
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

215 | P a g e

www.ijacsa.thesai.org

Empirical Study on Intelligent Android Malware

Detection based on Supervised Machine Learning

Talal A.A Abdullah1

Information Technology Department,

Kulliyyah of Information and

Communication Technology

International Islamic University

Malaysia, Malaysia

Waleed Ali2

Department of Information

Technology, Faculty of Computing

and Information Technology

King Abdulaziz University, Rabigh

Kingdom of Saudi Arabia

Rawad Abdulghafor3

Computer Science Department

Kulliyyah of Information and

Communication Technology

International Islamic University

Malaysia, Malaysia

Abstract—The increasing number of mobile devices using the

Android operating system in the market makes these devices the

first target for malicious applications. In recent years, several

Android malware applications were developed to perform

certain illegitimate activities and harmful actions on mobile

devices. In response, specific tools and anti-virus programs used

conventional signature-based methods in order to detect such

Android malware applications. However, the most recent

Android malware apps, such as zero-day, cannot be detected

through conventional methods that are still based on fixed

signatures or identifiers. Therefore, the most recently published

research studies have suggested machine learning techniques as

an alternative method to detect Android malware due to their

ability to learn and use the existing information to detect the new

Android malware apps. This paper presents the basic concepts of

Android architecture, Android malware, and permission features

utilized as effective malware predictors. Furthermore, a

comprehensive review of the existing static, dynamic, and hybrid

Android malware detection approaches is presented in this study.

More significantly, this paper empirically discusses and

compares the performances of six supervised machine learning

algorithms, known as K-Nearest Neighbors (K-NN), Decision

Tree (DT), Support Vector Machine (SVM), Random Forest

(RF), Naïve Bayes (NB), and Logistic Regression (LR), which are

commonly used in the literature for detecting malware apps.

Keywords—Android; malware applications; machine learning

I. INTRODUCTION

Android constitutes the most common mobile operating
system [1] that presently dominates the smartphone market. In
the second quarter of 2018, the Android Operating System
(AOS) represented the most significant market share amongst
other smartphone platforms by approximately 88% worldwide
[1]. The popularity of the Android operating system is due to
the fact that it constitutes an open-source system with rich
SDK libraries, a third-party distribution center, and utilizes
Java as a programing language [2].

The fast growth rate of Android applications worldwide
has led to a considerable increase in the development and
spread of Android malware applications [3]. Android malware
can infect any type of application such as bank apps, gaming
apps, education, or other lifestyle apps [4] in order to provide

unauthorized access and remotely control the system without
the user’s permission. As more Android malware applications
are continuously being developed at an alarming rate, it is
important to efficiently and continuously monitor and control
their activities.

In recent years, many Android commercial tools and anti-
virus programs have been developed to detect android
malware applications. Most of these commercial Android
malware detection tools are based on using fixed signatures or
identifiers. These commercial tools, however, only perform
well in detecting the Android malware applications with
known signatures or identifiers and may fail to detect the
unknown Android malware apps [5] that have been developed
more recently, especially zero-day malware apps. In other
words, these commercial tools are unable to make accurate
decisions when determining whether the new Android app is a
malware or not [6][7].

Alternatively, numerous research works [8][9][4][10]
focused on training machine learning classification algorithms
based on known Android malware apps in order to detect
unknown Android malware applications. In fact, machine-
learning algorithms have been found to achieve a remarkable
accuracy ratio at detecting malicious applications depending
on the quality of the extracted features, the dataset, and the
methods used in training of the models [6]. In this article, a
comprehensive review of Android malware detection
approaches based on static, dynamic and hybrid analysis is
presented. Furthermore, the article experiments and compares
the performances of six commonly used supervised machine
learning algorithms.

The rest of the paper is structured as follows: Section II
discusses the related work while the major contributions in
this study are summarized in Section III. Section IV presents
the structure of the Android operating system. The growth of
Android malware and some samples are overviewed in
Section V. Some supervised machine learning algorithms are
overviewed in Section VI. The methodology of Android
malware detection based on machine learning is presented in
Section VII. The result and discussion are provided in
Section VIII, followed by the conclusion and future work in
Section IX.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

216 | P a g e

www.ijacsa.thesai.org

II. RELATED WORK

The ability of machine learning to accurately detect
unknown malicious Android applications at an early stage
constitutes an attractive advantage that can be utilized to
enhance user security and privacy. Several works have applied
machine learning through different methods and models to
produce better solutions for Android malware detection. In
this section, we focus on articles discussing Android malware
detection based on machine learning and applying static,
dynamic, and hybrid approaches, in addition to other recent
articles on different approaches such as ensemble learning and
deep learning.

A. Intelligent Android Malware Detection Approach based on

Static Analysis

This approach is considered as the most common approach
suggested by many researchers as it is simple, fast, and easy to
be implemented. The static analysis approach requires only
decompiling an Android package (APK) and then extracting
the set of Android permissions or API calls invoked
throughout the code without running the Android apps.

In [11][12], the authors introduced an Android malware
detection system based on permission features. The authors in
[11] developed three levels of classifications based on
significant permission features that can be efficient in
differentiating between benign and malicious apps. In order to
leverage the higher computing power of the server, [12]
developed a system to extract a number of features and then
trained a one-class support vector machine in an offline
manner. More than 11,120 Android application samples
collected from the DREBIN dataset were used in [13] to
evaluate the four machine learning algorithms Random Forest,
Decision Tree, Extremely Randomized Tree, and Gradient
Tree Boosting, and then a substring-based feature selection
method was proposed to identify Android malware
applications. In [14], the authors ranked all the individual
permissions with their potential risk using the three methods
of mutual information, Correlation Coefficient (CorrCoef),
and T-test. Furthermore, they employed Sequential Forward
Selection (SFS) and Principal Component Analysis (PCA) in
order to identify risky permission subsets. Support vector
machine, decision trees and random forest were used to detect
malware apps based on the identified subsets of risky
permissions. More than 30 features from seven (7) categories
were collected in [15] which implemented a collection of
machine learning algorithms such as Support Vector Machine,
Random Forest, Naïve Bayes, and logistic regression. The
authors in [11] demonstrated that the best performance was
accomplished by Random Forest. However, the dataset used in
[11] was relatively small and included only 32 benign apps
and five (5) malware apps. Three (3) Bayesian classification
approaches for identifying Android malware were analyzed
and suggested in [16] [16] which applied a static analysis
using a dataset of malware samples containing 49 known
Android malware families and a wide variety of benign apps.

