value close 
to 1 indicates that the brain region is highly correlated. 
Additionally, the Pearson correlation connectivity matrix is 
symmetric (i.e., the corresponding upper triangular and lower 
triangular entry values agree). Therefore, only the upper 
triangle values in the correlation matrix are used as features. 
Furthermore, the main diagonal of the connectivity matrix was 
also removed since these entries represent an area of self-
correlation. Finally, we flattened the strictly upper triangle 
values to a vector of features. To calculate ROI-based 
functional connectivity we used the CC400 brain atlas, 
consisting of 400 functional regions of interest, which resulted 
in 77028 pairwise independent connectivity features for each 
subject. This set of 77028 features for each subject was used 
as our input layer in Section II-F. 

E. Classification 

In the past decades, a growing number of studies have 
shown that machine learning (ML) classifiers can be used for 
the analysis of fMRI data. For the classification of ASD and 
TD, most studies applied the supervised learning method of 
support vector machines (SVM). Generally, the studies with a 
small number of subjects from a single data site could achieve 
a high classification accuracy up to 97% [30]. However, the 
classification accuracy drops significantly when larger number 
of subjects from a multisite are studied. For example, only 
60% accuracy was obtained with 964 subjects from 16 
separate international sites in [31]. 

In our previous study [21], we applied the classical 
machine learning classifiers such as SVM, logistic regression, 
and Ridge regression to classify ASD and TD. To obtain a 
better classification accuracy, we used a grid search method to 
find the optimal parameters for each classifier. By using the 
optimal parameters, the best classification accuracy we 
achieved is 71.98% utilizing a Ridge classifier. Based on our 
literature review, 71.98% was the highest classifications to 
date involving 1035 subjects from 17 international sites. In 
addition to the overall classification accuracy, we also 
obtained satisfactory results for recall and precision. 

Most known machine learning studies use traditional 
algorithms for classification: SVMs, decision tree, logistic 
regression, and so on. Recently, many deep neural networks 
(DNNs) have been effectively applied to identify ASD using 
fMRI. Research on deep learning methods shows that for 
high-dimensional data sets, such as fMRI data are more 
efficient than traditional machine learning models. In this 
study we apply DNN to classify ASD patients and TD 
participants using functional connectivity features and 

http://preprocessed-connectomes-project.org/abide/
https://www.sciencedirect.com/topics/psychology/neuroimaging-study
https://www.sciencedirect.com/topics/medicine-and-dentistry/resting-state-fmri
https://www.sciencedirect.com/topics/medicine-and-dentistry/time-series-analysis
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improve the current highest classification accuracy achieved 
in [4, 21]. Our experimental design is summarized in Fig. 1. 

F. Deep Neural Networks 

Deep neural networks have been successfully applied to 
both voxel-based classification and functional connectivity-
based classification. Using the ABIDE repository to obtain 
sufficiently many samples for our DNN study, we applied a 
multilayer perceptron (MLP) with four different 
configurations, all of which are listed in Table III. We also 
attempted other configurations with more than two hidden 
layers (e.g., three and four hidden layers) but the experimental 
results decreased due to the lack of training samples. Additional 
layers also increased the experimental cycle due to limitations 
in our current hardware. Nonetheless, the experimental results 
were still better than the known non-DNN methods. This 
suggests the potential in applying further layering to our 
DNNs when we gain access to larger datasets and/or experimental 
platforms with more robust hardware in future studies. 

The MLP with 77028-1024-512-2 is illustrated in Fig. 2. 
The MLP accepts an input space of 77028 features (our 
pairwise independent connectivity features for each subject 
derived in Section II-D) and an output space of 2 numbers. 
Between the input and output layers, the network has two 
hidden layers with 1024 and 512 units, respectively. 

From Fig. 2, we can see that the MLP contains a 
significant number of weights. The objective of supervised 
training is to adjust the weights to output the expected classes 
and minimize the prediction error. The loss function in (1) is 
used to measure the prediction error that the model produces. 
The output layer contains two output units where each unit 
represents the probability of an input comes from an ASD or a 
TD subject (e.g., the output probability of being ASD is 89%, 
and of being TD is 11%). The output probability is obtained 
by applying a softmax function. 

