
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

301 | P a g e

www.ijacsa.thesai.org

A Z Specification for Reliability Requirements of a

Service-based System

Manoj Lall1*

Department of Computer Science

Tshwane University of Technology

Pretoria, South Africa

John A. Van Der Poll2

Graduate School of Business Leadership

University of South Africa

Pretoria, South Africa

Abstract—The utilization of a Web services based application

depends not only on meeting its functional requirements but also

its non-functional requirements. The nonfunctional requirements

express the quality of service (QoS) expected from a system. The

QoS describes the capability of the service to meet the

requirements of its consumers. In the context of Web services,

considerations of QoS are critical for a number of reasons.

Reliability is among the important QoS requirements of such

distributed components as it enhances confidence in the services

provided. Although the importance of QoS requirements are

well established, they are often ignored until the end of the

development cycle. Reasons cited for this are that they are

difficult to define and represent precisely, and relay on entities

that may not be known at early stages. This articles aims to

address the challenges of incorporating the QoS at an early stage

of service development and represent it in a precise manner. To

achieve this goal, this paper makes use of a process model to

facilitate the incorporation of the QoS attributes and Z as the

specification language for its formalism. Reliability is used to

exemplify the process. The Z schemas have been checked for

syntax and type using the Fuzz type checker.

Keywords—Reliability; non-functional requirements; Web

services; Quality of Service; Formal specification; UML modelling;

Z

I. INTRODUCTION

Web services have enjoyed rapid acceptance in recent
years. One of the motivating factors for this is the reliance on
open standards for loose coupling and platform independent
interface definition. Besides satisfying the functional
requirements of an application, a Web service also has to cater
for an equally important non-functional requirements (NFRs)
such as reliability and availability. Several definitions of
reliability in the context of software systems exists in the
literature. For example,[1,2] have defined reliability as the
probability of failure-free operation of a computer program for
a specified time in a specified environment. In the context of
Web services, [3] have defined reliability as the probability
that a service invocation will be completed successfully. In the
Web services domain, autonomous services depend on one
another for their functioning hence their reliability is crucial
for proper functioning of the entire system [4]. In addition,
service requester may decide on the use of a particular service
depending on the level of its reliability [5, 6].

A significant requirement of Web service applications is to
operate in such a way that they should be functionally reliable

and deliver consistent service at a variety of levels. These
requirements do not focus only on the functional properties of
services, but also on the QoS. The functional requirements of
software is the required behavior of that software, whereas
QoS specify the global constraints that must be satisfied by
that software [7]. For instance, functional requirement of a
service could be stated as “the service must be able to provide
the physical address of an individual given a phone number”.
Whereas, QoS requirement for the same service could be “the
service must reliably operational for at least 90% of the time.
Satisfying functional requirements has been the main priority
of software development process due to business demands.
However, QoS are an important concept in requirements
engineering which plays a crucial role in the success of a
software system [8]. Although the importance of QoS are well
established, they are often ignored until the end of the
development cycle, or even neglected altogether [9,10].
Frequently the reasons cited for this are that they are difficult
to define and represent precisely, and may relate to entities
that are not known at early stages [11,12,7]. For a Web service
based application, it is important that both the functional and
QoS are met.

This research recognizes that there is a fundamental need
to define and specify the QoS (in this case, reliability) of Web
services in an unambiguous (formal) manner. The benefits of
representing the QoS in an unambiguous manner is enhanced
precision and clarity in the specifications, rigour in its
reasoning and proofs leading to the early detection of
problems in the requirements.

A popular specification language used in formalization of
systems is Z [13, 14]. Z applies typed sets, relations and
functions within the context of first-order predicate logic. Its
extensible toolkit of mathematical notations; its schema
notation for specifying structures in the system, and for
structuring the specification itself has enabled it to be used in
specifying various types of systems [15, 16]. For instance, Z
has been deployed in several application domains including
safety critical systems, security systems, and other general
purpose systems. The use of mathematics for specifying a
system offer benefits such as precision, clarity, rigor in its
reasoning and proofs, leading to the early detection of
problems in the requirements [17]. It is due to these reasons
that we have used Z.