Other articles, such as [17][18], used a combination of
permissions and API features for building Android malware
detection. Authors in [18] experimented on the performance of
SVM, J48, and Bagging on real-word Apps for more than

1,200 malware apps and 1,200 benign apps. They obtained
96.39% accuracy in detecting malware apps. In [17], the best
accuracy rate was performed by SVM and ensemble learning,
with 95.1% and 95.6%, respectively.

B. Intelligent Android Malware Detection Approach based on

Dynamic Analysis

In the dynamics-based approach, it is required to use a
simulator, an emulator, or even a physical device to run an
Android app to monitor its dynamic behavior. Then, the
dynamics features are extracted to train the machine learning
classifiers in order to be used in Android malware detection.

The intelligent Android malware detection approach based
on dynamic analysis has been suggested in several research
studies. For instance, [19] applied dynamic analysis using the
Random Forest algorithm as a machine learning algorithm and
proposed the Conformal Prediction model assessed on 1,866
malware and 4,816 benign applications on a real Android
device. DroidDolphin [20] is a dynamic malware analysis
framework that uses GUI-based testing, big data analysis, and
machine learning to detect Android malware. The framework
can be used in conjunction with other existing works to
improve the detection rate of malware. Furthermore, [21]
developed a dynamic Android malware detection based on
API calls and system call traces using 7,520 apps, including
3,780 for training and 3,740 for testing, while [22]
implemented a tool to automatically extract dynamic features
from Android phones and performed a comparative analysis of
emulator-based detection against device-based detection by
means of Random Forest, Naive Bayes, Multilayer Perceptron,
Simple Logistics, J48 decision tree, PART, and SVM (linear)
algorithms.

C. Intelligent Android Malware Detection Approach based on

Hybrid Analysis

The hybrid analysis is a combination of static analysis and
dynamic analysis that can be integrated to detect Android
malware [23].

In [24], developed a MARVIN Android malware detection
tool that was utilized to classify apps based on features
extracted from static and dynamic analysis with over 135,000
Android apps and 15,000 malware samples and successfully
classified 98.24% of malicious apps with less than 0.04% false
positives. Subsequently, [25] proposed a novel hybrid Android
malware analysis approach called mad4a. In order to achieve a
comprehensive analysis and discover more malware apps,
mad4a used both static and dynamic advantages to analyze the
dataset. Authors in [26] extracted and merged static and
dynamic app features and then adjusted the weights to use
Weka for training the detection model. The ten-fold cross-
validation method achieved an accuracy of 97.4%.

D. Other Advanced Intelligent Techniques

Authors in [27] proposed a hybrid-model approach using a
fusion logic algorithm, achieving very high accuracy (96.69%)
and a low false-positive rate (2.5%) in predicting unknown
malware apps. Another hybrid-model was proposed by [28]
for malware detection using the anomaly-based approach with
machine learning classifiers. Bayes network and random forest
classifiers were used in [28] and produced a 99.97% true-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

217 | P a g e

www.ijacsa.thesai.org

positive rate. Also, an evolving hybrid neuro-fuzzy classifier
was proposed in [29] to enhance the detection accuracy of
malware applications that achieved 90% detection accuracy
with a dataset of 250 malware apps and 250 benign. The
author in [30] suggested a hybrid intelligent Android malware
detection approach based on evolving support vector machine
with a genetic algorithm (GA) and particle swarm
optimization (PSO) in order to enhance detection accuracy of
Android malware apps.

Deep learning has been used in Android malware detection
by [31][32][9]. However, deep learning requires a great
amount of data, more time, and a sophisticated and powerful
computer to produce a good result. Ensemble learning
produced excellent results in many research studies, such as
[14][10][15][16]. Pindroid [17] used a group of permissions
and intents supplemented with ensemble methods for
accomplishing more accurate malware detection [17]. On
another note, [18] produced a hypothesis to detect Android
malware in the early stage by means of parallel machine
learning classifiers that utilized various algorithms with
inherently different characteristics.

The study of [19] adopted a machine learning approach
that used the dataflow application program interfaces (API) to
collect features and use them to detect malware apps. A
thorough analysis was conducted to extract features and
improve the k-nearest neighbor classification model. An
automated testing tool called WaffleDetector was
implemented by [20] to identify Android malware by
proposing a group of Android features consisting of sensitive
permissions and API to feed machine learning algorithms.
Finally, [32] used metadata to categorize malware, and [33]
implemented an online machine learning classification. Useful
review articles of Android malware detection using machine
learning techniques can be found in [34][35][36].

III. SUMMARY OF CONTRIBUTIONS

This article presents a comprehensive review of Android
malware detection approaches based on static, dynamic, and
hybrid analysis. In addition, it compares and discusses the
performances of six supervised machine learning algorithms,
which are commonly used in the literature for detecting
malware apps, known as K-Nearest Neighbors (K-NN),
Decision Tree (DT), Support Vector Machine (SVM),
Random Forest (RF), Naïve Bayes (NB), and Logistic
Regression (LR). The significant contributions in this study
can be summarized in the following aspects:

 Android architecture, Android malware, and
permissions as effective malware predictors are
investigated and discussed in this study.

 This work presents a comprehensive review of
common Android malware analysis methods that are
categorized under static, dynamic, and hybrid
approaches.

 More significantly, this paper empirically discusses and
compares the performances of six supervised machine
learning algorithms commonly used in the literature for
detecting malware apps.

