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Abstract—We introduce smart hand, a practical tool for human
workers in pick-and-place tasks. It is developed to avoid picking
up the wrong thing from one location or place the things in an
unexpected location. Smart hand features sensors (e.g., imaging
sensors, motion sensors) to sense the world and offers suggestions
or aid based on the sensed results when a human worker is
performing a pick-and-place task. A smart hand prototype is
made in the study. In our design, the smart hand has an RGB-D
sensor and an inertial measurement unit (IMU). RGB-D sensor
is used to do object detection and distance/position estimation
while IMU is used to track the motion of the smart hand. An
experiment is conducted to compare the two working conditions
that a subject performs the pick-and-place tasks with or without
the smart hand. The experiment results proved that the smart
hand can avoid human errors in pick-and-place tasks.

Keywords—Pick-and-place task; human-robot collaboration;
cognitive system; hand tools

I. INTRODUCTION

Picking up parts in a production line and placing them
with some rules is a very common task in a manufacturing
plant. For example, the workers in an assembly line need to
select the specified bolt to attach two pieces of a design with
an appropriate torque. In a factory that makes box lunch,
the workers need to pick up a certain amount of food into
the lunch box [1]. In a manual sorting line, the workers
tried to sort the objects into different categories and place
them into corresponding regions. The rules involved in these
tasks include selection (which object to pick up), positioning
(where to place) and some other task-specified rules like
controlling torque or weight. Sometimes due to carelessness
or exhaustion after long time working, the workers may make
some mistakes in these operations and the rules involved in
these tasks cannot be well followed. The improper torque in
a machine may lead to an accident or even worse. The less
amount of food or wrong kind of food in the box lunch can
lead to customer dissatisfaction.

To avoid these circumstances and follow the rules involved
in a pick-and-place task, the managers of manufacturing
plants take steps to strengthen the production management
by introducing the record management system, adding
inspection procedures or increasing the break time to avoid
exhaustion. Besides the increasing cost, these methods
couldn’t improve the condition of making errors during the

operations fundamentally. The researchers from different
fields also come up with many solutions. They try to increase
the degree of automation so that the human errors can be
avoided. Many automatic screw tightening systems that have
been developed since the 90s [2], [3]. But it has a high
demand in precise relative position between the parts and
the screwdrivers. The parts are usually fixed in a specified
pose so that the screwdriver can be programmed to find a
feed direction. In this way, the selection and positioning
problems won’t exist any more and the torque can also be
recorded and managed. However, for small parts, it is fine to
do so. But for large machines like cars or planes, there are
so many spaces that the automatic screw tightening system
cannot reach. Similarly, in a robotic grasping and sorting
system, the position and orientation of the objects are usually
hard coded so that the robot can successfully pick up the
objects. Nowadays, computer vision has been introduced
to these systems. Selection tasks can be finished using
object recognition algorithms while positioning problems
are expected to be solved using camera coordination. For
example. Chen et al. built a vision-based robotic grasping
system using deep learning for garbage sorting [4]. It uses
convolutional neural networks (CNN) to identify objects
and their locations to grasp objects. A research group from
Google took fourteen robotic arms, networked them together
to make these robots learn on their own how to pick up small
objects [5]. It also uses CNN to learn the pose of the objects.
Stage of the art technologies can recognize objects in a high
accuracy using CNN, which solves the selection problem,
but object pose estimation for grasping using imaging sensor
alone is not accurate enough for industries.

As mentioned above, the rules involved in pick-and-place
tasks basically include selection and positioning. Human
workers may make mistakes during the operations but
for robot workers, either vision-based or programed-based
coordination in reach-to-grasp movement has limitations. We
are considering building a practical tool for human workers
that can help them avoid the mistakes during operations. In
the case of a human worker, the supervision of following
rules are controlled by the brains but the execution of these
rules are performed by the hand, which inspires us to develop
a hand-like tool where we can embed some intelligence
to help workers supervise the rules and reduce the brain
burden. In other words, the hand-like tool can assist people in
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Fig. 1. Smart hand prototype

performing the pick-and-place tasks by supervising the rules
predefined.