*Corresponding Author

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

302 | P a g e

www.ijacsa.thesai.org

The rest of this article is structured as follows. In
Section 2, we present an overview of related work and the
methodology in Section 3. The implementation and discussion
of the formalization process as applied to Reliability is
presented in Section 4. The formal specification is developed
using the Z’s Established Strategy as presented in [18]. Our
main contributions and directions for future work appear in
Section 5.

II. RELATED WORK

There is a huge volume of research work related to Web
services and NFRs. Specifications dealing specifically with
Reliability in the context of Web services are the WS-
ReliableMesssaging [19] and WS-Addressing [20]. The WS-
ReliableMessaging specification aims at providing for a robust
communication framework. This is ensured by establishing
standards for the acknowledgement of successful message
delivery and the notification of transmission failure. WS-
Addressing provides transport-neutral mechanism to address
Web services and messages. Specifically, this specification
defines XML elements to identify Web service endpoints and
to secure end-to-end endpoint identification in messages [21].
The benefits of sending XML files using Web Services are:
ensures platform independence, makes communication
between the applications flexible, collaborative, and
compatible. These specifications are mostly presented in
informal natural language and semi-formal XML, hence
subject to misinterpretations.

Incorporating QoS into the development phases of a
systems has been proposed by [22]. They have employed a
declarative approach for specifying QoS requirements. This
approach is dedicated to control-loop systems such as
avionics, robotics, and pervasive computing. A process model
is proposed by [23] for integrating usability of interactive
systems in Software Engineering life-cycle. Extension of Web
Services architecture in order to increase system reliability and
maintain client transparency has been proposed in [24]. Their
proposed fault tolerant architecture makes use of several
servers grouped in one autonomous unit based on servers and
Web services to achieve enhanced reliability. In another
attempt, [25] has focused on the reliability analysis of Web
services by considering not only on the Web service
component but also the middleware located beneath the Web
service using a multilayered approach. The prediction of
reliability of Web services have been researched by [3]. They
have used the K-mean clustering techniques. Our research
presented in this article complements the works of other
researchers mentioned above by catering for an early
incorporation of QoS requirements into the development
cycle.

Some researchers have applied formal methods to various
aspects of Web services reliability. For example, [26] has
proposed a stochastic petri net based approach to predict the
reliability of Web service composition. In another attempt,
[27] have used the higher-order-logic theorem proving to
conduct the reliability analysis of Logistics service supply
chains. Higher-order-logic theorem has been used by [28] to
ensure accurate and reliability of hardware components.
Formal model for Web services composition has been

proposed by [29]. They have studied an AI planning-oriented
functional composition of Web services using the Causal link
matrix. Formalization of availability, an important a QoS,
using Z specification language has been carried out by
[30].This article extends the research conducted by other
researchers by providing a process model for converting QoS
of Web services presented in an informal manner into a formal
manner, and providing a formal specification of reliability
using the general purpose specification language Z.

III. RESEARCH METHODOLOGY

In this section, we present a short overview of the process
used to convert an informal specification into a formal one.
Fig. 1 depicts the steps followed in the conversion process.

The process consists of the following five steps: In the first
step, the requirements reflecting both the functional and the
QoS attribute are specified using a natural language In the
next step, a conceptual model representing entities that
support the QoS are identified. These entities could be
platform independent technologies, paradigms and
mechanisms that support the QoS. A conceptual model is
essentially a block diagram representing the requirements in a
visual language. In the third step, the interactions of the
supporting entities are represented in a framework. In essence,
the framework models the structure and the behavior of the
entities in the conceptual model. The next step involves the
representation of the structure and the behavior of these
entities using the Unified Modeling Language (UML)
diagrams. The last step in this series of transformations
involves mapping the UML diagrams to a Z representation,
thus giving rise to the formal specification of the QoS. This
article makes use of method described in [32] to map the
UML representations to Z.