IV. ANDROID ARCHITECTURE

Android is an open-source system that comprises a Linux-
based software stack for a wide range of devices and form
factors created by Google [37]. The Android operating system
is a stack of components that can be defined as consisting of
five layers that organize the functions of the system in the
form of the Linux kernel layer, hardware abstractor layer,
Android libraries layer, Java API framework layer, and system
application layer.

A. The Linux Kernel

Android uses a version of the Linux kernel equipped with
a few unique additions [38]. The Android kernel is responsible
for handling functions such as memory process, device
drivers, resource access, power management, and other typical
OS duties. It also serves as a layer between the hardware and

other software stacks [39].

B. Hardware Abstractor Layer

The hardware abstractor layer (HAL) is defined as [40] a
standard interface implemented by hardware vendors that
enables Android to be agnostic about lower-level driver
implementations. HAL allows the user to implement
functionalities without affecting or modifying the higher-level
system (“Legacy HALs"). The main hardware abstractor layer
contains Application Programming Interfaces (APIs) for the
upper layers in order to use hardware in a unified and
straightforward way [41]. In Android 8.0 and above, the
lower-level layers are rebuilt to fit a new and more
sophisticated architecture; however, devices that use Android
8.0 and above should support HALs written in the HIDL
language, with a few exceptions [37].

C. Android Libraries

This layer is composed of two modules. The first module
contains the Native C/C++ Libraries, such as OpenGL,
Webkit, or SSL/TLS, that contain essential application
features. Native code is used to program Android-system
components and services such as ART and HAL. This code
requires native libraries that are mostly written in C and C++
languages [37]. The Android platform provides an API
framework that allows applications to interact with the
underlying Android system [18].

The second module contains Android Runtime (ART), a
modified Java Virtual Machine (JVM) in order to run Android
applications that are not implemented in native code. ART
constitutes a byte code format designed especially for Android
that is optimized for minimizing memory consumption and is
written to run multiple virtual machines on low-memory
devices by executing DEX files [37]. The Dalvik virtual
machine has been designed to work effectively in multiple
virtual machines in order to increase stability and reduce
memory consumption [15]. ART comes with ahead-of-time
compiling (AOT), which performs complete bytecode
translation after installation and before running the
application. ART also provides improved garbage collection
and new debugging features [42].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

218 | P a g e

www.ijacsa.thesai.org

D. Java API Framework

All Android OS features that are available for use through
APIs are programmed using Java [37]. Application
Programming Interface (API) refers to a set of tools that
provide a communication interface between different software
components [7]. The API framework consists of a core set of
classes and packages [18]. These APIs are fundamental
components for building Android applications, such as the
view system to create the user interface (UI) [37]. Top-level
system applications are necessary to provide basic
functionality like calendar, contacts, and e-mail [37].

E. System Application

The system-applications layer is the top layer that is
responsible for interacting between the end-user and the
device. System applications are located in order to provide
basic functionalities such as managing contacts, sending
messages, making calls, and browsing the Web [37][2].

The system application layer contains the four components
of activity, services, content provider, and broadcast receiver.
Every component fulfills a specific purpose and has its own
life cycle. The activity component interacts with the user and
represents a single screen with a user interface [37] and is
mainly used as an entry point for the application. The services,
on the other hand, are a group of the components and
processes used for performing specific tasks in the background
and do not require a user interface [41]. The content provider
is used to manage and share data between multiple
applications [38], which allows applications to read and write
data (such as contact information) and communicate with each
other or interact with other applications in the system. In
contrast, the broadcast receiver is used as a mailbox to
respond to and receive the broadcast messages of the order or
other applications (such as the low battery message) [2].

V. ANDROID MALWARE

Android malware apps are growing at an alarming rate,
regardless of the measures used to reduce infections amongst
Android users worldwide [43]. For example, G DATA
security experts discovered that there were 8,400 new Android
malware samples every day in the first quarter of 2017 [44].
Fig. 1 shows the growth of Android malware apps during
recent years.

Fig. 1. The Growth of Android Malware Apps between 2012-2018.

TABLE I. TOP ANDROID MALWARE DETECTED IN 2018 [46]

Name Threat Threat’s percentage

Android.Adware.AdultSwine Moderate 17.29

Android.Adware.Uapush.A Moderate 13.98

Android.Trojan.Leech.d High 4.69

Android.Trojan.AndrClicker.D High 4.41

Android.Spyware.mSpy High 4.11

Android.MobileSpyware.FlexiSpy High 3.62

Android.Trojan.Xgen.FH High 3.12

Android.InfoStealer.Adups High 3.03

Android.Trojan.Rootnik.i High 3.01

Android.Trojan.Triada High 2.76

Android.Trojan.Gmobi.a High 2.61

Android.BankingTrojan.Marcher.A High 2.39

Android.BankingTrojan.Acecard.m High 2.15

Android.Trojan.HiddenApp High 2.08

Android.Trojan.Sivu.C High 2.06

There are a variety of attack types ranging from the attack
that only is advertising without harming the product or the
website to the most sophisticated attack that is capable of
accessing personal and sensitive information on the device
[23][45]. The majority of Android malware can be categorized
into fake installers or SMS trojans. Both of them are using
social engineering to trick users into installing malicious apps
[2]. Table I shows the top 15 Android malware detected in
2018.

VI. SUPERVISED MACHINE LEARNING

Machine learning is defined as the science of computer
programming that can learn from data and past experiences
[47]. Today machine learning models are used for
recommender systems such as online shops, for fraud
detection in credit card companies or for medical diagnosis in
hospitals [41]. The supervised learning approach is able to
automate a decision process from the generalization of known
examples and specific input data [41]. In general, the data is
labeled and divided into training and testing data. The training
data is fed into a supervised machine learning algorithm to
train the model. Subsequently, the test data is used to verify
the effectiveness of the model by comparing the predicted
label with the test label of the data.

In this section, we will describe six (6) supervised machine
learning algorithms commonly used in literature for detecting
malware apps: K-Nearest Neighbors (K-NN), Decision Tree
(DT), Support Vector Machine (SVM), Random Forest (RF),
Naïve Bayes (NB), and Logistic Regression (LR).

