
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

106 | P a g e

www.ijacsa.thesai.org

Transformation of SysML Requirement Diagram into

OWL Ontologies

Helna Wardhana1, Ahmad Ashari*2, Anny Kartika Sari3

Department of Informatics, Universitas Bumigora, Lombok, Indonesia1

Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta, Indonesia1, 2, 3

Abstract—The Requirement Diagrams are used by the System

Modeling Language (SysML) to depict and model non-functional

requirements, such as response time, size, or system

functionality, which cannot be accommodated in the Unified

Modeling Language (UML). Nevertheless, SysML still lacks the

capability to represent the semantic contexts within the design.

Web Ontology Language (OWL) can be used to capture the

semantic context of system design; hence, the transformation of

SysML diagrams into OWL is needed. The current method of

SysML Diagrams transformation into OWL is still done

manually so that it is very vulnerable to errors, and the

translation process requires more time and effort for system

engineers. This research proposes a model that can automatically

transform a SysML Requirement Diagram into an OWL file so

that system designs can be easily understood by both humans and

machines. It also allows users to extract knowledge contained in

the previous diagrams. The transformation process makes use of

a transformation rule and an algorithm that can be used to

change a SysML Requirement Diagram into an OWL ontology

file. XML Metadata Interchange (XMI) serialization is used as

the bridge to perform the transformation. The produced

ontology can be viewed in Protégé. The class and subclass

hierarchy, as well as the object properties and data properties,

are clearly shown. In the experiment, it is also shown that the

model can conduct the transformation correctly.

Keywords—SysML Diagram; Requirement Diagram; ontology;

OWL; transformation

I. INTRODUCTION

The current system engineering process still tends to be
centered on documents and uses various engineering diagrams
that are sometimes inconsistent. Therefore the use of modeling
languages is needed to determine the complexity of a system,
including the non-software components. The need for this
modeling language cannot be fulfilled by the Unified Modeling
Language (UML). Therefore a System Modeling Language
(SysML) profile was developed from UML. SysML is an
extension of UML created by the Object Management Group
(OMG) to support the modeling of a complex system involving
humans and components of hardware and software.

SysML itself is becoming one of the most popular
modeling languages. It is a widely accepted, object-oriented
graphic software modeling language [1]. SysML reuses some
diagrams in UML. SysML also provides other modeling
capabilities, namely the requirements and the relationships of
parametric, adding activities of UML, internal block diagram,
and block definition diagram. According to the Meta-Object
Facility (MOF), although SysML is a formal language, most

types of diagrams in SysML are relatively easy to understand
because of the graphical user interface.

The requirements and parametric constraints are modeled
by SysML by expanding its semantics to support performance
analysis and requirements engineering [2]. Use Case Diagram
in UML can be used to model system functional requirements,
but UML does not have elements that can describe non-
functional requirements explicitly [3]. SysML can
accommodate the deficiencies contained in UML because
SysML using Requirement Diagram to depict and model non-
functional requirements, such as response time, size, or system
functionality in defining several elements. Nevertheless,
SysML still lacks the capability to represent the semantic
contexts within the design.

The development of integrated models in information
modeling, where the model elements in one diagram can be
related to the model elements in other diagrams, is one of the
benefits of SysML [4]. SysML Diagrams also enable modeling
systems that can be used at an early design stage that supports
specifications as well as during design updates [5]. The
semantic gap between heterogeneous systems and various
disciplines can be bridged by the SysML-based system model
because of the interoperability nature of SysML through the
use of the XML Metadata Interchange (XMI) format. Tracking
any changes in artifacts between requirements and
specifications can also be done by the SysML-based
information model. Interoperability among various tools for
analyzing needs, structural, behavior, and system constraints
can also be enhanced by this model. Thus, the SysML
Requirement Diagram can capture the requirements as well as
the functional, design, and process relationships between those
requirements. This is achieved through the types of
dependency relationships that exist in SysML, namely,

satisfy, verify, refine, derive, trace, and copy.
SysML Requirement Diagrams, as one of the kinds of the new
diagram in SysML, enables the depiction of system
requirements to be of high quality because it makes the
description of requirements more easily to be understood and
ensure traceability of system development.