In this paper, we introduce smart hands to assist human
workers in performing pick-and-place tasks. We integrate an
imaging sensor, a depth sensor as well as an IMU sensor in
the control system of the smart hand. Human workers can
hold the smart hand to do the pick-and-place movement. The
smart hand has imaging sensors to recognize objects and
make selections. It also has an IMU sensor to track motions
so that the location that an object is placed can be tracked.
The smart hand is expected to reduce the workload burden
and improve the product quality in a production line.

The remainder of this paper is organized as follows: Sec-
tion II introduces the prototype of the smart hand. Section III
explains three main modules used in the control system of
the smart hand. Experiment conducted with the smart hand
prototype and its results are presented in Section IV. We
then draw some conclusions and outline the future work in
Section V.

II. SMART HAND

Fig. 1 shows a smart hand prototype which is designed to
assist users in performing pick-and-place task. The mechanical
structure of the smart hand is designed to make it simple and
light. From the side view, we can see that the smart hand
prototype consists of a gripper, a stepper motor, a handle and
some sensors. Its end effector is a gripper with one degree of
freedom, which is used to pick and hold objects. A stepper
motor is used to control the gripper to perform close and
open movement. A handle is designed to be able to hold and
orientate the smart hand easily for users. The sensors are the
core parts of the smart hand, which is the reason for calling
it “smart”. They sense the surrounding environment, assisting
users in picking and placing objects. The sensors are mounted
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Fig. 2. Smart hand control pipeline

on a quick release plate. The orientation of the sensors can be
adjusted by setting angular position of the quick release plate.

In the prototype design, the sensors include an RGB-D
camera and an IMU. RGB-D sensor streams RGB image
together with the corresponding depth. It can be used for
recognizing and localizing the target objects. Since RGB-D
sensor is limited by a minimum detectable distance to function
properly, it is connected to the gripper with a long arm to
make sure that the target object is always inside the detectable
distance. IMU is used for the detection of movements and
rotations in 6 degrees of freedom. It is used to supervise
the placing position in a pick-and-place movement. Intel
RealSense depth camera D435i is selected for the designed
prototype. It combines the depth sensing capabilities with the
addition of an IMU [6].

The sensor data from the depth camera are sent to Jetson
Nano through USB 3.0 and processed there. See Fig. 2. Jetson
Nano is a small-size computer integrating a 128-core NVIDIA
GPU where you can run multiple neural networks in parallel
for applications like image classification, object detection,
segmentation and speech processing. It is selected because of
its compact size and high computation performance. Remote
server with state-of-the-art GPU has also been developed to
process the sensor data only if the computational power of
the Jetson Nano is not enough for practical applications. The
commands generated based on the processing results are sent to
the Arduino through digital GPIO pins. Arduino then triggers
the corresponding events based on the received commands. It
controls the stepper motor to open and close using pulse width
modulation (PWM) signals. It also controls a buzzer and LEDs
to warn the system state for simple interface with users. Jetson
Nano and Arduino are powered with a mobile battery. They
are all installed in a compact control box.
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III. CONTROL SYSTEM

The smart hand features three function modules including
object recognition, distance estimation and motion tracking
to assist users in pick-and-place tasks. These three functions
are realized using the hardware introduced above. The three
function modules are used to supervise the whole movement
that if it follows the predefined rules. For example, the object
detection model is used to detect the objects and help the
user analyze whether the object is the expected target or
not. Distance estimation can be used to measure the distance
between the target object and the hand. The distance then
controls the timing to trigger the open/close movement. Motion
tracking is to track the motion of the smart hand. It can help
the user to determine if the object is properly placed on the
assigned place. These three function modules are discussed in
the followings.