Fig. 1. Natural Language to Formal Specification Transformation Process

Model (Adopted from [31]).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

303 | P a g e

www.ijacsa.thesai.org

IV. IMPLEMENTATION AND DISCUSSION

Although WS-ReliableMessaging is a specification that
enhances reliability of message transmission, it is specified
using natural language and XML. Since XML is a natural
language text based notation, it lacks formal semantics, and
therefore, benefits of formal reasoning cannot be realized.
Following the process depicted in Fig. 1, the requirement for
reliable messaging is stated in a natural language. The next
step requires that a conceptual model be constructed using the
entities that have been identified to have an influence on this
QoS requirement. For example, virtualization of networks and
storage will have an influence on the availability of the
network infrastructure and hence on the reliability of the
messages that depend on these infrastructures. As
virtualization is an enabling technology for Cloud computing,
Cloud computing is considered as an entity in this conceptual
model. Furthermore, to monitor and manage the networks,
agents could be useful. Management in this regard would
involve ensuring proper adherence to the agreed upon
protocols such as AtMostOnce or ExactlyOnce and assisting
with routing problems e.g. determining the optimal path to the
destination. Reliability of the message will also be influenced
by the security implementations as these messages often travel
over public infrastructure. Similarly, trust becomes an
important entity especially when messages cross
organizational boundaries. The entities in the proposed
reliability conceptual model are depicted by Fig. 2.

The next step in the process is the development of a
framework based on the conceptual model. In the proposed
reliability framework, the message that needs to be
communicated is packaged according to the SOAP messaging
structure. Before a message is sent to the next node, it is stored
on some storage device. This process is followed for returning
messages as well. The agents at the sender and receiver nodes
manage the process depending on the protocol agreed upon
(e.g. AtLeastOnce). In addition, the agents may be tasked with
the responsibility of monitoring the status of the network (e.g.
network traffic situation, network failure), to make informed
decisions and enhance reliability of messages. The security
and trustworthiness of the messages may be implemented
using mechanisms such as encryptions and/or policies. The
proposed framework for enhanced message reliability is
shown in Fig. 3.

Fig. 2. A Conceptual Model of Message Reliability.

Fig. 3. An Enhanced Message Reliability Framework.

After the architectural framework, the next step in the
methodology is to represent the elements that support the QoS
in a UML model. Fig. 4 represents the class diagram and
Fig. 5 represents the sequence diagram of the agent system
that supports the QoS requirements. The agents used for
monitoring and managing the networks (referred to as the
MonitoringAgent) are instances of stationary agents which in
turn is a specialization of the abstract class Agent. The
MonitoringAgent is tasked with responsibility of storing the
message, creating message packages and monitoring the
network to keep up-to-date information of the network.

+storeMessage(in message)

+createMessageSeq(in message) : string

+monitorNetworkActivity()

-StationaryAgentID

MonitoringAgent <<Stationary Agent>>

+AuthorizedToAccess()

-AgentID

-HomeID

Agent

Fig. 4. Class Diagram of the Agents in the Enhanced Reliability Framework.

Fig. 5. Sequence Diagram of Enhanced Reliability Framework.

Software

Agent

Securit

y
Trust

Cloud

Computin

Reliability

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

304 | P a g e

www.ijacsa.thesai.org

Before the message can be exchanged, the sender and the
receiver of the message decide on protocols to be followed to
support reliability. For instance, it may be decided that
atLeastOnce protocol be used and that the receiver sends an
acknowledgement after every third package is received. Fig. 5
shows how the protocol deals with a lost package. As the
message is persisted on some storage device, it can be
retrieved and re-sent.

V. FORMAL SPECIFICATION

Once the QoS is modeled in UML, the next step in the
methodology is to represent it in Z. Following the Established
Strategy for presenting a Z specification [18], the enhanced
reliability framework is formalized.

A. Given Sets and Globalvariables

It is customary in Z to first define the basic types of the
specification. In our specification ADDESSS and BODY are a
suitable representation of the set of all address and all message
body.

[ADDRESS, BODY]

The set of addresses is a subset of the type ADDRESS and
CreateSeq is a function that creates a sequence of messages
sent to a particular destination. This is useful for the proper
implementation of the transmission protocol (in this case
atLeastOnce). The CreateSeq is a partial function as not all
messages need to have a sequence number associated to it.

addresses : ℙ ADDRESS

CreateSeq : Message ⇸ seq1 Message

The set of responses generated by the various operations
are defined as –

REPORT ::= Message_ copied_on_disk | Message_sequence_created |

Message_is_new_and_not_ stored | Message_already_stored |

No_message_sequence_should_be_created

B. Abstract State Space

An agent is modelled as having an identity (agentID) and a
home where it is created. Additionally, it is created to perform
a set of tasks for which it requires access to certain resources
at a particular host, denoted by accessResource.