The availability of a well-defined system model for
carrying out all design tasks, including adjustments and
evaluation of the system, is crucial for the system engineers
and stakeholders in the acquisition of the system. The use of
ontology enables system engineers to not only model metadata
concepts but also semantic contexts that can be used in model
inference and transformation rulemaking [6]–[8]. Ontology
facilitates the process of managing the data obtained because

*Corresponding Author

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

107 | P a g e

www.ijacsa.thesai.org

ontology allows the proper arrangement of the entire system
[9]. Ontology is also able to infer generalization and
specialization between classes based on constraints imposed on
the property of the class definition [10]. Furthermore, the
appropriate concepts of a domain are reflected by the ontology
[11]. Therefore, the transformation of the SysML Requirement
Diagram into an ontology is needed. The purpose of each
dependency relationship contained in the SysML Requirement
Diagram can be shown in the form of object property in the
ontology.

The aim of developing the ontology is to share a general
understanding of the structure of information [12] and to have
a common controlled vocabulary for various statements about
the complexity of systems. The benefits from the development
of ontology are the use of controlled vocabulary, durable
information storage, information exchange without loss,
integration of interdisciplinary information, analysis of
automation, and manufacturing of the product.

SysML provides graphical syntax that is very useful for
human understanding, but SysML does not have formal
semantics. Web Ontology Language (OWL) and SysML are
different languages, but both have terminology for instances,
classes, and properties. OWL has construction terms for classes
that are not owned by SysML, and SysML has terminology for
operations that are not owned by OWL [7].

The development of manual ontologies using the OWL
ontology editor at this time, such as Protégé, is still a fairly
complex work, requires more understanding of the language of
ontology, and is at risk of experiencing problems in the
acquisition of knowledge [6]. Therefore, approaches and tools
are needed that enable reducing efforts and adapting ontologies
automatically or semi-automatically using existing sources of
knowledge.

Existing researches on modeling language are more
focusing UML to OWL transformation, both manually and
automatically. Some researchers who have proposed the
transformation model of UML into OWL automatically use the
same type of diagram, namely the class diagrams [6], [10],
[13]–[17]. Research about the transformation of SysML
Diagrams into OWL has been performed by [18] and [7].
However, the transformation process is still done manually, so
it is very susceptible to errors and requires more time and effort
for system engineers because they have to repeat the same
work as in the system development. Manual translation also
results in the system engineers or other users not being able to
extract the knowledge contained in the previous diagram [6].

This research proposes a model that is able to transform a
SysML Requirement Diagram into an OWL ontology file
automatically. The main contribution of this paper is the
transformation rule and the algorithm that is used to change a
SysML Requirement Diagram into an OWL ontology file. The
resulting OWL file can be displayed through Protégé, which
can clearly show the hierarchy of classes and subclasses, object
properties, data properties, including their ontograf, to show
the dependencies used in the SysML Requirement Diagram.

The rest of the paper is organized as follows. Related work
is described in Section 2, while Section 3 explains the proposed

model to transform a SysML Requirement Diagram into an
OWL file. The transformation rule and the algorithm are
described in Section 4, while Section 5 presents evaluation and
discussion. The paper is concluded in Section 6.

II. RELATED WORK

Research on the transformation of SysML Diagrams into
OWL files is carried out by [18] and [7]. However, the
transformation process in the research is still done manually.
Research conducted by [18] uses several SysML diagrams,
namely, requirements diagrams, activity diagrams, block
definition diagrams, and internal block diagrams. It is to
analyze and present scenarios about system model change from
a formal perspective. Changes to the intended system model,
for example, how to add, delete, and modify the model
elements in response to changes in the design of a system.
Ontology is applied to formalize transformation in the
influence of the relationship between requirements, behavior,
and structure of the system model so that its semantics can be
understood by humans and can be read by machines. From the
experiments using case studies of water distillation systems,
[18] it is proven that identification of information on the impact
of changes can help system designers to complete
modifications in a short time and with higher quality.

Another research that transforms SysML into OWL is
performed by [7]. The translation of block diagrams into OWL
by [7] produces a method for creating an OWL knowledge
base that can represent structural design information such as
the decomposition of parts and connectivity structures of a
system.

Several other researchers [6], [10], [13]–[17] have proposed
translation models of UML into OWL automatically using the
same type of diagram, which is the class diagram. The goal of
[6] is the establishment of an appropriate conceptual
correspondence between UML and OWL through the
semantic-preserving scheme translation algorithm. The
algorithm proposes an approach that automatically extracts
OWL ontology from UML class diagrams and as formal
evidence for semantic preservation that can also use to analyze
the time complexity of the algorithm.