A. Object Detection
RealSense depth camera D435i streams RGB images on

which the control system detects the target potential objects.
The detection results are either given by visual clues that are
shown with a monitor or prompted by buzzing sounds. The
object detection module solves the problem of selection in
pick-and-place movement. If users use the smart hand to pick
up some object that is not expected, the control system will
show the warning information using visual cues or specific
buzzing sound.

Object detection algorithm improves a lot these years due
to the deep learning evolution in computer vision. The novel
object detection method can even comparable with cognition
capability of human. YOLO is one of the most popular object
detection algorithms due to its high processing speed and
reliable detection result. It is a convolutional neural network
that accepts images as input and outputs the object class
together with object location in an image. YOLO processes
images at 30 FPS on a Pascal Titan X and has a mAP of
57.9% on COCO dataset [7]. YOLO has several variants.
The main differences of these variants are the number
of convolutional layers. More convolutional layers means
higher accuracy and lower processing speed. For example,
YOLOv3-tiny is the compact version of YOLOv3 network.
YOLOv3 has 53 convolutional layers for feature extraction
while YOLOv3-tiny has only 10 layers.

Among the three function modules of the smart hand, object
detection takes up the most computing resources. To find the
best platform for running object detection module, we tested
the processing speed of YOLOv3 and YOLOv3-tiny on Jetson
Nano, Jetson TX2 and remote server, respectively. The remote
server owns a Nvidia GeForce GTX Titan X GPU. These
platforms are selected because we want the smart hand to be
portable. The results are shown in Table I. It can be seen from
the table that running YOLOv3 on Jetson Nano and Jetson
TX2 is not suitable since the processing speed (FPS) is too
slow for practical applications. YOLOv3-tiny works fine on
both Jetson Nano and Jetson TX2. As for the remote server,

(a) Depth map (b) RGB image 

Fig. 3. Object detection

Fig. 4. Converting a 2D image point to a 3D world point

besides the processing speed of GPU, the FPS also relies on
the transmission speed of the network. Since the size of the
remote server is not limited, modern desktop GPUs can be
used so that the computational power is not a problem.

TABLE I. FPS COMPARISON OF YOLO MODEL

Jetson TX2 Jetson Nano Remote Server

YOLOv3 5 FPS 3 FPS 16 FPS

YOLOv3-tiny 16 FPS 14 FPS Not tested

Considering the processing speed in different platforms
shown in Table I, we use either Jetson Nano to run YOLOv3-
tiny or the remote server to run YOLOv3. An object detection
example of running YOLOv3 with remote server is shown in
Fig. 3(b). It detects the cup and the hands in a reach-to-grasp
movement. Fig. 3(a) shows the corresponding depth map of
the same camera scene.

B. Position Estimation
RGB-D sensor can be used to estimate the position of the

target object in real world. By estimating the position, the
smart hand can be aware of its spatial relationship with the
target object. When the smart hand is within the distance
range that can successfully grasp an object, the control system
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Fig. 5. Hand position estimation
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Fig. 6. Tracking the position of the hand

can automatically trigger the command to close the hand
and grasp the object. With the object detection module, the
control system can detect objects from RGB images streamed
from the RGB-D sensor in real-time (Fig. 3(b)). The RGB-D
sensor also captures the corresponding depth map of the scene
right after an RGB image is captured (Fig. 3(a)).

From the depth map we can estimate the object distance
using the detection results from the object detection module.
The object detection module offers us the center point of
an object , which indicates the location of the object in the
image. Using the same center point, the object can be located
in the corresponding depth map. If we crop an image patch
with size of 20× 20 from the center point of an object in the
depth map, the object distance can be defined as the average
pixel value of this image patch.