A. K- Nearest Neighbours

This algorithm classifies cases based on their similarity to
other cases. In K-nearest neighbors, data points that are near to
each other are set to be neighbors, and the output is predicted
by the majority vote of the K-closest neighbors. Thus, the
distance between the two cases is a measure of their

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

219 | P a g e

www.ijacsa.thesai.org

dissimilarity. In a classification problem, the K-nearest
neighbors algorithms work as follows:

 Choose a value for K

 Calculate the distance of unknown cases in all cases

 Search for the K-samples in the training data that are
similar to the measurements of the unknown data point

 Predict the response of the unknown data point using
the most popular class responses value from the K-NN.

There are different ways to calculate the similarity
between two data points. The most frequently used method is
the Euclidean distance, which is computed using the formula
(1).

The value K assumes a significant job in impacting the
prediction accuracy of the algorithm. However, choosing the
K value is not a simple undertaking.

ED (𝑥1,𝑥2) = √∑ (𝑥1𝑖 − 𝑥2𝑖)
𝑛
𝑖=1

2

𝑥1 , 𝑥2 are points in the space n (1)

B. Decision Trees

Decision Trees are versatile and very powerful machine
learning algorithms that can be used in both regression and
classification tasks, and even in multioutput tasks [47]. In
order to produce a decision, a hierarchy of if-else questions
needs to be answered. For instance, in order to distinguish
between four (4) animals such as bears, hawks, penguins, and
dolphins, specific questions need to be asked. The first
question may be whether the animal has feathers or not, which
narrows down the probability from four to just two. If the
answer is 'yes', another question follows to distinguish
between hawks and penguins, such as whether the animal can
fly or not. On the other hand, if the animal does not have
feathers, it is possible the choosing animal either dolphins or
bears [48].

At the top of the tree, the most significant features for
decision nodes are used. The child nodes at the bottom assign
the data points to their categories in a more accurate way [41].
The advantages of decision trees are their simplicity, little data
preparation, including feature extraction and the
interpretability of the model, which results in the ability to
visualize the model [49]. Furthermore, decision trees can
handle numerical as well as categorical data [50].

C. Support Vector Machine

The support vector machine (SVM) algorithm is counted
among the supervised machine learning algorithms that are
commonly used in malware detection and other classification
and regression problems. SVM is efficiently used in many
complex applications with small or medium-sized datasets.

The main principle here is to identify the best hyperplane
that can separate the classes. The term 'support vectors' means
the data points that are near to the hyperplane and might shift
the hyperplane position up or down if removed. Margin in
SVM constitutes the distance between the support vector and
the hyperplane [7]. SVM generally achieves good accuracy,

particularly on clean datasets. Furthermore, it works well with
high-dimensional datasets and large datasets that have larger
data-training time. SVM represents the training data as points
in the dimensional space that are assembled based on their
class. Subsequently, each group is separated by a line called a
hyperplane. For example, if the dataset has picture samples of
cats and dogs, the SVM algorithm will separate all cat pictures
in one-dimensional space and all dog pictures in another
dimensional space and between them a hyperplane. The new
inputs are mapped into the trained space and categorized
based on which side of the gap they fall on.

For more confidence and less error generation, the margin
function must select the hyperplane in order to ensure that the
distance between the nearest training data points in any class
is as large as possible [2]. In most cases, the data points are
not linearly separable. Thus, the SVM uses kernel functions to
transform the data into a higher-dimensional space and then
classify them using the same principle as the linear case.

D. Random Forest

Random forest is defined as a collection of decision trees
that are slightly different from each other. The idea is that
when many decision trees are implemented that are slightly
different from each other, different overfitting occurs on parts
of the data. The amount of overfitting can be reduced by
averaging their results. Thus, we can benefit from the
predicting power of decision trees and the result of their
overfitting average for best predicting results [48].

The Random Forest algorithm derives its name from
infusing randomness into the tree working to guarantee each
tree is extraordinary. The algorithm can be described as
follows [51]:

 Multiple decision trees are built on 70% of the
collected dataset; however, these data are chosen
randomly.

 Random variables are selected from out of all the
predicted variables. Subsequently, the algorithm
determines the best split that matches these selected
variables and applies it to split the nodes.

 The wrong classification rate or the prediction error is
calculated using the rest of the data.

 After comparing the trained trees classification results
and votes, the algorithm chooses the best result as the
ultimate result.

As in decision trees, Random Forest removes the irrelevant
features as feature selection is necessary when there is a need
for dimensionality reduction [7].

E. Naïve Bayes

The Naïve Bayes algorithm is considered as one of the
most powerful and straightforward machine learning
techniques that depend on the Bayes theorem with an intense
independence assumption among predictors [38]. Naïve Bayes
algorithm has proven its effectiveness in many applications
such as medical diagnosis, text classification, and system
performance management [52].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

220 | P a g e

www.ijacsa.thesai.org

The Naïve Bayes algorithm involves the following
concepts that need to be understood.

 Class Probability: Class probability is the probability of
a particular class in the dataset, i.e., the possibility of a
randomly selected item from the dataset to be in a
particular class.

 Conditional Probability: Conditional probability is the
probability of the feature value given to the class.

The class probability is calculated as the calculation of
samples in the C class divided by the overall number of
samples of all the classes, as shown in equation (2).

𝑝(𝐶) =
𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐶

𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑇𝑜𝑡𝑎𝑙
 (2)

The rate of each sample divided by the rate of samples in
that class is called conditional probabilities, as shown in
equation (3).

𝑝(𝑉|𝐶) =
𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑤ℎ𝑖𝑡 𝑉 𝑎𝑛𝑑 𝐶

𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ 𝑉
 (3)

Looking at the probabilities, we can compute the
likelihood of the samples having a place in a class and make
choices utilizing the Bayes theorem, as shown in equation (4).

𝑝(𝐴|𝐵) =
𝑝(𝐵|𝐴)𝑝(𝐴)

𝑝(𝐵)
 (4)

The probability of the sample for each class is computed,
and the highest probability class is assigned as a result [7].