Research conducted in [10] uses eXtensible Stylesheet
Language (XSL) style sheets to transform UML models,
producing applications that automatically transform class
diagrams into OWL ontologies based on the proposed
transformation rules. An eXtensible Stylesheet Language
Transformations (XSLT)-based architecture for automated
OWL development consisting of Metamodel Definition of
Ontology that is defined using the Meta-Object Facility (MOF)
has been proposed by [13]. Other research on the automatic
translation of UML into OWL is carried out in [14], [15] which
has revised the transformation rules identified in the literature
review and proposed the verification rules to check the
suitability of the UML class diagram with the ontological
domain in OWL through an algorithmic method.

An automatic translation of UML class diagrams and
statechart diagrams into OWL is proposed in [16] through an
approach that analyzes the consistency and satisfaction of
UML models using logical reasoning for OWL. The design and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

108 | P a g e

www.ijacsa.thesai.org

software development that uses a model-based approach to
produce OWL-based Web Service ontologies (OWL-S) from
the UML model is proposed in [17]. The proposed method is
based on the UML profile, which represents the characteristics
of OWL-S.

Research related to translating UML into OWL files
manually was carried out in [19]–[22]. The importance of the
role of ontology in developing e-learning platforms is
increasingly becoming a reason of [19] to build OWL Moodle
that can make the data exchanged therein can be processed by
machines. Other research conducted by [20] proposes ontology
development methodologies to facilitate the decision making
process about water management systems used in a web-based
Decision Support Systems. Manually changing data and
information on repository publications are addressed in [21],
[22] through the use of structured knowledge that is based on
ontology design with dynamic domains.

TABLE I. RESEARCH RELATED TO MODELING LANGUAGE INTO OWL

TRANSFORMATION

Researc

h

SysML

to

OWL

Manua

l

UML to OWL

Diagram Type
Case

Studies Autom

atic
Manual

[18] √

Requirement

Diagram,

Activity
Diagram, Block

Definition

Diagram, and
Internal Block

Diagram

Water

distillation
system

[7] √ Block Diagram Vehicle

[15] √ Class Diagram

[14] √ Class Diagram

[16] √

Class Diagram

and State Chart

Diagram

Content

Managemen

t System

[6] √ Class Diagram University

[10] √ Class Diagram

[17] √

Class Diagram,

Sequence
Diagram, and

Activity

Diagram

Publication

[13] √ Class Diagram
Wine
ontology

[19] √ Class Diagram

Social

Learning

Net.

Analysis

[20] √ Class Diagram

Water

management

system

[21] √
Activity

Diagram

Repository
of university

publications

[22] √

Use Case

Diagram and

BPMN
Diagram

Repository
of university

publications

Table I summarizes related work and classifies the existing
work based on the type of modeling language, the diagram
types within each modeling language, and the case studies to
be used in the experiment. The main difference between the
existing researches with the proposed model is that the model
suggests an automatic transformation from SysML into OWL.
Although the transformation from SysML into OWL has been
introduced in [18] and [7], the transformation is still done
manually. With automatic transformation, this research
supports the opportunity to increase the use of requirements
diagrams to support object-oriented system modeling that
incorporates not only software, but also people, materials, and
other physical resources and can express the structure and
behavior of a system.

III. PROPOSED WORK

This research proposes a transformation model from
SysML Requirement Diagram into OWL ontologies
automatically. The proposed model takes the XMI serialization
of the SysML Requirement Diagram, as the input and then
produces the appropriate OWL ontology in the RDF/XML
syntax as the output. In general, there are four main processes
in the proposed model, as shown in Fig. 1.

Fig. 1. The Architecture of the Proposed Model.

