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Abstract—The increasing number of mobile devices using the 

Android operating system in the market makes these devices the 

first target for malicious applications. In recent years, several 

Android malware applications were developed to perform 

certain illegitimate activities and harmful actions on mobile 

devices. In response, specific tools and anti-virus programs used 

conventional signature-based methods in order to detect such 

Android malware applications. However, the most recent 

Android malware apps, such as zero-day, cannot be detected 

through conventional methods that are still based on fixed 

signatures or identifiers. Therefore, the most recently published 

research studies have suggested machine learning techniques as 

an alternative method to detect Android malware due to their 

ability to learn and use the existing information to detect the new 

Android malware apps. This paper presents the basic concepts of 

Android architecture, Android malware, and permission features 

utilized as effective malware predictors. Furthermore, a 

comprehensive review of the existing static, dynamic, and hybrid 

Android malware detection approaches is presented in this study. 

More significantly, this paper empirically discusses and 

compares the performances of six supervised machine learning 

algorithms, known as K-Nearest Neighbors (K-NN), Decision 

Tree (DT), Support Vector Machine (SVM), Random Forest 

(RF), Naïve Bayes (NB), and Logistic Regression (LR), which are 

commonly used in the literature for detecting malware apps. 
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I. INTRODUCTION 

Android constitutes the most common mobile operating 
system [1] that presently dominates the smartphone market. In 
the second quarter of 2018, the Android Operating System 
(AOS) represented the most significant market share amongst 
other smartphone platforms by approximately 88% worldwide 
[1]. The popularity of the Android operating system is due to 
the fact that it constitutes an open-source system with rich 
SDK libraries, a third-party distribution center, and utilizes 
Java as a programing language [2]. 

The fast growth rate of Android applications worldwide 
has led to a considerable increase in the development and 
spread of Android malware applications [3]. Android malware 
can infect any type of application such as bank apps, gaming 
apps, education, or other lifestyle apps [4] in order to provide 

unauthorized access and remotely control the system without 
the user’s permission. As more Android malware applications 
are continuously being developed at an alarming rate, it is 
important to efficiently and continuously monitor and control 
their activities. 

In recent years, many Android commercial tools and anti-
virus programs have been developed to detect android 
malware applications. Most of these commercial Android 
malware detection tools are based on using fixed signatures or 
identifiers. These commercial tools, however, only perform 
well in detecting the Android malware applications with 
known signatures or identifiers and may fail to detect the 
unknown Android malware apps [5] that have been developed 
more recently, especially zero-day malware apps. In other 
words, these commercial tools are unable to make accurate 
decisions when determining whether the new Android app is a 
malware or not [6][7]. 

Alternatively, numerous research works [8][9][4][10] 
focused on training machine learning classification algorithms 
based on known Android malware apps in order to detect 
unknown Android malware applications. In fact, machine-
learning algorithms have been found to achieve a remarkable 
accuracy ratio at detecting malicious applications depending 
on the quality of the extracted features, the dataset, and the 
methods used in training of the models [6]. In this article, a 
comprehensive review of Android malware detection 
approaches based on static, dynamic and hybrid analysis is 
presented. Furthermore, the article experiments and compares 
the performances of six commonly used supervised machine 
learning algorithms. 

The rest of the paper is structured as follows: Section II 
discusses the related work while the major contributions in 
this study are summarized in Section III. Section IV presents 
the structure of the Android operating system. The growth of 
Android malware and some samples are overviewed in 
Section V. Some supervised machine learning algorithms are 
overviewed in Section VI. The methodology of Android 
malware detection based on machine learning is presented in 
Section VII. The result and discussion are provided in 
Section VIII, followed by the conclusion and future work in 
Section IX. 
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II. RELATED WORK 

The ability of machine learning to accurately detect 
unknown malicious Android applications at an early stage 
constitutes an attractive advantage that can be utilized to 
enhance user security and privacy. Several works have applied 
machine learning through different methods and models to 
produce better solutions for Android malware detection. In 
this section, we focus on articles discussing Android malware 
detection based on machine learning and applying static, 
dynamic, and hybrid approaches, in addition to other recent 
articles on different approaches such as ensemble learning and 
deep learning. 

A. Intelligent Android Malware Detection Approach based on 

Static Analysis 

This approach is considered as the most common approach 
suggested by many researchers as it is simple, fast, and easy to 
be implemented. The static analysis approach requires only 
decompiling an Android package (APK) and then extracting 
the set of Android permissions or API calls invoked 
throughout the code without running the Android apps. 