VII. METHODOLOGY

This section describes the methodology used to detect
Android malware apps using standard supervised machine
learning algorithms. The research follows the four phases of
data collection, feature extraction, training of classification
models, and performance evaluation.

A. Data Collection

In this study, the Malgenome-215 dataset with 3,799
application samples used by [4] was adopted in our
experiments in order to train and evaluate the common
classification models. The dataset consists of 2,539 benign
apps and 1,260 malware apps. The majority of apps are from
49 different Android malware families collected from the data
between August 2010 to the recent one in October 2011.

B. Feature Extraction

Android applications contain critical information that can
be extracted to analyze the attitudes of these applications [53].
Android features fall under the three types of permissions,
sensitive APIs and dynamic behaviors [9]. Dynamic behaviors
are extracted through dynamic analysis, while the rest of the
features are extracted by using static analysis, as shown in
Fig. 2.

In the dataset [44] used in this study, the static features are
extracted using a static python tool from manifest file for
permissions and intents, and from the .dex files for API calls.
Then, these features are represented in a binary form based on
the presence of these features in the Android apps.

Fig. 2. Android Feature Types.

C. Training of Classification Models

The main goal of the classification model is to predict a
class label that is chosen from the predefined possibilities list.
Classification problems can be binary classification, which has
only two classes to be classified, or multi-class classification,
which uses the classification model to predict multiple classes.

From the perspective of machine learning, Android
malware detection can be understood as a binary classification
problem. To fulfill our objective in this study, we use binary
classification to answer the question of whether the Android
application is benign or malware based on the static features.

In this study, six (6) common supervised machine learning
models are trained based on known Android apps with 215
static features in order to distinguish malware from benign
apps. Accordingly, unknown Android malware apps can be
detected using the trained, supervised machine learning
models of K-Nearest Neighbors (K-NN), Decision Tree (DT),
Support Vector Machine (SVM), Random Forest (RF), Naïve
Bayes (NB), and Logistic Regression (LR). Each classification
algorithm uses different mathematical approaches to
distinguish between classes, as mentioned in Section 5.

D. Performance Evaluation

In order to evaluate the performance of six (6) supervised
machine learning models, we use four (4) essential metrics,
which were commonly used in literature for Android malware
detection:

 Accuracy: The ratio of the number of Android apps
that are classified correctly as a benign app or as a
malware app to the total number of Android apps. It
can be computed using equation (5).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

221 | P a g e

www.ijacsa.thesai.org

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (5)

 Precision: The ratio of malware apps properly detected
to the complete amount of applications categorized as
malicious. It can be computed using equation (6).

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (6)

 Recall: The ratio of malware apps detected adequately
to the total number of malware apps. It can be
computed using equation (7).

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (7)

 F-Score: The mean of precision and recall. This value
shows how precise the model is. It can be computed
using equation (8).

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (8)

VIII. RESULTS AND DISCUSSION

A. Experiments Environment

This study implemented six (6) popular machine learning
algorithms (K-NN, DT, SVM, RF, NB, LR) on a malgenome-
250 dataset [4] collected from Genome project [54] which
contained 3,799 Android applications. This dataset [4]
consisted of 2,539 benign samples and 1,260 malware samples
from 49 different Android malware families. The experiments
were conducted on the Anaconda Jupiter navigator using a
laptop with the features shown in Table II. In order to prepare
the training dataset, 215 static features of Android
applications, including permissions, intents, and API calls,
were extracted and converted to binary forms. If a static
feature was requested, 1 would be assigned to that feature;
otherwise, 0 would be given.

B. Evaluation Methods and Measures

In this paper, the six (6) popular machine learning
algorithms were evaluated using the two evaluation methods
of holdout and k-fold validation. In holdout validation, the
data was divided into 80% for the training dataset and 20% for
the testing dataset, while 10-fold was used in k-fold cross-
validation. The data was split into 10 folds; each fold was used
nine (9) times as training fold and one time as testing fold.
Then, the mean of the accuracy of all folds was presented as a
final accuracy.

In order to evaluate and measure the performance of the
machine learning algorithms, we used the four (4) common
measures of Accuracy, Precision, Recall, and F-Score, as
described in Section 6.4.

TABLE II. FEATURE OF THE LAPTOP USED IN THE EXPERIMENTS

CPU Intel(R) Core (TM) i7-8750H CPU @ 2.20 GHz

Memory 16 GB

OS Windows 10 Home 64-bits

Platform Anaconda Jupiter navigator

C. Performance of Machine Learning Algorithms

1) K- Nearest Neighbors (KNN): As mentioned earlier,

KNN is considered as one of the most straightforward and

powerful classification models. The performance of this

algorithm is affected by the k parameter used to finding the k

training examples that are closest to the unknown example.

Therefore, we trained the KNN model with the changing value

of k from 1 to 30. KNN achieved the best accuracy when k = 1

for both holdout and 10-fold cross-validation methods. Fig. 3

shows the accuracy of the k-NN model for 10-fold cross-

validation with the changing value of k from 1 to 30.

2) Decision Trees (DTs): Decision trees (DTs) are

composed of decision nodes and terminal leaves that are

connected through edges. The number of child nodes

connected by edges can be binary or non-binary. It can be

simply described as a hierarchy of 'if-else’ questions leading

up to a decision. Decision trees are affected by the maximum

depth given to the trees. Therefore, we trained the TDs with

changing N-depth with a range from 1 to 30 to get the best

result. It was observed that TDs achieved the best accuracy

with depth=13 in the holdout method, while the best accuracy

was achieved with depth=12 in 10-fold cross-validation, as

shown in Fig. 4.

3) Support Vector Machine (SVM): SVM classifies data

into distinct classes by maximizing the margin between the

separating hyperplane. If the data cannot be separated linearly,

the data will be converted into a high n-dimensional feature

space such that SVM can draw a hyperplane.

Fig. 3. Accuracy of the k-NN Model for 10-Fold Cross-Validation with

Changing the Value of k from 1 to 30.