The first process is the modeling of the SysML
Requirement Diagram using Visual Paradigm tool. Visual
Paradigm Modeler is one of the modeling tools that can be
used to create a SysML Requirement Diagram. The case
examples used in this research are the ones that are presented
in several references, including in the SysML International
Standards document published by OMG. The second process is
to export the SysML Requirement Diagram file to obtain the
XMI serialization file. The XMI serialization extracted from
SysML Requirement Diagrams is then transformed into an
OWL ontology representation. The third process is the parsing
and extraction XMI file from SysML Requirement Diagram by

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

109 | P a g e

www.ijacsa.thesai.org

Document Object Model (DOM) Parser Application Program
Interface (API) for Java. The last process is the transformation
of the SysML Requirement Diagram into an OWL document
represented in Resource Description Framework/Extensible
Markup Language (RDF/XML) syntax according to predefined
transformation rule. The transformation rules will change the
elements in the SysML Requirement Diagram into ontology
components. A package is transformed into an ontology, a
requirement is transformed into a class, a containment is
transformed into a subclass, a dependency is transformed into a
relationship (object property), an item is transformed into an
attribute (data property). The complete explanation about the
transformation rules is presented in Section IV. This
transformation process generates OWL files that can be
visualized through Protégé.

IV. TRANSFORMATION RULES AND ALGORITHM

This section presents the transformation rules and
algorithms that are used to change the SysML Requirement
Diagram in graphical symbols into OWL in RDF/XML syntax
that can be displayed through Protégé.

A. SysML-to-OWL Transformation Rule

The proposed model is realized according to several
transformation rules, as shown in Table II. This research
proposes a set of rules for transformation of class, subclasses,
associations, and almost all elements of the SysML
Requirement Diagram. The rules are designed based on
previous studies related to UML to OWL transformation, as
proposed in [6], [10], [15]. SysML is an extension of UML so
that SysML Requirements extends UML classes and
dependencies [2], therefore, some elements in SysML
Requirement Diagrams have common semantic
correspondence with UML diagrams.

B. Transformation Algorithm

The proposed model for extracting the OWL ontology from
a SysML Requirement Diagram can be implemented using the

transformation algorithm S2OTransformation based on
the transformation rules. The algorithm performs
transformation for each element of the SysML Requirement
Diagram into OWL in RDF/XML syntax automatically. The
algorithm below can be applied to produce OWL in RDF/XML
syntax so that ontologies can be directly displayed through
Protégé.

The algorithm has been implemented in Java programming
language based on J2SE 1.8.0 platform. As can be read from
the algorithm, the input is the XMI file produced from the
serialization of the Requirement Diagram, while the output is
the OWL file as the result of the transformation process.

Algorithm S2OTransformation
Input: XMI file from SysML Requirement Diagram

Output: OWL file displayed through Protégé

Begin

1. read XMI file exported from SysML Requirement

Diagram file

2. find a node of the diagram based on diagram names

3. look for the list element diagram from the diagram

4.
find a list of SysML model IDs based on subject values in

all element diagrams

5. search for model nodes based on a tag name

6.
look for the SysML model list based on the SysML ID list

and the model

7. search for package nodes from the list element diagram

8. if the package found, then save as package value

9. if the package not found, then return null.

10.
if the package node is not the same as null, proceed by

searching the list SysL model node from the package

11. adding the SysML model node to the SysML model list

12. prepare data to generate OWL file

13.
do iterate for each element diagram in the element diagram

list

14. search data for OWL Class in diagram element

15. if the value of preferred shape = "Requirement",

16.
look for the value of the SysML model with the subject

value of the element diagram as ID SysML model

17.
set attribute of OWL Class with the name of value SysML

model

18. check subclass of diagram element

19. if the preferred shape = "Containment",

20.

set the subclassOf attribute with the name of SysML

model which is taken from the

SysMLModelContainmentFrom diagram element value

21.
if the userID and documentation property values in SysML

model are not equal to null,

22.
add the userID and documentation property values as

OWL Datatype to the OWL Datatype list

23.
search data for OWL Object Property from the diagram

element

24.
if the values of from, to and preferred shape are

not equal to null

25.

then set the OWL Object Property to the value of the name

SysML model obtained from, to and preferred
shape

26. generate OWL file

27. set initial data for OWL file by creating a document

28. set attribute

29. if the package is not the same as null,

30. add the package element

31. do iterate for each data of OWL Class

32. add the attribute value about OWL class

33. if the OWL class has subclasses, add subclass values

34. if the OWL class has a comment, add the comment value

35. do iterate for each data of OWL Object Property

36.
add domain and range attribute values according to OWL

Object Property data

37.
if the OWL Object Property has a comment, add the

comment value

38. do iterate for each data of OWL Datatype

39. add values about domain and range

40. save OWL file

41. display OWL file through Protégé

End

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

110 | P a g e

www.ijacsa.thesai.org

TABLE II. TRANSFORMATION RULE OF SYSML REQUIREMENT DIAGRAM INTO OWL ONTOLOGIES

SysML Requirement

Diagram Element

SysML Requirement

Diagram graphical symbol

Corresponding OWL Ontology

element
OWL representation

a SysML package

 an OWL ontology <owl:Ontology rdf:about="Package1">

a SysML requirement

an item in a requirement

(id, text)

an OWL class (an entity class)

an attribute (data property)