In [11][12], the authors introduced an Android malware 
detection system based on permission features. The authors in 
[11] developed three levels of classifications based on 
significant permission features that can be efficient in 
differentiating between benign and malicious apps. In order to 
leverage the higher computing power of the server, [12] 
developed a system to extract a number of features and then 
trained a one-class support vector machine in an offline 
manner. More than 11,120 Android application samples 
collected from the DREBIN dataset were used in [13] to 
evaluate the four machine learning algorithms Random Forest, 
Decision Tree, Extremely Randomized Tree, and Gradient 
Tree Boosting, and then a substring-based feature selection 
method was proposed to identify Android malware 
applications. In [14], the authors ranked all the individual 
permissions with their potential risk using the three methods 
of mutual information, Correlation Coefficient (CorrCoef), 
and T-test. Furthermore, they employed Sequential Forward 
Selection (SFS) and Principal Component Analysis (PCA) in 
order to identify risky permission subsets. Support vector 
machine, decision trees and random forest were used to detect 
malware apps based on the identified subsets of risky 
permissions. More than 30 features from seven (7) categories 
were collected in [15] which implemented a collection of 
machine learning algorithms such as Support Vector Machine, 
Random Forest, Naïve Bayes, and logistic regression. The 
authors in [11] demonstrated that the best performance was 
accomplished by Random Forest. However, the dataset used in 
[11] was relatively small and included only 32 benign apps 
and five (5) malware apps. Three (3) Bayesian classification 
approaches for identifying Android malware were analyzed 
and suggested in [16] [16] which applied a static analysis 
using a dataset of malware samples containing 49 known 
Android malware families and a wide variety of benign apps. 

Other articles, such as [17][18], used a combination of 
permissions and API features for building Android malware 
detection. Authors in [18] experimented on the performance of 
SVM, J48, and Bagging on real-word Apps for more than 

1,200 malware apps and 1,200 benign apps. They obtained 
96.39% accuracy in detecting malware apps. In [17], the best 
accuracy rate was performed by SVM and ensemble learning, 
with 95.1% and 95.6%, respectively. 

B. Intelligent Android Malware Detection Approach based on 

Dynamic Analysis 

In the dynamics-based approach, it is required to use a 
simulator, an emulator, or even a physical device to run an 
Android app to monitor its dynamic behavior. Then, the 
dynamics features are extracted to train the machine learning 
classifiers in order to be used in Android malware detection. 

The intelligent Android malware detection approach based 
on dynamic analysis has been suggested in several research 
studies. For instance, [19] applied dynamic analysis using the 
Random Forest algorithm as a machine learning algorithm and 
proposed the Conformal Prediction model assessed on 1,866 
malware and 4,816 benign applications on a real Android 
device. DroidDolphin [20] is a dynamic malware analysis 
framework that uses GUI-based testing, big data analysis, and 
machine learning to detect Android malware. The framework 
can be used in conjunction with other existing works to 
improve the detection rate of malware. Furthermore, [21] 
developed a dynamic Android malware detection based on 
API calls and system call traces using 7,520 apps, including 
3,780 for training and 3,740 for testing, while [22] 
implemented a tool to automatically extract dynamic features 
from Android phones and performed a comparative analysis of 
emulator-based detection against device-based detection by 
means of Random Forest, Naive Bayes, Multilayer Perceptron, 
Simple Logistics, J48 decision tree, PART, and SVM (linear) 
algorithms. 

C. Intelligent Android Malware Detection Approach based on 

Hybrid Analysis 

The hybrid analysis is a combination of static analysis and 
dynamic analysis that can be integrated to detect Android 
malware [23]. 

In [24], developed a MARVIN Android malware detection 
tool that was utilized to classify apps based on features 
extracted from static and dynamic analysis with over 135,000 
Android apps and 15,000 malware samples and successfully 
classified 98.24% of malicious apps with less than 0.04% false 
positives. Subsequently, [25] proposed a novel hybrid Android 
malware analysis approach called mad4a. In order to achieve a 
comprehensive analysis and discover more malware apps, 
mad4a used both static and dynamic advantages to analyze the 
dataset. Authors in [26] extracted and merged static and 
dynamic app features and then adjusted the weights to use 
Weka for training the detection model. The ten-fold cross-
validation method achieved an accuracy of 97.4%. 

D. Other Advanced Intelligent Techniques 

Authors in [27] proposed a hybrid-model approach using a 
fusion logic algorithm, achieving very high accuracy (96.69%) 
and a low false-positive rate (2.5%) in predicting unknown 
malware apps. Another hybrid-model was proposed by [28] 
for malware detection using the anomaly-based approach with 
machine learning classifiers. Bayes network and random forest 
classifiers were used in [28] and produced a 99.97% true-
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positive rate. Also, an evolving hybrid neuro-fuzzy classifier 
was proposed in [29] to enhance the detection accuracy of 
malware applications that achieved 90% detection accuracy 
with a dataset of 250 malware apps and 250 benign. The 
author in [30] suggested a hybrid intelligent Android malware 
detection approach based on evolving support vector machine 
with a genetic algorithm (GA) and particle swarm 
optimization (PSO) in order to enhance detection accuracy of 
Android malware apps. 