After we get the distance of the object, the problem of
estimating the object position becomes converting a 2D image
point to a 3D world point. With the principles from the
perspective projection [8] as shown in Fig. 4, we can easily
estimate the object position using Eq. 1,

[
µ
ν
1

]
=

[
f 0 0 0
0 f 0 0
0 0 1 0

]XYZ
1

 (1)

where (X,Y, Z) is the 3D world point and (µ, ν) is the
corresponding 2D image pixel point. f is the focal length
of the camera. Since RGB sensor and depth sensor have
different viewpoints, the depth map needs to be aligned to
RGB sensor to have the same viewpoints before estimating
the object position. If there are multiple objects in the image
scene, the control system needs to identify the target object.
We define the object that is nearest to the center of the image
is the target object. The object position is only calculated and
tracked on target object. An example is shown in Fig. 5. The
position of the hand is estimated in every frame and the result
is shown with a label near the bounding box. Fig. 6 shows the
hand tracking path of the example in Fig. 5.

C. Motion Tracking
An IMU is used track the motion of the hand so as to

track the position and orientation of the smart hand at any
time in a pick-and-place movement. Tracking the position and
orientation of the smart hand can help us to determine if an
object is placed in the expected position. Inside an IMU unit
there are 3 accelerometers and 3 gyroscopes. Accelerometers
measure all forces working on an object while gyroscope

Start
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Fig. 7. Complementary filter flow chart
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measures the angular velocity.

For orientation, both the accelerometers and gyroscopes
are able to estimate the angular position of the smart hand.
Gyroscope can achieve this by integrating the angular
velocity over time. Accelerometer can do this by determining
the direction of the gravity vector. However, both of the
methods have problems. It is not able to measure the precise
angular position of the smart hand by using only gyroscope or
accelerometer. In the case of accelerometer, every small forces
working on an object create disturbance in measurement,
long term measurement is reliable. So low pass filter is
needed for correction. In the case of gyroscopic sensor, the
integration is done over period of time the value starts to drift
in the long term, so high pass filter is needed for gyroscopic
data correction [9]. Therefore, the control system selects
a complementary filter that consists of both low and high pass.

By using the complementary filter, both the accelerometer
and gyroscope make contributions in estimation the angular
position of the smart hand. Gyroscope data is used on the short
term since it is very precise and not susceptible to external
forces. Accelerometer data is used on the long term as it does
not drift. The complementary filter flow chart is shown in
Fig. 7. The initial state of angular position is determined using
the accelerometer only. The gyroscope data is integrated every
timestep with the current angle value. Then it is combined
with the low-pass data from the accelerometer. The constant
α is the coefficient value of the complementary filter. In our
design, α = 0.98.

IV. EXPERIMENTS

We designed an experiment to validate the functions of the
smart hand and prove that smart hands actually do the help
when the user try to perform a pick-and-place task. In the
experiment, we prepared 100 sponge cubes and of which, 70
sponge cubes were attached with stickers of three-leaf clovers
and the rest 30 sponge cubes were attached with four-leaf
stickers. The clover cubes are scattered on the table. As it can
be seen from Fig. 8. We trained an object detection neural
network described in Section 3.3 to distinguish the two kinds
of clover cubes. The network runs at 12.6 FPS averaged on
Jetson Nano. Three subjects aged from 23 to 27 are asked to
pick out all the four-leaf clover and put them in a box one
by one. If a subject cannot find a four-leaf clover within 5
seconds, the experiment is halted. The number of clovers that
have not been found and the number of three-leaf clover that
has not been picked out are reported.

The experiment results are shown in Table II and Table III.
It is relatively easy for human to pick out the four-leaf clover
if they have enough time. But under the time pressure, they
may make some mistakes. Three cases of failure in finding
the four-leaf clovers are identified when the subjects used their
own hands. Compared to the human hands, experiment with
smart hands has only one case failure in finding the four-leaf
clover. No mistaken reports in both cases.