<owl:Class rdf:ID="Requirement 1"/>

</owl:Class>

<owl:DatatypeProperty rdf:ID=”id”>

 <rdfs:domain

rdf:resource=”#Requirement 1”/>

 <rdfs:range

rdf:resource=”&xsd;string”/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID=”text”>

 <rdfs:domain

rdf:resource=”#Requirement 1”/>

 <rdfs:range

rdf:resource=”&xsd;string”/>

</owl:DatatypeProperty>

a requirement containment

a subclass

<owl:Class rdf:ID="Requirement _B>

 <rdfs:subClassOf

rdf:resource=”Requirement_A”/>

</owl:Class>

a dependency notation

a relationship class
(object property)

<owl:ObjectProperty rdf:ID="derive">

 <rdfs:domain

rdf:resource="#Requirement_A"/>

 <rdfs:range

rdf:resource="#Requirement_B"/>

</owl:ObjectProperty>

Package1

id=” ”

text=” ”

<<requirement>>

Requirement 1

<<derive>>

id=” ”

text=” ”

<<requirement>>

Requirement_B

id=” ”

text=” ”

<<requirement>>

Requirement_A

id=” ”

text=” ”

<<requirement>>

Requirement A

id=” ”

text=” ”

<<requirement>>

Requirement_B

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

111 | P a g e

www.ijacsa.thesai.org

V. EXPERIMENTAL RESULTS

This research used HSUVSpecification model [2] of
the SysML Requirement Diagram to do an experiment to
evaluate the performance of the proposed model.

A. Example of SysML Requirement Diagram

Fig. 2 shows the HSUVSpecification Requirement
Diagram, created with Visual Paradigm Modeler v16.1. This
case example illustrates the use of SysML Requirement
Diagrams for the development of car manufacturing,
particularly specification of a Hybrid Sport Utility Vehicle
(HSUV), which contains the following elements:

 A package, namely, HSUVSpecification package.

 Requirements such as Eco-Friendliness, Performance,
Ergonomic, Qualification, Capacity, Zero-emissions,
MaxAcceleration, Range and SizeSeatBelt.

 Requirement containments such as Emissions, Braking,
FuelEconomy, OffRoadCapability, Acceleration,
SafetyTest, CargoCapacity, FuelCapacity and
PassengerCapacity.

 Dependencies between requirements such as copy,
derive, trace and refine.

 Item id and text in Emissions, Zero-emissions, and
SizeSealtBelt requirements.

B. The Produced Ontology

To the HSUVSpesification Requirement Diagram shown in
Fig. 2, the S2OTransformation algorithm is applied. The
produced ontology is shown in Fig. 3, 4, 5, and 6.

Fig. 3 shows the class and sub-class hierarchy, which is the
result of the transformation of packages and requirements,
shown in Fig. 2. The name of the package, i.e.,
HSUVSpecification, becomes the name of the ontology in
Fig. 3.

Nine requirements become nine classes in ontology, i.e.,
Eco-Friendliness, Performance, Zero-emissions,
MaxAcceleration, Range, Ergonomics, SizeSealtBelt,
Qualification, and Capacity. Nine requirement containments
become the nine subclasses, i.e., Emissions, Braking,
FuelEconomy, Acceleration, SafetyTest, CargoCapacity,
OffRoadCapability, Fuel Capacity, and PassengerCapacity
subclasses.

The class and subclass hierarchy in the produced ontology
is in accordance with the hierarchy of requirements and
containments shown in Fig. 2.

Fig. 4 shows object properties as the results of the
transformation process of the <<derive>>, <<trace>>,
<<copy>>, and <<verify>> dependencies. Fig. 4 also shows
the source (domain) and destination (range) of each
dependency. For example, the domain (derive from) of the
derive object property is class Range, while the range
(towards) is class FuelCapacity and class FuelEconomy.

Fig. 2. HSUVSpecification Requirement Diagram Modeled using Visual Paradigm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

112 | P a g e

www.ijacsa.thesai.org

Fig. 3. The OWL Classes and Subclasses Produced from the

Transformation.