Fig. 4. DTs Accuracy for 10-Fold Cross-Validation when the Depth between

1-30.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

222 | P a g e

www.ijacsa.thesai.org

TABLE III. THE PERFORMANCE MEASURES ACHIEVED BY SVM WITH

LINEAR AND RBF KERNEL FUNCTIONS

Kernel Accuracy Precision Recall
F1-

score

RBF scale
Hold-out 0.9816 0.98 0.98 0.98

10-Fold 0.9897 0.99 0.99 0.99

 RBF auto
Hold-out 0.9806 0.98 0.98 0.98

10-Fold 0.9776 0.98 0.98 0.98

Linear
Hold-out 0.9829 0.98 0.98 0.98

10-Fold 0.9897 0.99 0.99 0.99

The mathematical function applied for the conversion is
called the kernel function and can be RBF or other kernel
functions. This experiment examined with Linear and RBF
kernel functions. As can be seen from Table III, the best result
was produced when the kernel was Linear.

4) Random Forest (RF): Random forest is counted among

the ensemble learning algorithms that are constructed from a

collection of correlated decision trees after training. The

bagging technique is used to obtain a random sample from the

features and learn a decision tree classifier for each subset of

the data. The performance of the RF algorithm is affected by

the n_estimator parameter that represents the number of trees

in the forest. Generally, the higher the number of trees, the

better to learn the data; however, adding a lot of trees can slow

down the training process considerably. Therefore, we trained

RF with changing the n_estimator with a range from 10 until

100. Fig. 5 shows the training of the RF model for 10-fold

cross-validation with changing n_estimator between 10-100.

The best performance was achieved when the n-estimator was

33 in holdout and 68 in 01-fold cross-validation.

5) Naïve Bayes (NB): Naïve Bayes treats each feature

independently and evaluates the probability to make

predictions based on the Bayes theorem. Naïve Bayes has

different models, such as GaussionNB, BernoulliNM, and

MultinomialNB. After training the three models,

Multinomia1NB performed better than the others, as shown in

Table IV.

6) Logistic Regression (LR): Logistic Regression can be

applied in both binary classification and multi-class

classification. It is useful when the observed dependent

variable is categorical. The parameter solver can be changed

to different types such as newton-cg, lbfgs, liblinear, sag, and

saga, which showed similar results in this experiment.

Therefore, we choose the default solver, which is liblinear.

The respective results are shown in Table V.

D. Discussion

In this section, we compare the performance of the
selected six popular machine learning algorithms (K-NN, DT,
SVM, RF, NB, LR) in terms of Accuracy, Precision, Recall,
and F1-score.

As it can be observed from Table VI, all algorithms
achieved high Accuracy, Precision, Recall and F1-score in
terms of predicting and detecting malware apps. The Accuracy
range of the applied algorithms was between 0.95 and 0.99.
The best accuracy (0.99211) was achieved by Random Forest
(RF) in both holdout and 10-fold cross-validation methods.
Furthermore, the best Precision (0.99), Recall (0.99), and F1-
score (0.99) were achieved by RF.

Among all the applied algorithms, Naïve Bayes (NB)
achieved the lowest Accuracy in both holdout and 10-fold
cross-validation methods. NB produced Accuracy= 0.9572 in
holdout method and Accuracy = 0.9545 in 10-fold cross-
validation. Recall and F1-score achieved by were 0.95 in both
holdout and 10-fold methods. Precision achieved by NB was
0.95 in holdout and 0.96 in 10-fold. KNN performed better
than SVM, and LR with 0.98684 Accuracy in holdout
validation and 0.99052 in 10-fold cross validation. The KNN
Precision, Recall and F-score measured 0.98 in both holdout
and 10-fold cross-validation method. In DT performance, DT
accomplished 0.97632 and 0.9797 Accuracy, 0.97 and 0.98
Precision, 0.97 and 0.98 Recall, and 0.97 and 0.98 F1-score in
holdout and 10-fold cross-validation, respectively. For LR, the
Accuracy (0.96579) performed by LR in holdout was slightly
lower than Accuracy (0.97367) in 10-fold cross-validation.
Moreover, LR accomplished 0.97 for the remaining measures
(Precision, Recall, F1-score) in both holdout and 10-fold
cross-validation methods.

Fig. 5. Accuracy of the RF Model for 10-Fold Cross-Validation with

Changing n_estimator between 10-100.