Deep learning has been used in Android malware detection 
by [31][32][9]. However, deep learning requires a great 
amount of data, more time, and a sophisticated and powerful 
computer to produce a good result. Ensemble learning 
produced excellent results in many research studies, such as 
[14][10][15][16]. Pindroid [17] used a group of permissions 
and intents supplemented with ensemble methods for 
accomplishing more accurate malware detection [17]. On 
another note, [18] produced a hypothesis to detect Android 
malware in the early stage by means of parallel machine 
learning classifiers that utilized various algorithms with 
inherently different characteristics. 

The study of [19] adopted a machine learning approach 
that used the dataflow application program interfaces (API) to 
collect features and use them to detect malware apps. A 
thorough analysis was conducted to extract features and 
improve the k-nearest neighbor classification model. An 
automated testing tool called WaffleDetector was 
implemented by [20] to identify Android malware by 
proposing a group of Android features consisting of sensitive 
permissions and API to feed machine learning algorithms. 
Finally, [32] used metadata to categorize malware, and [33] 
implemented an online machine learning classification. Useful 
review articles of Android malware detection using machine 
learning techniques can be found in [34][35][36]. 

III. SUMMARY OF CONTRIBUTIONS 

This article presents a comprehensive review of Android 
malware detection approaches based on static, dynamic, and 
hybrid analysis. In addition, it compares and discusses the 
performances of six supervised machine learning algorithms, 
which are commonly used in the literature for detecting 
malware apps, known as K-Nearest Neighbors (K-NN), 
Decision Tree (DT), Support Vector Machine (SVM), 
Random Forest (RF), Naïve Bayes (NB), and Logistic 
Regression (LR). The significant contributions in this study 
can be summarized in the following aspects: 

 Android architecture, Android malware, and 
permissions as effective malware predictors are 
investigated and discussed in this study. 

 This work presents a comprehensive review of 
common Android malware analysis methods that are 
categorized under static, dynamic, and hybrid 
approaches. 

 More significantly, this paper empirically discusses and 
compares the performances of six supervised machine 
learning algorithms commonly used in the literature for 
detecting malware apps. 

IV. ANDROID ARCHITECTURE 

Android is an open-source system that comprises a Linux-
based software stack for a wide range of devices and form 
factors created by Google [37]. The Android operating system 
is a stack of components that can be defined as consisting of 
five layers that organize the functions of the system in the 
form of the Linux kernel layer, hardware abstractor layer, 
Android libraries layer, Java API framework layer, and system 
application layer. 

A. The Linux Kernel 

Android uses a version of the Linux kernel equipped with 
a few unique additions [38]. The Android kernel is responsible 
for handling functions such as memory process, device 
drivers, resource access, power management, and other typical 
OS duties. It also serves as a layer between the hardware and 

other software stacks [39]. 

B. Hardware Abstractor Layer 

The hardware abstractor layer (HAL) is defined as [40] a 
standard interface implemented by hardware vendors that 
enables Android to be agnostic about lower-level driver 
implementations. HAL allows the user to implement 
functionalities without affecting or modifying the higher-level 
system (“Legacy HALs"). The main hardware abstractor layer 
contains Application Programming Interfaces (APIs) for the 
upper layers in order to use hardware in a unified and 
straightforward way [41]. In Android 8.0 and above, the 
lower-level layers are rebuilt to fit a new and more 
sophisticated architecture; however, devices that use Android 
8.0 and above should support HALs written in the HIDL 
language, with a few exceptions [37]. 

C. Android Libraries 

This layer is composed of two modules. The first module 
contains the Native C/C++ Libraries, such as OpenGL, 
Webkit, or SSL/TLS, that contain essential application 
features. Native code is used to program Android-system 
components and services such as ART and HAL. This code 
requires native libraries that are mostly written in C and C++ 
languages [37]. The Android platform provides an API 
framework that allows applications to interact with the 
underlying Android system [18]. 

The second module contains Android Runtime (ART), a 
modified Java Virtual Machine (JVM) in order to run Android 
applications that are not implemented in native code. ART 
constitutes a byte code format designed especially for Android 
that is optimized for minimizing memory consumption and is 
written to run multiple virtual machines on low-memory 
devices by executing DEX files [37]. The Dalvik virtual 
machine has been designed to work effectively in multiple 
virtual machines in order to increase stability and reduce 
memory consumption [15]. ART comes with ahead-of-time 
compiling (AOT), which performs complete bytecode 
translation after installation and before running the 
application. ART also provides improved garbage collection 
and new debugging features [42]. 
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D. Java API Framework 

All Android OS features that are available for use through 
APIs are programmed using Java [37]. Application 
Programming Interface (API) refers to a set of tools that 
provide a communication interface between different software 
components [7]. The API framework consists of a core set of 
classes and packages [18]. These APIs are fundamental 
components for building Android applications, such as the 
view system to create the user interface (UI) [37]. Top-level 
system applications are necessary to provide basic 
functionality like calendar, contacts, and e-mail [37]. 