 Agent_______________________________

agentID : IDENTITY

home : NODE

tasks : ℙ TASK

accessResource : NODE ⇸ ℙ RESOURCE

agentID ∈ identities

home = createdOn agentID

home ∈ dom accessResource

tasks ⊆ userTasks

accessResource home ⊆ resources

Given a particular agentID, createdOn returns the node on
which the particular agent was created (i.e. gives the home of
the agent). This information is useful in establishing trust
amongst the agents in a system. For example, knowledge of
where a particular agent was created may give an indication of
who created that agent, and if such agent is trusted then all
agents created at that particular host may also be trusted.
Agents are created for meeting certain user requirements,
hence the tasks the agent is assigned are part of userTasks. At
its home node, an agent has access to all the resources
available at that host.

A mobile agent is modelled as an agent that has the ability
to migrate to different nodes (hosts), whereas, a stationary
agent has no such ability. For the purpose of this research, no
distinction is made between an agent and a stationary agent.

 Mobile_Agent_________________________

 Agent

agentItinerary : seq NODE

(agentItinerary) = # (ran agentItinerary)

For the migration of a mobile agent, the agent can follow a
predefined itinerary made up of nodes or construct one as it
migrates from one node to another. In this paper, our agents
are given an itinerary when it is created, and it can visit a node
more than once on the same journey. An agent itinerary gives
an indication of where the agent was created (by determining
the itinerary head), and where it has been. The number of
elements in the mobile agent’s itinerary is equal to the number
of nodes the agent has visited. This information is useful in
establishing a trust level for the agent.

Besides having specific tasks, a stationary agent may be
modelled to be the same as an agent.

MA ≙ Agent

Defining the abstract state space of the system, a message
is modeled as having an identity number, source and
destination addresses and a body consisting of the actual
content to be delivered.

 Message___________________________

messageID : IDENTITY

sourceAdd : ADDRESS

destinationAdd : ADDRESS

body : BODY

sourceAdd ∈ addresses

destinationAdd ∈ addresses

sourceAdd ≠ destinationAdd

body ≠ ∅

messageID ∈ identities

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

305 | P a g e

www.ijacsa.thesai.org

C. Initial States

In the initial state of the Message schema denoted by the
schema Init_Message, the system generates a messageID
(mid), the source and the destination addresses are empty.
Furthermore there is no message to be transmitted hence the
body of the message is also empty. The Init_Message schema
is defined as shown below:

 Init_Message_____________________

Message′

mid! : IDENTITY

sourceAdd′ = ∅

destinationAdd′ = ∅

body′ = ∅

messageID = mid!

and

Init_MA ≙ Init_Agent

D. A Proof Obligation

The next step is to show that the Init_Message and
Init_MA can be realized. This can be done by showing that the
variables sourceAdd′ and destinationAdd′, body′ and
messageID are each of the type indicated and the predicates of
Message and MA still holds. The initialization theorem can
be stated as:

Ⱶ ∃ Message′ ⦁ Init_ Message (1)

Ⱶ ∃ MA′ ⦁ Init_ MA (2)

The Proof of (1) is as follows:

 Given the predicate sourceAdd′ = ∅ ∧ destinationAdd′
= ∅ ∧ body′ = ∅ ∧ messagID′ = mid!, it is required to
show that sourceAdd′ ∈ ∅ ∧ destinationAdd′ ∈ TASK
∧ body′ ∈ ∅ ∧ messageID′ ∈ IDENTITY. The proof is
quite apparent, since ∅ is an element of ADDRESS, ∅
is an element of BODY, and mid! is also an element of
IDENTITY.

 Since the set sourceAdd′, destinationAdd′, body′ are all
empty, and messagID′ is of type IDENTITY, therefore
all four predicates below the second horizontal line in
schema Init_Message hold.

The proof for (2) is obtained by proving that
agentItinerary′ ∈ seq NODE, given agentIninerary′ = ⟨ ⟩. The
proof is quite apparent, since ⟨ ⟩ is an element of seq NODE.

 Since agentItinerary′ is empty, the predicate
agentItinerary′ = ⟨ ⟩ in schema Init_Mobile_Agent
holds.