TABLE II. PICK-AND-PLACE WITH HUMAN HANDS

Subject A Subject B Subject C
Failed in finding four-leaf clovers 0 2 1
Mistakenly pick the three-leaf clover 0 0 0

TABLE III. PICK-AND-PLACE WITH THE SMART HAND

Subject A Subject B Subject C
Failed in finding four-leaf clovers 0 1 0
Mistakenly pick the three-leaf clover 0 0 0

Generally, the capability of the smart hand to find a
four-leaf clover highly relies on the performance of the
neural network model. One failure case identified means that
the object detection network may not work very well from
some specific camera view angle. Increasing the size of the
dataset may improve its performance. No matter the subjects
used their own hands or the smart hand, they never picked
the three-leaf clover mistakenly. It may because that the
experiment is a short-term task. With time restrictions, the
subjects are highly focused, and they hardly made a mistake
by picking a three-leaf clover. If it is a long, boring task,
they may have chances to put a three-leaf clover in the box
mistakenly. But smart hands won’t be tired, they can always
remind the user whether a target is the expected object or not.

In addition, the subjects gave their feedback. They thought
the way to interact with the smart hands is not convenient.
The buzzing sound is easy to understand but the recognition
results are given on a monitor. They need to see the monitor
first to check the detection results. Since the camera view and
the user’s eye view are in different angles, it is quite difficult
to quickly find the target object. Head-mounted display with
AR technology may be a better interaction solution.

V. CONCLUSION

This study introduces smart hands to assist human workers
in repeated, boring pick-and-place tasks. The smart hand

Monitor

Clovers

Smart hand

Box

Fig. 8. Experiment setup
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features functions of object detection, position estimation and
motion tracking by combining vision and motion sensors. It
can offer suggestions on selecting the target object, warn the
users when picking up the wrong objects and placing in the
wrong location. We made a prototype of smart hands. The
experiment proves that the use of smart hands can avoid human
errors in pick-and-place tasks. It is expected that the smart
hand can reduce the workload burden and improve the product
quality in a production line. In the future, we would like
to improve the interaction method between the user and the
smart hand. A head mounted display instead of a monitor may
improve the work efficiency. In addition, the end effector of
gripper can only do limited work in a production line. More
end effectors (e.g. screw driver) should be developed to make
the smart hand fit most usage scenarios in a production line.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber JP19K04296.

REFERENCES

[1] A. Pettersson, S. Davis, J. Gray, T. Dodd, and T. Ohlsson, “Design of a
magnetorheological robot gripper for handling of delicate food products
with varying shapes,” Journal of Food Engineering, vol. 98, no. 3, pp.
332–338, 2010.

[2] Y. Ota and H. Takahashi, “Automatic screw tightening apparatus,” Jul. 14
2015, uS Patent 9,079,275.

[3] H. Shibata, “Screw tightening apparatus,” Dec. 13 2005, uS Patent
6,973,856.

[4] C. Zhihong, Z. Hebin, W. Yanbo, L. Binyan, and L. Yu, “A vision-
based robotic grasping system using deep learning for garbage sorting,”
in 2017 36th Chinese Control Conference (CCC). IEEE, 2017, pp.
11 223–11 226.

[5] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and large-
scale data collection,” The International Journal of Robotics Research,
vol. 37, no. 4-5, pp. 421–436, 2018.

[6] A. Grunnet-Jepsen, J. N. Sweetser, and J. Woodfill, “Best-known-
methods for tuning intel R© realsenseTM d400 depth cameras for best
performance,” New Technologies Group, Intel Corporation, Rev, vol. 1,
2018.

[7] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[8] Y.-Y. Chuang, “Camera calibration,” Tech. Rep., 2005.
[9] T. Islam, M. S. Islam, M. Shajid-Ul-Mahmud, and M. Hossam-E-Haider,

“Comparison of complementary and kalman filter based data fusion for
attitude heading reference system,” in AIP Conference Proceedings, vol.
1919, no. 1. AIP Publishing LLC, 2017, p. 020002.

Yunan He received the B.E. degree in mechanical
engineering from Northeastern University, Shenyang,
China, in 2013 and the M.E. degrees in mechanical
engineering from Saga University, Saga, Japan, in
2017.