E. System Application 

The system-applications layer is the top layer that is 
responsible for interacting between the end-user and the 
device. System applications are located in order to provide 
basic functionalities such as managing contacts, sending 
messages, making calls, and browsing the Web [37][2]. 

The system application layer contains the four components 
of activity, services, content provider, and broadcast receiver. 
Every component fulfills a specific purpose and has its own 
life cycle. The activity component interacts with the user and 
represents a single screen with a user interface [37] and is 
mainly used as an entry point for the application. The services, 
on the other hand, are a group of the components and 
processes used for performing specific tasks in the background 
and do not require a user interface [41]. The content provider 
is used to manage and share data between multiple 
applications [38], which allows applications to read and write 
data (such as contact information) and communicate with each 
other or interact with other applications in the system. In 
contrast, the broadcast receiver is used as a mailbox to 
respond to and receive the broadcast messages of the order or 
other applications (such as the low battery message) [2]. 

V. ANDROID MALWARE 

Android malware apps are growing at an alarming rate, 
regardless of the measures used to reduce infections amongst 
Android users worldwide [43]. For example, G DATA 
security experts discovered that there were 8,400 new Android 
malware samples every day in the first quarter of 2017 [44]. 
Fig. 1 shows the growth of Android malware apps during 
recent years. 

 

Fig. 1. The Growth of Android Malware Apps between 2012-2018. 

TABLE I. TOP ANDROID MALWARE DETECTED IN 2018 [46] 

Name Threat Threat’s percentage 

Android.Adware.AdultSwine  Moderate  17.29  

Android.Adware.Uapush.A  Moderate  13.98  

Android.Trojan.Leech.d  High  4.69  

Android.Trojan.AndrClicker.D  High  4.41  

Android.Spyware.mSpy  High  4.11  

Android.MobileSpyware.FlexiSpy  High  3.62  

Android.Trojan.Xgen.FH  High  3.12  

Android.InfoStealer.Adups  High  3.03  

Android.Trojan.Rootnik.i  High  3.01  

Android.Trojan.Triada  High  2.76  

Android.Trojan.Gmobi.a  High  2.61  

Android.BankingTrojan.Marcher.A  High  2.39  

Android.BankingTrojan.Acecard.m  High  2.15  

Android.Trojan.HiddenApp  High  2.08  

Android.Trojan.Sivu.C  High  2.06  

There are a variety of attack types ranging from the attack 
that only is advertising without harming the product or the 
website to the most sophisticated attack that is capable of 
accessing personal and sensitive information on the device 
[23][45]. The majority of Android malware can be categorized 
into fake installers or SMS trojans. Both of them are using 
social engineering to trick users into installing malicious apps 
[2]. Table I shows the top 15 Android malware detected in 
2018. 

VI. SUPERVISED MACHINE LEARNING 

Machine learning is defined as the science of computer 
programming that can learn from data and past experiences 
[47]. Today machine learning models are used for 
recommender systems such as online shops, for fraud 
detection in credit card companies or for medical diagnosis in 
hospitals [41]. The supervised learning approach is able to 
automate a decision process from the generalization of known 
examples and specific input data [41]. In general, the data is 
labeled and divided into training and testing data. The training 
data is fed into a supervised machine learning algorithm to 
train the model. Subsequently, the test data is used to verify 
the effectiveness of the model by comparing the predicted 
label with the test label of the data. 

In this section, we will describe six (6) supervised machine 
learning algorithms commonly used in literature for detecting 
malware apps: K-Nearest Neighbors (K-NN), Decision Tree 
(DT), Support Vector Machine (SVM), Random Forest (RF), 
Naïve Bayes (NB), and Logistic Regression (LR). 

A. K- Nearest Neighbours 

This algorithm classifies cases based on their similarity to 
other cases. In K-nearest neighbors, data points that are near to 
each other are set to be neighbors, and the output is predicted 
by the majority vote of the K-closest neighbors. Thus, the 
distance between the two cases is a measure of their 
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dissimilarity. In a classification problem, the K-nearest 
neighbors algorithms work as follows: 

 Choose a value for K 

 Calculate the distance of unknown cases in all cases 

 Search for the K-samples in the training data that are 
similar to the measurements of the unknown data point 

 Predict the response of the unknown data point using 
the most popular class responses value from the K-NN. 

There are different ways to calculate the similarity 
between two data points. The most frequently used method is 
the Euclidean distance, which is computed using the formula 
(1). 

The value K assumes a significant job in impacting the 
prediction accuracy of the algorithm. However, choosing the 
K value is not a simple undertaking. 