E. Partial System Operations

From the sequence diagram (Fig. 5), the main operations
that can be identified are the store message and create message

sequence. The copy of the message is saved on some
persistent device before the message is sent. The message
copy is defined as:

MessageCopy ≙ Message

The store message operation may be defined as a function:

 StoreMessage_____________________________

message? : Message

copy! : MessageCopy

report! : REPORT

message?.sourceAdd = copy!.sourceAdd

message?.destinationAdd = copy!.destinationAdd

message?.body = copy!.body

message?.messagID = copy!.messageID

report! = Message_ copied_on_disk

__

The createMessageSequence schema models create a
sequence of message operation. This happens only for a series
of messages sent to a particular destination.

 CreateMessageSequence__________________________

m1?, m2? : Message

report! : REPORT

(m1?.sourceAdd =m2?. sourceAdd ∧ m1?.destinationAdd =

m2?.destinationAdd) ⇒ ((CreateSec m1?) ⁀ (CreateSec m2?))

report! = Message_sequence_created

__

F. Enquiry Operations

To enquire if a particular message has been saved before
being sending, the QueryStoreMessage is presented:

QueryStoreMessage_______________________

Ξ Message

message? : Message

report! : REPORT

message?.messagID ∉ identities ⇒ report! =

Message_is_new_and_not_ stored

message?.messagID ∈ identities ⇒ report! =

Message_already_stored

__

G. Tabulating Preconditions

As prescribed by the Established Strategy for presenting a
Z specification, we next summarise the partial operations
together with their inputs, outputs, and their preconditions in
Table I.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

306 | P a g e

www.ijacsa.thesai.org

TABLE I. SUMMARY OF PARTIAL OPERATIONS OF THE RELIABILITY

FRAMEWORK

Operation Input and Output Preconditions

StoreMessage

message? : Message

 copy! : Message
report! : REPORT

message? ≠ ∅

CreateMessageSequence
m1?, m2? : Message

report! : REPORT
m1 ≠ m2

QueryStoreMessage
message? : Message

report! : REPORT
message? ∈
identities

H. Error Conditions

Several errors conditions may arise in while storing the
SOAP message. For example, saving an already saved
message (shown by the schema WrongStoreMessageor
creating a sequence of messages (WrongMessageSequence
that is not meant to be sent to the same destination.

 WrongStoreMessage___________________

Ξ Message

message? : Message

copy?: Message

report! : REPORT

message?.messageID = copy?.messageID

report! = Message_already_stored

 WrongMessageSequence_________________________

Ξ Message

message1?, message2 : Message

report : REPORT

message1?.destinationAdd ≠ message2.destinationAdd

report ! = No_message_sequence_should_be_created

Another error condition may arise when a message that is
being queried does not exist:

 WrongQueryStoreMessage

Ξ Message

message? : Message

report! : REPORT

message?.messagID ∉ identitres

report! = message_does_not_exist

I. Total System Operations

Incorporating the partial operations listed in Table I with
their error conditions presented in this section leads to the total
(robust) operations:

TotalStoreMessage ≙ StoreMessage ∨ WrongStoreMessage

TotalCreateMessageSequence ≙ CreateMessageSequence ∨

 WrongMessageSequence

TotalQueryStoreMessage ≙ QueryStoreMessage ∨

 WrongQueryStoreMessage

VI. CONCLUSIONS AND FUTURE WORK

This paper has introduced a process for formalizing QoS
attributes of Web service and demonstrated its applicability in
formalizing Reliability. The formalization is achieved by
makes use of a general purpose formal notation (i.e. Z). The
formalism of the systems architecture leads to specifications
that are more precise and therefore, more likely to lead to
unambiguous statements during the implementation stages.
The formalism, besides leading to specifications that are more
precise, allows for reasoning about the specification to take
place. Proofs of a number of fundamental properties of the
specifications are presented to demonstrate the benefits
offered by formalizing the specification. The very first step in
the proposed process model requires that the quality attribute
be specified, though informally. This leads to an early
incorporation of QoS requirement into the development
process and subsequently to benefits such as less costly error
corrections.

There are several dimensions in which this work may be
expanded. For instance, mappings between UML and other
formal methods such as Rodin may be investigated.
Augmenting existing mechanisms for the automatic generation
of UML models from architectures ought to receive attention
as well as enhancing tool support for the automatic generation
of formal specifications from UML models.

REFERENCES

[1] Pham, H., Software reliability. 2000: Springer Science & Business
Media.