TABLE III. DNN HIDDEN LAYER CONFIGURATION 

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer 

77028 128 64 2 

77028 256 128 2 

77028 512 256 2 

77028 1024 512 2 

 

Fig. 1. Classification Pipeline. 

 

Fig. 2. DNN with 77028-1024-512-2. 

This study involves a binary classification task. Thus, the 
loss function we used here is binary cross entropy. All training 
processes for this study are implemented under the deep 
learning framework TensorFlow together with the 
optimization algorithm AdamOptimizer. In order to reduce the 
overfitting, we also add a 𝑙2  regularization term in the loss 
function. In (1), 𝑚  is the total number of samples ( 𝑚 =
1025), 𝐾 is the total number of labels (𝐾 = 2), 𝐿 is the total 
number of hidden layers of the DNN (𝐿 = 2), 𝑆𝑙  is the total 
number of the units in hidden layer 1, and 𝑆𝑙+1  is the total 
number of the units in hidden layer 2. 

𝐽(𝜃) =  −
1

𝑚
[∑ ∑ 𝑦𝑘

(𝑖)
log (ℎ𝜃(𝑥(𝑖))) 𝑘

𝐾
𝑘=1

𝑚
𝑖=1 + (1 −

𝑦𝑘
(𝑖)

) log (1 − (ℎ𝜃(𝑥(𝑖)))) 𝑘] +
𝜆

2𝑚
∑ ∑ ∑ (𝜃𝑗𝑖

(𝑙)
)2𝑆𝑙+1

𝑗=1
𝑆𝑙
𝑖=1

𝐿
𝑙=1   (1) 

III. EXPERIMENTAL RESULTS 

We implemented DNN with four different hidden layer 
configurations in the TensorFlow framework and we 
successfully classified ASD from TD using 1035 subjects 
from the ABIDE repository. To identify the most promising 
preprocessing pipeline in ABIDE, we applied the same 
experimental methodology for all four datasets which were 
preprocessed by four different pipelines (see Table II in 
Section II-C). The five-cross validation of accuracy, recall, 
and precision results for all four pipelines are reported in 
Tables IV, V, VI and VII. Comparing these tables, we 
identified the most promising preprocessing pipeline is CPAC 
since it had the best classification results. In Table IV 
(CPAC), we can see that the DNN with two hidden layers of 
128 and 64 units achieve the highest accuracy (75.27%) and 
highest recall (74%). The DNN with two hidden layers of 256 
and 128 units achieve the highest precision (78.37%). 
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Fig. 3 summarizes the best five-fold cross validation 
accuracy, recall, and precision for the four different 
preprocessing pipelines. Overall, CPAC obtained the highest 
accuracy, recall and precision where NIAK obtained the 
lowest performance. 

To evaluate the performance of our DNN models, the best 
results obtained from the DNN with two hidden layers of 128 
and 64 units under CPAC pipeline in Table IV are compared 
with other studies. First, we compared the accuracy, recall, 
and precision with other traditional machine learning 
classifiers Ridge, Logistic Regression, linear SVM, and RBF 
SVM in [21]. We also compared our DNN results with 
another deep learning research in [4]. Based on these 
comparisons, the results in Table VIII show that our DNN 
(128-64) model achieves the highest classifications to date 
using the same data from the multisite ABIDE repository. 

TABLE IV. DNN 5-FOLD CROSS VALIDATION RESULTS (CPAC) 

Layer Accuracy Recall Precision 

128-64-2 75.27% 74% 76.88% 

256-128-2 74.40% 69.80% 78.37% 

512-256-2 75.27% 73.43% 77.31% 

1024-512-2 74.78% 72.09% 77.15% 

TABLE V. DNN 5-FOLD CROSS VALIDATION RESULTS (CCS) 

Layer Accuracy Recall Precision 

128-64-2 71.11% 72.73% 71.33% 

256-128-2 70.53% 70.67% 71.40% 

512-256-2 71.11% 70.11% 72.56% 

1024-512-2 70.72% 69.49% 72.24% 

TABLE VI. DNN 5-FOLD CROSS VALIDATION RESULTS (DPARSF) 