ED (𝑥1,𝑥2) = √∑ (𝑥1𝑖 −  𝑥2𝑖)
𝑛
𝑖=1

2
 

𝑥1 , 𝑥2 are points in the space n            (1) 

B. Decision Trees 

Decision Trees are versatile and very powerful machine 
learning algorithms that can be used in both regression and 
classification tasks, and even in multioutput tasks [47]. In 
order to produce a decision, a hierarchy of if-else questions 
needs to be answered. For instance, in order to distinguish 
between four (4) animals such as bears, hawks, penguins, and 
dolphins, specific questions need to be asked. The first 
question may be whether the animal has feathers or not, which 
narrows down the probability from four to just two. If the 
answer is 'yes', another question follows to distinguish 
between hawks and penguins, such as whether the animal can 
fly or not. On the other hand, if the animal does not have 
feathers, it is possible the choosing animal either dolphins or 
bears [48]. 

At the top of the tree, the most significant features for 
decision nodes are used. The child nodes at the bottom assign 
the data points to their categories in a more accurate way [41]. 
The advantages of decision trees are their simplicity, little data 
preparation, including feature extraction and the 
interpretability of the model, which results in the ability to 
visualize the model [49]. Furthermore, decision trees can 
handle numerical as well as categorical data [50]. 

C. Support Vector Machine 

The support vector machine (SVM) algorithm is counted 
among the supervised machine learning algorithms that are 
commonly used in malware detection and other classification 
and regression problems. SVM is efficiently used in many 
complex applications with small or medium-sized datasets. 

The main principle here is to identify the best hyperplane 
that can separate the classes. The term 'support vectors' means 
the data points that are near to the hyperplane and might shift 
the hyperplane position up or down if removed. Margin in 
SVM constitutes the distance between the support vector and 
the hyperplane [7]. SVM generally achieves good accuracy, 

particularly on clean datasets. Furthermore, it works well with 
high-dimensional datasets and large datasets that have larger 
data-training time. SVM represents the training data as points 
in the dimensional space that are assembled based on their 
class. Subsequently, each group is separated by a line called a 
hyperplane. For example, if the dataset has picture samples of 
cats and dogs, the SVM algorithm will separate all cat pictures 
in one-dimensional space and all dog pictures in another 
dimensional space and between them a hyperplane. The new 
inputs are mapped into the trained space and categorized 
based on which side of the gap they fall on. 

For more confidence and less error generation, the margin 
function must select the hyperplane in order to ensure that the 
distance between the nearest training data points in any class 
is as large as possible [2]. In most cases, the data points are 
not linearly separable. Thus, the SVM uses kernel functions to 
transform the data into a higher-dimensional space and then 
classify them using the same principle as the linear case. 

D. Random Forest 

Random forest is defined as a collection of decision trees 
that are slightly different from each other. The idea is that 
when many decision trees are implemented that are slightly 
different from each other, different overfitting occurs on parts 
of the data. The amount of overfitting can be reduced by 
averaging their results. Thus, we can benefit from the 
predicting power of decision trees and the result of their 
overfitting average for best predicting results [48]. 

The Random Forest algorithm derives its name from 
infusing randomness into the tree working to guarantee each 
tree is extraordinary. The algorithm can be described as 
follows [51]: 

 Multiple decision trees are built on 70% of the 
collected dataset; however, these data are chosen 
randomly. 

 Random variables are selected from out of all the 
predicted variables. Subsequently, the algorithm 
determines the best split that matches these selected 
variables and applies it to split the nodes. 

 The wrong classification rate or the prediction error is 
calculated using the rest of the data. 

 After comparing the trained trees classification results 
and votes, the algorithm chooses the best result as the 
ultimate result. 

As in decision trees, Random Forest removes the irrelevant 
features as feature selection is necessary when there is a need 
for dimensionality reduction [7]. 

E. Naïve Bayes 

The Naïve Bayes algorithm is considered as one of the 
most powerful and straightforward machine learning 
techniques that depend on the Bayes theorem with an intense 
independence assumption among predictors [38]. Naïve Bayes 
algorithm has proven its effectiveness in many applications 
such as medical diagnosis, text classification, and system 
performance management [52]. 
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The Naïve Bayes algorithm involves the following 
concepts that need to be understood. 

 Class Probability: Class probability is the probability of 
a particular class in the dataset, i.e., the possibility of a 
randomly selected item from the dataset to be in a 
particular class. 

 Conditional Probability: Conditional probability is the 
probability of the feature value given to the class. 

The class probability is calculated as the calculation of 
samples in the C class divided by the overall number of 
samples of all the classes, as shown in equation (2). 

𝑝(𝐶) =  
# 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐶

# 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑇𝑜𝑡𝑎𝑙
            (2) 

The rate of each sample divided by the rate of samples in 
that class is called conditional probabilities, as shown in 
equation (3). 

𝑝(𝑉|𝐶) =  
# 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑤ℎ𝑖𝑡 𝑉 𝑎𝑛𝑑 𝐶

# 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ 𝑉
             (3) 

Looking at the probabilities, we can compute the 
likelihood of the samples having a place in a class and make 
choices utilizing the Bayes theorem, as shown in equation (4). 