Fig. 4. The OWL Object Properties Produced from the Transformation.

Fig. 5 shows the produced data properties as the results of

the transformation of item <<id>> and item <<text>>. The
domains in Fig. 5 shows which requirements have the id and
text attributes, while ranges show the data type of the attribute,
namely string.

Fig. 6 shows the ontograf of the produced ontology, which
is a depiction of the class hierarchy along with existing object

properties. The straight blue lines indicate subclass (i.e., Eco-
Friendliness, Performance, Qualification, Zero-emissions,
Range, MaxAcceleration, Ergonomic, SizeSealtBelt, and
Capacity), and the dashed lines indicate object properties (i.e.,
copy, derive, trace and verify). The experiment of case studies
denotes that the proposed model works well, and can produce
fully automatic ontological transformations.

C. Verification of Transformation Result

Testing the results of transformation is one of the crucial
processes carried out to determine the performance of the
proposed model that has been offered. The produced ontology
file is tested for the accuracy of the design and its validity to
the system design contained in the SysML Requirement
Diagram. The testing of the proposed model is carried out by
verifying the successful transformation of each element
contained in the SysML Requirement Diagram into the
appropriate ontology component. The testing is aimed to
demonstrate the correctness of the proposed model and to show
that a fully automatic ontology transformation can be achieved.

As shown in the above experiment, the produced ontology
contains all elements contained in the SysML Requirement
Diagram in Fig. 2. This research also does an experiment on 4
other Requirement Diagrams. To save space, this paper only
displays the verification result of the transformation, as shown
in Table III, which shows that all elements contained in the
SysML Requirement Diagram case examples have been
transformed into ontology components according to rules that
have been defined in Table II.

Fig. 5. The OWL Data Properties Produced from the Transformation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

113 | P a g e

www.ijacsa.thesai.org

Fig. 6. OntoGraf of the produced ontology

TABLE III. VERIFICATION OF ELEMENT TRANSFORMATION RESULT

Case

Study

Number of SysML Requirement Diagram Element Number of OWL Ontology Element

Package Requirement Containment Dependency Item Ontology Class Subclass Object Property Data Property

#1 1 9 9 5 2 1 9 9 5 2

#2 4 3 4 3

#3 10 9 10 9

#4 8 7 2 8 7 2

#5 4 1 3 4 1 3

VI. CONCLUSION

In this paper, an automatic transformation of the SysML
Requirement Diagram into OWL ontology has been proposed.
From the experiment results, it can be concluded that the
transformation of the SysML Requirement Diagram into OWL
in RDF/XML syntax works well, and is able to produce an
OWL ontology that can be displayed through Protégé. This is
achieved using the transformation rules and algorithms that
have been defined. The results of the transformation of several
case studies have also been verified for correctness.

For further research, the proposed model will be
developing and testing to transform other types of diagrams in
SysML into OWL ontologies and then compare the results.

REFERENCES

[1] M. C. Hause, “The SysML Modelling Language,” in Fifth European
Systems Engineering Conference, 2006, vol. 9.

[2] Object Management Group, “An OMG Systems Modeling Language
TM Publication OMG Systems Modeling Language v1.5,” 2017.
[Online]. Available: http://www.omg.org/spec/SysML/20161101.
[Accessed: 28-Feb-2019].

[3] T. Weilkiens, Systems Engineering with SysML/UML Modeling,
Analysis, Design. United States of America: Morgan Kaufmann
Publishers, 2008.

[4] D. Wu, L. L. Zhang, R. J. Jiao, and R. F. Lu, “SysML-based design

chain information modeling for variety management in production
reconfiguration,” J. Intell. Manuf., vol. 24, no. 3, pp. 575–596, 2013,
doi: 10.1007/s10845-011-0585-6.

[5] S. C. Spangelo et al., “Model based systems engineering (MBSE)
applied to Radio Aurora Explorer (RAX) CubeSat mission operational
scenarios,” in IEEE Aerospace Conference Proceedings, 2013, doi:
10.1109/AERO.2013.6496894.

[6] Z. Xu, Y. Ni, W. He, L. Lin, and Q. Yan, “Automatic extraction of
OWL ontologies from UML class diagrams: a semantics-preserving
approach,” World Wide Web, vol. 15, no. 5–6, pp. 517–545, Sep. 2012,
doi: 10.1007/s11280-011-0147-z.