Layer Accuracy Recall Precision 

128-64-2 66.38% 70.18% 66.91% 

256-128-2 70.53% 70.67% 71.40% 

512-256-2 66.67% 65.20% 68.12% 

1024-512-2 66.76% 67.42% 67.45% 

TABLE VII. DNN 5-FOLD CROSS VALIDATION RESULTS (NIAK) 

Layer Accuracy Recall Precision 

128-64-2 68.79% 64.17% 71.21% 

256-128-2 68.50% 64.29% 71.16% 

512-256-2 67.92% 64.24% 70.42% 

1024-512-2 68.02% 63.08% 70.95% 

TABLE VIII. FIVE-FOLD CROSS VALIDATION RESULTS 

Classifier Accuracy Recall Precision 

DNN(128-64) 75.27% 74% 76.88% 

DNN 70% 74% 63% 

Ridge 71.98% 70.89% 71.53% 

LR 71.79% 70.69% 71.29% 

Linear SVM 71.40% 70.10% 70.93% 

RBF SVM 71.40% 69.90% 71.12% 

 

Fig. 3. Best Accuracy, Recall, Precision in Four Preprocessing Pipeline. 

IV. CONCLUDING REMARKS AND FUTURE WORK 

In this study, we implemented deep neural networks 
(DNNs) with four different hidden layer configuration models 
to classify Autism Spectrum Disorder (ASD) and typically 
developing (TD) subjects using the functional connectivity 
features extracted from resting-state functional magnetic 
resonance imaging (rs-fMRI) data. Our analysis utilized 1035 
samples from the Autism Brain Imaging Data Exchange 
(ABIDE) multisite repository. To identify the most promising 
preprocessing pipeline, we implemented DNNs with four 
different hidden layer configurations using the four different 
pipeline datasets from the ABIDE repository. Our results 
indicate that the dataset preprocessed by using CPAC 
(Configurable Pipeline for the Analysis of Connectomes) 
pipeline achieves the highest accuracy, recall and precision. 
Based on our literature studies, the results in Table VIII show 
that our DNN (128-64) model achieves the highest accuracy, 
recall, and precision to date using the same ABIDE data. 

Compared to single-site datasets, classifications across 
multi-sites must accommodate variance in subjects, scanning 
protocols, differences in equipment, and other sources. 
Generally, such differences affect overall classification 
performance. Our results demonstrate that DNN models can 
be used as promising classifiers for large multi-site datasets 
despite these variations. 

Even though DNN models can be used to classify ASD 
and TD with statistically significant accuracy from resting-
state fMRI features, Plitt et al. have pointed out that the 
classification of ASD and TD using resting-state fMRI data 
does not provide a biomarker metric [32]. Therefore, there is a 
gap in the classification performance between the brain-based 
classifiers and symptom or behavior-based classifiers. This 
disparity in performance makes diagnosis of ASD an 
extremely difficult classification problem since it relies on a 
wide range of symptom expression profiles. 

Based on our current research and results further studies 
on the ABIDE dataset and other multi-site repositories are 
warranted using DNN in conjunction with CPAC to identify 
the biomarker ROIs of the ASD group. We also observed in 
[33] that the use of graph theoretical analysis and machine 
learning is effective at identifying ASD using a multi-site 

https://www.sciencedirect.com/science/article/pii/S2213158217302073#bb0190
https://www.sciencedirect.com/topics/medicine-and-dentistry/resting-state-fmri
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dataset, being more robust than previous machine learning 
methods. Motivated by this work, we expect a combination of 
topological analysis and DNN using the right preprocessing 
pipeline (CPAC) would be a promising direction to identify 
the biomarker ROIs for the ASD group. In this research our 
plan involves the recently developed field of topological data 
analysis and its Mapper methodology. These strategies will be 
deployed to ascertain global and local connectivity for ROIs, 
identify biomarkers, contribute to the development of a 
biomarker metric, and close the performance gap between 
brain-based and behavior-based ASD classifiers. 
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