𝑝(𝐴|𝐵) =  
𝑝(𝐵|𝐴)𝑝(𝐴)

𝑝(𝐵)
             (4) 

The probability of the sample for each class is computed, 
and the highest probability class is assigned as a result [7]. 

VII. METHODOLOGY 

This section describes the methodology used to detect 
Android malware apps using standard supervised machine 
learning algorithms. The research follows the four phases of 
data collection, feature extraction, training of classification 
models, and performance evaluation. 

A. Data Collection 

In this study, the Malgenome-215 dataset with 3,799 
application samples used by [4] was adopted in our 
experiments in order to train and evaluate the common 
classification models. The dataset consists of 2,539 benign 
apps and 1,260 malware apps. The majority of apps are from 
49 different Android malware families collected from the data 
between August 2010 to the recent one in October 2011. 

B. Feature Extraction 

Android applications contain critical information that can 
be extracted to analyze the attitudes of these applications [53]. 
Android features fall under the three types of permissions, 
sensitive APIs and dynamic behaviors [9]. Dynamic behaviors 
are extracted through dynamic analysis, while the rest of the 
features are extracted by using static analysis, as shown in 
Fig. 2. 

In the dataset [44] used in this study, the static features are 
extracted using a static python tool from manifest file for 
permissions and intents, and from the .dex files for API calls. 
Then, these features are represented in a binary form based on 
the presence of these features in the Android apps. 

 

Fig. 2. Android Feature Types. 

C. Training of Classification Models 

The main goal of the classification model is to predict a 
class label that is chosen from the predefined possibilities list. 
Classification problems can be binary classification, which has 
only two classes to be classified, or multi-class classification, 
which uses the classification model to predict multiple classes. 

From the perspective of machine learning, Android 
malware detection can be understood as a binary classification 
problem. To fulfill our objective in this study, we use binary 
classification to answer the question of whether the Android 
application is benign or malware based on the static features. 

In this study, six (6) common supervised machine learning 
models are trained based on known Android apps with 215 
static features in order to distinguish malware from benign 
apps. Accordingly, unknown Android malware apps can be 
detected using the trained, supervised machine learning 
models of K-Nearest Neighbors (K-NN), Decision Tree (DT), 
Support Vector Machine (SVM), Random Forest (RF), Naïve 
Bayes (NB), and Logistic Regression (LR). Each classification 
algorithm uses different mathematical approaches to 
distinguish between classes, as mentioned in Section 5. 

D. Performance Evaluation 

In order to evaluate the performance of six (6) supervised 
machine learning models, we use four (4) essential metrics, 
which were commonly used in literature for Android malware 
detection: 

 Accuracy: The ratio of the number of Android apps 
that are classified correctly as a benign app or as a 
malware app to the total number of Android apps. It 
can be computed using equation (5). 
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
             (5) 

 Precision: The ratio of malware apps properly detected 
to the complete amount of applications categorized as 
malicious. It can be computed using equation (6). 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
             (6) 

 Recall: The ratio of malware apps detected adequately 
to the total number of malware apps. It can be 
computed using equation (7). 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
             (7) 

 F-Score: The mean of precision and recall. This value 
shows how precise the model is. It can be computed 
using equation (8). 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
            (8) 

VIII. RESULTS AND DISCUSSION 

A. Experiments Environment 

This study implemented six (6) popular machine learning 
algorithms (K-NN, DT, SVM, RF, NB, LR) on a malgenome-
250 dataset [4] collected from Genome project [54] which 
contained 3,799 Android applications. This dataset [4] 
consisted of 2,539 benign samples and 1,260 malware samples 
from 49 different Android malware families. The experiments 
were conducted on the Anaconda Jupiter navigator using a 
laptop with the features shown in Table II. In order to prepare 
the training dataset, 215 static features of Android 
applications, including permissions, intents, and API calls, 
were extracted and converted to binary forms. If a static 
feature was requested, 1 would be assigned to that feature; 
otherwise, 0 would be given. 

B. Evaluation Methods and Measures 

In this paper, the six (6) popular machine learning 
algorithms were evaluated using the two evaluation methods 
of holdout and k-fold validation. In holdout validation, the 
data was divided into 80% for the training dataset and 20% for 
the testing dataset, while 10-fold was used in k-fold cross-
validation. The data was split into 10 folds; each fold was used 
nine (9) times as training fold and one time as testing fold. 
Then, the mean of the accuracy of all folds was presented as a 
final accuracy. 

In order to evaluate and measure the performance of the 
machine learning algorithms, we used the four (4) common 
measures of Accuracy, Precision, Recall, and F-Score, as 
described in Section 6.4. 