[7] H. Graves, “Integrating SysML and OWL,” in CEUR Workshop
Proceedings, 2009, vol. 529, no. Owled.

[8] E. K. Elsayed and D. R. Fathy, “Sign Language Semantic Translation
System using Ontology and Deep Learning,” Int. J. Adv. Comput. Sci.
Appl., vol. 11, no. 1, pp. 141–147, 2020.

[9] S. M. Akhtar, M. Nazir, K. Saleem, H. M. Ul Haque, and I. Hussain,
“An ontology-driven iot based healthcare formalism,” Int. J. Adv.
Comput. Sci. Appl., vol. 11, no. 2, pp. 479–486, 2020.

[10] A. Belghiat and M. Bourahla, “Transformation of UML models towards
OWL ontologies,” in 2012 6th International Conference on Sciences of
Electronics, Technologies of Information and Telecommunications,
SETIT 2012, 2012, pp. 840–846, doi: 10.1109/SETIT.2012.6482025.

[11] Y. Traore and D. Bassole, “Multi-Label Classification using an
Ontology,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 12, pp. 472–476,
2019.

[12] N. F. Noy and D. L. Mcguinness, “Ontology Development 101 : A
Guide to Creating Your First Ontology,” pp. 1–25, 2000.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

114 | P a g e

www.ijacsa.thesai.org

[13] D. Gasvic, D. Djuric, V. Devedzic, and V. Damjanovic, “From UML to
ready-to-use OWL ontologies,” in Second lEEE International
Conference on Intelligent Systems, 2004, no. June, pp. 485–490, doi:
10.1109/is.2004.1344798.

[14] M. Sadowska and Z. Huzar, “Semantic Validation of UML Class
Diagrams with the Use of Domain Ontologies Expressed in OWL 2,” in
Software Engineering: Challenges and Solutions, vol. 504, 2017, pp. 47–
59.

[15] M. Sadowska and Z. Huzar, “Representation of UML Class Diagrams in
OWL 2 on the Background of Domain Ontologies,” e-Informatica
Softw. Eng. J., vol. 13, no. 1, pp. 63–103, 2019, doi: 10.5277/e-
Inf190103.

[16] A. H. Khan and I. Porres, “Consistency of UML class, object and
statechart diagrams using ontology reasoners,” J. Vis. Lang. Comput.,
vol. 26, pp. 42–65, 2015, doi: 10.1016/j.jvlc.2014.11.006.

[17] Il-Woong Kim and Kyong-Ho Lee, “A Model-Driven Approach for
Describing Semantic Web Services: From UML to OWL-S,” IEEE
Trans. Syst. Man, Cybern. Part C (Applications Rev., vol. 39, no. 6, pp.
637–646, 2009, doi: 10.1109/tsmcc.2009.2023798.

[18] H. Wang, V. Thomson, and C. Tang, “Change propagation analysis for
system modeling using Semantic Web technology,” Adv. Eng.

Informatics, vol. 35, pp. 17–29, Jan. 2018, doi:
10.1016/j.aei.2017.11.004.

[19] B. Bouihi and M. Bahaj, “An UML to OWL based approach for
extracting Moodle’s Ontology for Social Network Analysis,” Sci. -
Procedia Comput. Sci., vol. 148, pp. 313–322, 2019, doi:
10.1016/j.procs.2019.01.039.

[20] H. A. Salah, “Ontology development (OWL&UML) methodology of
web-based Decision Support System for water management,” in
Proceedings of the 2014 6th International Conference on Electronics,
Computers and Artificial Intelligence, ECAI 2014, 2014, pp. 11–22, doi:
10.1109/ECAI.2014.7090217.

[21] J. I. Olszewska, “UML Activity Diagrams for OWL Ontology
Building,” in Proceedings of the 7th International Joint Conference on
Knowledge Discovery, Knowledge Engineering and Knowledge
Management (IC3K 2015), 2015, vol. 2, pp. 370–374.

[22] J. I. Olszewska, R. Simpson, and T. L. Mccluskey, “Dynamic OWL
Ontology Design Using UML and BPMN,” in Proceedings of the
International Conferenceon Knowledge Engineering and Ontology
Development (KEOD-2014), 2014, pp. 436–444, doi:
10.5220/0005159204360444.