TABLE IV. NB ACCURACY FOR GAUSSIONNB, BERNOULLINM, AND

MULTINOMIALNB

 Accuracy Precision Recall
F1-

score

GaussianNB
Holdout 0.7167 0.84 0.72 0.72

10-Fold 0.7210 0.84 0.72 0.73

BernoulliNM
Holdout 0.6736 0.42 0.65 0.51

10-Fold 0.6683 0.45 0.67 0.54

MultinomialNB
Holdout 0.9572 0.95 0.95 0.95

10-Fold 0.9545 0.96 0.95 0.95

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

223 | P a g e

www.ijacsa.thesai.org

TABLE V. LR SOLVER TYPES MEASURES

Solver Accuracy Precision Recall
F1-

score

liblinear
Holdout 0.9658 0.97 0.97 0.97

10-Fold 0.9737 0.97 0.97 0.97

sag
Holdout 0.9720 0.96 0.96 0.96

10-Fold 0.9700 0.97 0.97 0.97

newton-cg
Holdout 0.9720 0.96 0.96 0.96

10-Fold 0.9700 0.97 0.97 0.97

saga
Holdout 0.9720 0.96 0.96 0.96

10-Fold 0.9700 0.97 0.97 0.97

Ibfgs
Holdout 0.9720 0.96 0.96 0.96

10-Fold 0.9700 0.97 0.97 0.97

TABLE VI. THE PERFORMANCE MEASURES OF POPULAR MACHINE

LEARNING ALGORITHMS USED IN ANDROID MALWARE DETECTION

Algorithm
Evaluation

method
Accuracy Precision Recall

F1-

score

K-NN
Holdout 0.9868 0.98 0.98 0.98

10-Fold 0.9905 0.98 0.98 0.98

DT
Holdout 0.9763 0.97 0.97 0.97

10-Fold 0.9797 0.98 0.98 0.98

SVM
Holdout 0.9829 0.98 0.98 0.98

10-Fold 0.9897 0.99 0.99 0.99

RF
Holdout 0.9921 0.99 0.99 0.99

10-Fold 0.9937 0.99 0.99 0.99

NB
Holdout 0.9572 0.95 0.95 0.95

10-Fold 0.9545 0.96 0.95 0.95

LR
Holdout 0.9658 0.97 0.97 0.97

10-Fold 0.9737 0.97 0.97 0.97

IX. CONCLUSION AND FUTURE WORK

The ability of machine learning algorithms to learn from
the existing data and then generalize from seen examples to
unseen examples encouraged us to apply six (6) popular
machine learning algorithms in order identify the new and
unknown malware apps or zero-day malware apps. This paper
reviewed and discussed some common Android malware
methods based on machine learning in the form of static,
dynamic and hybrid analysis approaches. Furthermore, this
study implemented Nearest Neighbors, Decision Tree, Support
Vector Machine, Random Forest, Naïve Bayes, and Logistic
Regression in order to overcome the difficulties faced by
conventional methods to detect unknown and zero-day
Android malware apps. The experimental results showed that
all six (6) machine learning algorithms performed remarkably
well in Android malware detection. In particular, Random
Forest achieved the best detection results while Naïve Bayes
produced the lowest detection results in Android malware
detection.

This paper can be improved further by implementing
ensemble learning methods. Furthermore, the performance of
machine learning can be enhanced using feature selection
techniques.

REFERENCES

[1] Statista, “Mobile OS market share 2018 | Statista.” [Online]. Available:
https://www.statista.com/statistics/266136/global-market-share-held-by-
smartphone-operating-systems/. [Accessed: 27-Mar-2019].

[2] H. A. Alatwi, “Android Malware Detection Using Category-Based
Machine Learning Classifiers,” Rochester Inst. Technol., 2016.

[3] R. Samani and G. Davis, “McAfee Mobile Threat Report Mobile
Malware Continues to Increase in Complexity and Scope,” McAfee,
2019.

[4] S. Y. Yerima and S. Sezer, “DroidFusion: A Novel Multilevel Classifier
Fusion Approach for Android Malware Detection,” IEEE Trans.
Cybern., vol. 49, no. 2, pp. 453–466, 2019.

[5] S. Y. Yerima and S. Sezer, “High Accuracy Android Malware Detection
Using Ensemble Learning,” Inst. Eng. Technol., no. April, 2015.

[6] D. Youchao, “Android Malware Prediction by Permission Analysis and
Data Mining,” Univ. Michigan-Dearborn, 2017.

[7] K. Chumachenko and I. Technology, “Machine Learning Methods for
Malware Detection and Classification,” Univ. Aplied Sci., 2017.

[8] W. Wang, Y. Li, X. Wang, J. Liu, and X. Zhang, “Detecting Android
malicious apps and categorizing benign apps with ensemble of
classifiers,” Futur. Gener. Comput. Syst., vol. 78, pp. 987–994, 2018.

[9] Z. Yuan, Y. Lu, and Y. Xue, “DroidDetector : Android Malware
Characterization and Detection Using Deep Learning,” vol. 21, no. 1,
pp. 114–123, 2016.

[10] F. Idrees, M. Rajarajan, M. Conti, T. M. Chen, and Y. Rahulamathavan,
“PIndroid: A novel Android malware detection system using ensemble
learning methods,” Comput. Secur., vol. 68, pp. 36–46, 2017.

[11] L. Sun, W. Srisa-an, H. Ye, Z. Li, J. Li, and Q. Yan, “Significant
Permission Identification for Machine-Learning-Based Android
Malware Detection,” IEEE Trans. Ind. Informatics, vol. 14, no. 7, pp.
3216–3225, 2018.

[12] J. Sahs and L. Khan, “A Machine Learning Approach to Android
Malware Detection,” 2012.

[13] I. B. Chebbi, W. Boulila, and I. R. Farah, Evaluation of Tree Based
Machine Learning Classifiers for Android Malware Detection, vol.
10449. Springer International Publishing, 2015.

[14] D. Feng, W. Wang, J. Liu, X. Wang, X. Zhang, and Z. Han, “Exploring
Permission-Induced Risk in Android Applications for Malicious
Application Detection,” IEEE Trans. Inf. Forensics Secur., vol. 9, no.
11, pp. 1869–1882, 2014.

[15] H. S. Ham and M. J. Choi, “Analysis of Android malware detection
performance using machine learning classifiers,” Int. Conf. ICT
Converg., pp. 490–495, 2013.

[16] S. Y. Yerima and S. Sezer, “Analysis of Bayesian Classification based
Approaches for Android Malware Analysis of Bayesian Classification
based Approaches for Android Malware Detection,” Inst. Eng. Technol.,
no. April, 2014.

[17] N. Milosevic, A. Dehghantanha, and K. R. Choo, “Machine learning
aided Android malware classification.,” Comput. Electr. Eng., vol. 61,
pp. 266–274, 2017.

[18] N. Peiravian and X. Zhu, “Machine Learning for Android Malware
Detection Using Permission and API Calls,” 2013.

[19] H. Papadopoulos, N. Georgiou, C. Eliades, and A. Konstantinidis,
“Android malware detection with unbiased confidence guarantees,”
Neurocomputing, vol. 280, pp. 3–12, 2018.

[20] W. C. Wu and S. H. Hung, “DroidDolphin: A dynamic android malware
detection framework using big data and machine learning,” Proc. 2014
Res. Adapt. Converg. Syst. RACS 2014, pp. 247–252, 2014.