TABLE II. FEATURE OF THE LAPTOP USED IN THE EXPERIMENTS 

CPU Intel(R) Core (TM) i7-8750H CPU @ 2.20 GHz 

Memory 16 GB 

OS Windows 10 Home 64-bits 

Platform Anaconda Jupiter navigator 

C. Performance of Machine Learning Algorithms  

1) K- Nearest Neighbors (KNN): As mentioned earlier, 

KNN is considered as one of the most straightforward and 

powerful classification models. The performance of this 

algorithm is affected by the k parameter used to finding the k 

training examples that are closest to the unknown example. 

Therefore, we trained the KNN model with the changing value 

of k from 1 to 30. KNN achieved the best accuracy when k = 1 

for both holdout and 10-fold cross-validation methods. Fig. 3 

shows the accuracy of the k-NN model for 10-fold cross-

validation with the changing value of k from 1 to 30. 

2) Decision Trees (DTs): Decision trees (DTs) are 

composed of decision nodes and terminal leaves that are 

connected through edges. The number of child nodes 

connected by edges can be binary or non-binary. It can be 

simply described as a hierarchy of 'if-else’ questions leading 

up to a decision. Decision trees are affected by the maximum 

depth given to the trees. Therefore, we trained the TDs with 

changing N-depth with a range from 1 to 30 to get the best 

result. It was observed that TDs achieved the best accuracy 

with depth=13 in the holdout method, while the best accuracy 

was achieved with depth=12 in 10-fold cross-validation, as 

shown in Fig. 4. 

3) Support Vector Machine (SVM): SVM classifies data 

into distinct classes by maximizing the margin between the 

separating hyperplane. If the data cannot be separated linearly, 

the data will be converted into a high n-dimensional feature 

space such that SVM can draw a hyperplane. 

 

Fig. 3. Accuracy of the k-NN Model for 10-Fold Cross-Validation with 

Changing the Value of k from 1 to 30. 

 

Fig. 4. DTs Accuracy for 10-Fold Cross-Validation when the Depth between 

1-30. 
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TABLE III. THE PERFORMANCE MEASURES ACHIEVED BY SVM WITH 

LINEAR AND RBF KERNEL FUNCTIONS 

Kernel  Accuracy Precision Recall 
F1-

score 

RBF scale 
Hold-out 0.9816 0.98 0.98 0.98 

10-Fold 0.9897 0.99 0.99 0.99 

 RBF auto 
Hold-out 0.9806 0.98 0.98 0.98 

10-Fold 0.9776 0.98 0.98 0.98 

Linear 
Hold-out 0.9829 0.98 0.98 0.98 

10-Fold 0.9897 0.99 0.99 0.99 

The mathematical function applied for the conversion is 
called the kernel function and can be RBF or other kernel 
functions. This experiment examined with Linear and RBF 
kernel functions. As can be seen from Table III, the best result 
was produced when the kernel was Linear. 

4) Random Forest (RF): Random forest is counted among 

the ensemble learning algorithms that are constructed from a 

collection of correlated decision trees after training. The 

bagging technique is used to obtain a random sample from the 

features and learn a decision tree classifier for each subset of 

the data. The performance of the RF algorithm is affected by 

the n_estimator parameter that represents the number of trees 

in the forest. Generally, the higher the number of trees, the 

better to learn the data; however, adding a lot of trees can slow 

down the training process considerably. Therefore, we trained 

RF with changing the n_estimator with a range from 10 until 

100. Fig. 5 shows the training of the RF model for 10-fold 

cross-validation with changing n_estimator between 10-100. 

The best performance was achieved when the n-estimator was 

33 in holdout and 68 in 01-fold cross-validation. 

5) Naïve Bayes (NB): Naïve Bayes treats each feature 

independently and evaluates the probability to make 

predictions based on the Bayes theorem. Naïve Bayes has 

different models, such as GaussionNB, BernoulliNM, and 

MultinomialNB. After training the three models, 

Multinomia1NB performed better than the others, as shown in 

Table IV. 

6) Logistic Regression (LR): Logistic Regression can be 

applied in both binary classification and multi-class 

classification. It is useful when the observed dependent 

variable is categorical. The parameter solver can be changed 

to different types such as newton-cg, lbfgs, liblinear, sag, and 

saga, which showed similar results in this experiment. 

Therefore, we choose the default solver, which is liblinear. 

The respective results are shown in Table V. 

D. Discussion 

In this section, we compare the performance of the 
selected six popular machine learning algorithms (K-NN, DT, 
SVM, RF, NB, LR) in terms of Accuracy, Precision, Recall, 
and F1-score. 

As it can be observed from Table VI, all algorithms 
achieved high Accuracy, Precision, Recall and F1-score in 
terms of predicting and detecting malware apps. The Accuracy 
range of the applied algorithms was between 0.95 and 0.99. 
The best accuracy (0.99211) was achieved by Random Forest 
(RF) in both holdout and 10-fold cross-validation methods. 
Furthermore, the best Precision (0.99), Recall (0.99), and F1-
score (0.99) were achieved by RF. 