He is now a PhD student in Department of Infor-
mation Science in Saga University, Saga, Japan. His
main research interests are in human interface and
intelligent robots.

Osamu Fukuda received his B.E. degree in mechan-
ical engineering from Kyushu Institute of Technol-
ogy, Iizuka, Japan, in 1993 and the M.E. and Ph.D.
degrees in information engineering from Hiroshima
University, Higashi-Hiroshima, Japan, in 1997 and
2000, respectively.

From 1997 to 1999, he was a Research Fellow of
the Japan Society for the Promotion of Science. He
joined Mechanical Engineering Laboratory, Agency
of Industrial Science and Technology, Ministry of
International Trade and Industry, Japan, in 2000.

Then, he was a member of National Institute of Advanced Industrial Science
and Technology, Japan from 2001 to 2013. Since 2014, he has been a Professor
of Graduate School of Science and Engineering at Saga University, Japan.
Prof. Fukuda won the K. S. Fu Memorial Best Transactions Paper Award
of the IEEE Robotics and Automation Society in 2003. His main research
interests are in human interface and neural networks. Also, he is currently
a guest researcher of National Institute of Advanced Industrial Science and
Technology, Japan. Prof. Fukuda is a member of IEEE and the Society of
Instrument and Control Engineers in Japan.

Daisuke Sakaguchi received the B.E. degree in
information engineering from Saga University, Saga,
Japan, in 2019.

He is currently a graduate student in the De-
partment of Information Science in Saga University,
Saga, Japan. His research interest is human-machine
interface.

Nobuhiko Yamaguchi received the Ph.D. degree
in intelligence and computer science from Nagoya
Institute of Technology, Japan, in 2003.

He is currently an Associate Professor of Faculty
of Science and Engineering at Saga University. His
research interests include neural networks. He is a
member of Japan Society for Fuzzy Theory and
Intelligent Informatics.

www.ijacsa.thesai.org 785 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 4, 2020

Hiroshi Okumura received the B.E. and M.E. de-
grees from Hosei University, Tokyo, Japan, in 1988
and 1990, respectively, and the Ph.D. degree from
Chiba University, Chiba, Japan, in 1993.

He is currently a full Professor of Graduate School
of Science and Engineering at Saga University,
Japan. His main research interests are in remote
sensing and image processing. He is a member of
the International Society for Optics and Photonics
(SPIE), the Institute of Electronics, Information and
Communication Engineers (IEICE) and the Society

of Instrument and Control Engineers (SICE).

Kohei Arai He received BS, MS and PhD degrees in
1972, 1974 and 1982, respectively. He was with The
Institute for Industrial Science and Technology of the
University of Tokyo from April 1974 to December
1978 also was with National Space Development
Agency of Japan from January, 1979 to March, 1990.
During from 1985 to 1987, he was with Canada
Centre for Remote Sensing as a Post Doctoral Fel-
low of National Science and Engineering Research
Council of Canada. He moved to Saga University
as a Professor in Department of Information Science

on April 1990. He was a councilor for the Aeronautics and Space related to
the Technology Committee of the Ministry of Science and Technology during
from 1998 to 2000. He was a councilor of Saga University for 2002 and
2003. He also was an executive councilor for the Remote Sensing Society of
Japan for 2003 to 2005. He is an Adjunct Professor of University of Arizona,
USA since 1998. He also is Vice Chairman of the Science Commission “A”
of ICSU/COSPAR since 2008 then he is now award committee member of
ICSU/COSPAR. He wrote 37 books and published 570 journal papers. He
received 30 of awards including ICSU/COSPAR Vikram Sarabhai Medal in
2016, and Science award of Ministry of Mister of Education of Japan in
2015. He is now Editor-in-Chief of IJACSA and IJISA. http://teagis.ip.is.saga-
u.ac.jp/index.ht

www.ijacsa.thesai.org 786 | P a g e