[21] V. M. Afonso, M. F. de Amorim, A. R. A. Grégio, G. B. Junquera, and
P. L. de Geus, “Identifying Android malware using dynamically
obtained features,” J. Comput. Virol. Hacking Tech., vol. 11, no. 1, pp.
9–17, 2015.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

224 | P a g e

www.ijacsa.thesai.org

[22] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “Emulator vs real phone:
Android malware detection using machine learning,” IWSPA 2017 -
Proc. 3rd ACM Int. Work. Secur. Priv. Anal. co-located with
CODASPY 2017, pp. 65–72, 2017.

[23] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, “A review
on feature selection in mobile malware detection,” Digit. Investig., vol.
13, pp. 22–37, 2015.

[24] M. Lindorfer, M. Neugschwandtner, and C. Platzer, “MARVIN :
Efficient and Comprehensive Mobile App Classification Through Static
and Dynamic Analysis,” 2015 IEEE 39th Annu. Comput. Softw. Appl.
Conf., vol. 2, pp. 422–433, 2015.

[25] A. T. Kabakus and I. A. Dogru, “An in-depth analysis of Android
malware using hybrid techniques,” Digit. Investig., vol. 24, pp. 25–33,
2018.

[26] M. Su, “Machine Learning on Merging Static and Dynamic Features to
Identify Malicious Mobile Apps,” pp. 863–867, 2017.

[27] H. Y. Chuang and S. De Wang, “Machine Learning Based Hybrid
Behavior Models for Android Malware Analysis,” Proc. - 2015 IEEE
Int. Conf., pp. 201–206, 2015.

[28] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, “Evaluation of
machine learning classifiers for mobile malware detection,” Soft
Comput., vol. 20, no. 1, pp. 343–357, 2016.

[29] A. Altaher, “An improved Android malware detection scheme based on
an evolving hybrid neuro-fuzzy classifier (EHNFC) and permission-
based features,” Neural Comput. Appl., vol. 28, no. 12, pp. 4147–4157,
2017.

[30] W. Ali, “Hybrid Intelligent Android Malware Detection Using Evolving
Support Vector Machine Based on Genetic Algorithm and Particle
Swarm Optimization,” vol. 19, no. 9, pp. 15–28, 2019.

[31] E. M. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “MalDozer:
Automatic framework for android malware detection using deep
learning,” Digit. Investig., vol. 24, pp. S48–S59, 2018.

[32] I. Martín, J. A. Hernández, A. Muñoz, and A. Guzmán, “Android
Malware Characterization Using Metadata and Machine Learning
Techniques,” vol. 2018, 2018.

[33] R. M. Burstall, “Android Malware Classification by Applying Online
Machine Learning,” Comput. J., vol. 9, no. 1, pp. 15–15, 2012.

[34] A. Bala, S. Malhotra, N. Gupta, and N. Ahuja, “A Survey of Android
Malware Detection Strategy and Techniques,” Adv. Intell. Syst.
Comput., vol. 409, pp. 579–587, 2016.

[35] H. Alireza, Souri1, Rahil, “A state‑of‑the‑art survey of malware
detection approaches using data mining techniques.pdf.” Alireza Souri,
Rahil Hosseini, 2018.

[36] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, “A review
on feature selection in mobile malware detection,” Digit. Investig., vol.
13, pp. 22–37, 2015.

[37] Developers, “Platform Architecture | Android Developers,” Developers,
2019. [Online]. Available: https://developer.android.com/guide/
platform. [Accessed: 01-Apr-2019].

[38] C. Science and V. Grampurohit, “Android App Malware Detection,” no.
July, 2016.

[39] M. Z. Alkurdi, “Malware Detection for Android Applications Using
SimHash Algorithm,” 2014.

[40] Source, “Legacy HALs | Android Open Source Project,” source, 2019.
[Online]. Available: https://source.android.com/devices/architecture/hal.
[Accessed: 05-Oct-2019].

[41] J. Thon, “Predictive Identification of Android Malware through Hybrid
Analysis created by,” 2018.

[42] Android Source, “ART and Dalvik | Android Open Source Project,”
Android Source, 2019. [Online]. Available: https://source.android.com/
devices/tech/dalvik/. [Accessed: 01-Apr-2019].

[43] S. Y. Yerima, S. Sezer, and I. Muttik, “Android Malware Detection
Using Parallel Machine Learning Classifiers,” 2014 Eighth Int. Conf.
Next Gener. Mob. Apps, Serv. Technol., pp. 37–42, 2014.

[44] C. Lueg, “8,400 new Android malware samples every day,” G Data
Security Blog, 2017. [Online]. Available: https://www.gdatasoftware.
com/blog/2017/04/29712-8-400-new-android-malware-samples-every-
day. [Accessed: 15-Mar-2020].

[45] Y. Zhou and X. Jiang, “Dissecting Android malware: Characterization
and evolution,” in Proceedings - IEEE Symposium on Security and
Privacy, 2012, no. 4, pp. 95–109.

[46] C. S. Providers and T. Intelligence, “Nokia Threat Intelligence Report –
2019,” Netw. Secur., vol. 2018, no. 12, p. 4, 2018.

[47] A. Abraham et al., Hands-On Machine Learning with Scikit-Learn and
TensorFlow.pdf. O’Reilly Media, 2014.

[48] A. C. Muller and S. Guido, Introduction to Machine Learning with
Python. 2016.

[49] E. Alpaydin, Introduction to Machine Learning Second Edition. 2010.

[50] L. Rutkowski, M. Jaworski, L. Pietruczuk, and P. Duda, “The CART
decision tree for mining data streams,” Inf. Sci. (Ny)., vol. 266, pp. 1–
15, May 2014.

[51] G. Biau, “Analysis of a Random Forests Model,” pp. 1–40, 2010.

[52] I. Rish, “An empirical study of the naive Bayes classifier & H,” T.J.
Watson Res. Cent., pp. 41–46, 1999.

[53] S. Wu, P. Wang, X. Li, and Y. Zhang, “Effective detection of android
malware based on the usage of data flow APIs and machine learning,”
Inf. Softw. Technol., vol. 75, pp. 17–25, 2016.

[54] Genome, “Android Malware Genome Project.” [Online]. Available:
http://www.malgenomeproject.org/. [Accessed: 22-Dec-2019].