Among all the applied algorithms, Naïve Bayes (NB) 
achieved the lowest Accuracy in both holdout and 10-fold 
cross-validation methods. NB produced Accuracy= 0.9572 in 
holdout method and Accuracy = 0.9545 in 10-fold cross-
validation. Recall and F1-score achieved by were 0.95 in both 
holdout and 10-fold methods. Precision achieved by NB was 
0.95 in holdout and 0.96 in 10-fold. KNN performed better 
than SVM, and LR with 0.98684 Accuracy in holdout 
validation and 0.99052 in 10-fold cross validation. The KNN 
Precision, Recall and F-score measured 0.98 in both holdout 
and 10-fold cross-validation method. In DT performance, DT 
accomplished 0.97632 and 0.9797 Accuracy, 0.97 and 0.98 
Precision, 0.97 and 0.98 Recall, and 0.97 and 0.98 F1-score in 
holdout and 10-fold cross-validation, respectively. For LR, the 
Accuracy (0.96579) performed by LR in holdout was slightly 
lower than Accuracy (0.97367) in 10-fold cross-validation. 
Moreover, LR accomplished 0.97 for the remaining measures 
(Precision, Recall, F1-score) in both holdout and 10-fold 
cross-validation methods. 

 

Fig. 5. Accuracy of the RF Model for 10-Fold Cross-Validation with 

Changing n_estimator between 10-100. 

TABLE IV. NB ACCURACY FOR GAUSSIONNB, BERNOULLINM, AND 

MULTINOMIALNB 

  Accuracy Precision Recall 
F1-

score 

GaussianNB 
Holdout 0.7167 0.84 0.72 0.72 

10-Fold 0.7210 0.84 0.72 0.73 

BernoulliNM 
Holdout 0.6736 0.42 0.65 0.51 

10-Fold 0.6683 0.45 0.67 0.54 

MultinomialNB 
Holdout 0.9572 0.95 0.95 0.95 

10-Fold 0.9545 0.96 0.95 0.95 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 4, 2020 

223 | P a g e  

www.ijacsa.thesai.org 

TABLE V. LR SOLVER TYPES MEASURES 

Solver  Accuracy Precision Recall 
F1-

score 

liblinear 
Holdout 0.9658 0.97 0.97 0.97 

10-Fold 0.9737 0.97 0.97 0.97 

sag 
Holdout 0.9720 0.96 0.96 0.96 

10-Fold 0.9700 0.97 0.97 0.97 

newton-cg 
Holdout 0.9720 0.96 0.96 0.96 

10-Fold 0.9700 0.97 0.97 0.97 

saga 
Holdout 0.9720 0.96 0.96 0.96 

10-Fold 0.9700 0.97 0.97 0.97 

Ibfgs 
Holdout 0.9720 0.96 0.96 0.96 

10-Fold 0.9700 0.97 0.97 0.97 

TABLE VI. THE PERFORMANCE MEASURES OF POPULAR MACHINE 

LEARNING ALGORITHMS USED IN ANDROID MALWARE DETECTION 

Algorithm 
Evaluation 

method 
Accuracy Precision Recall 

F1-

score 

K-NN 
Holdout 0.9868 0.98 0.98 0.98 

10-Fold 0.9905 0.98 0.98 0.98 

DT 
Holdout 0.9763 0.97 0.97 0.97 

10-Fold 0.9797 0.98 0.98 0.98 

SVM 
Holdout 0.9829 0.98 0.98 0.98 

10-Fold 0.9897 0.99 0.99 0.99 

RF 
Holdout 0.9921 0.99 0.99 0.99 

10-Fold 0.9937 0.99 0.99 0.99 

NB 
Holdout 0.9572 0.95 0.95 0.95 

10-Fold 0.9545 0.96 0.95 0.95 

LR 
Holdout 0.9658 0.97 0.97 0.97 

10-Fold 0.9737 0.97 0.97 0.97 

IX. CONCLUSION AND FUTURE WORK 

The ability of machine learning algorithms to learn from 
the existing data and then generalize from seen examples to 
unseen examples encouraged us to apply six (6) popular 
machine learning algorithms in order identify the new and 
unknown malware apps or zero-day malware apps. This paper 
reviewed and discussed some common Android malware 
methods based on machine learning in the form of static, 
dynamic and hybrid analysis approaches. Furthermore, this 
study implemented Nearest Neighbors, Decision Tree, Support 
Vector Machine, Random Forest, Naïve Bayes, and Logistic 
Regression in order to overcome the difficulties faced by 
conventional methods to detect unknown and zero-day 
Android malware apps. The experimental results showed that 
all six (6) machine learning algorithms performed remarkably 
well in Android malware detection. In particular, Random 
Forest achieved the best detection results while Naïve Bayes 
produced the lowest detection results in Android malware 
detection. 

This paper can be improved further by implementing 
ensemble learning methods. Furthermore, the performance of 
machine learning can be enhanced using feature selection 
techniques. 
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