[2] Musa, J., A. Iannino, and K. Okumoto, Engineering and managing
software with reliability measures. 1987, McGraw-Hill.

[3] Silic, M., G. Delac, and S. Srbljic. Prediction of atomic Web services
reliability based on k-means clustering. in Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering. 2013.

[4] Lall, M., L.M. Venter, and J.A. van der Poll, Evaluating the Second
Generation Web Services Specifications for Satisfying Non-Functional
Requirements, in World Conference on E-Learning in Corporate,
Government, Healthcare, and Higher Education 2010, J. Sanchez and K.
Zhang, Editors. 2010, AACE: Orlando, Florida, USA. p. 1919-1929.

[5] Aiello, M. and P. Giorgini, Applying the Tropos methodology for
analysing Web services requirements and reasoning about Qualities of
Services. CEPIS Upgrade-The European journal of the informatics
professional, 2004. 5(4): p. 20-26.

[6] Driss, M., Aljehani, A., Boulila, W., Ghandorh, H. and M. Al-Sarem,
Servicing Your Requirements: An FCA and RCA-driven Approach for
Semantic Web Services Composition. IEEE Access, 2020.

[7] Galster, M. and E. Bucherer. A Taxonomy for Identifying and
Specifying Non-Functional Requirements in Service-Oriented
Development. in Services - Part I, 2008. IEEE Congress on. 2008.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

307 | P a g e

www.ijacsa.thesai.org

[8] Singh, P. and A.K. Tripathi, Exploring Problems and Solutions in
estimating Testing Effort for Non Functional Requirement. International
Journal of Computers & Technology, 2012. 3(2): p. 284-290.

[9] Hasnain, M., Pasha, M.F., Ghani, I., Mehboob, B., Imran, M. and A. Ali,
Benchmark Dataset Selection of Web Services Technologies: A Factor
Analysis. IEEE Access, 2020. 8: p. 53649-53665..

[10] Tambe, S., A. Dabholkar, and A. Gokhale. CQML: Aspect-Oriented
Modeling for Modularizing and Weaving QoS Concerns in Component-
Based Systems. in Engineering of Computer Based Systems, 2009.
ECBS 2009. 16th Annual IEEE International Conference and Workshop
on the. 2009.

[11] Saleh, K. and A. Al-Zarouni. Capturing non-functional software
requirements using the user requirements notation. 2004.

[12] Rosa, N., G. Justo, and P. Cunha, Incorporating non-functional
requirements into software architectures. Parallel and Distributed
Processing, 2000: p. 1009-1018.

[13] Pressman, R., Software Engineering: A Practitioner's Approach. 7th ed.
2010: McGraw-Hill, Inc.

[14] Gouasmi, T., A. Regayeg, and A.H. Kacem. Automatic Generation of an
Operational CSP-Z Specification from an Abstract Temporal^Z
Specification. in Computer Software and Applications Conference
Workshops (COMPSACW), 2012 IEEE 36th Annual. 2012.

[15] Woodcock, J. and J. Davies, Using Z: specification, refinement, and
proof. Vol. 1. 1996: Prentice Hall.

[16] Utting, M., P. Malik, and I. Toyn, Transformation rules for Z, in
Proceedings of the Fifteenth Australasian Symposium on Computing:
The Australasian Theory - Volume 94. 2009, Australian Computer
Society, Inc.: Wellington, New Zealand. p. 73-82.

[17] Palshikar, G.K., Applying formal specifications to real-world software
development. Software, IEEE, 2001. 18(6): p. 89-97.

[18] Potter, B., D. Till, and J. Sinclair, An introduction to formal
specification and Z. 1996: Prentice Hall PTR.

[19] Davis, D., Web services reliable messaging (WS-ReliableMessaging).
Technical report, Technical report, OASIS, 2006.

[20] Box, D., et al., Web services addressing (WS-Addressing). 2004,
Citeseer.

[21] Vieira, M., N. Laranjeiro, and H. Madeira. Assessing Robustness of
Web-Services Infrastructures. in Dependable Systems and Networks,

2007. DSN '07. 37th Annual IEEE/IFIP International Conference on.
2007.

[22] Gatti, S., E. Balland, and C. Consel. A step-wise approach for
integrating QoS throughout software development. in International
Conference on Fundamental Approaches to Software Engineering. 2011.
Springer.

[23] Granollers, T. User Centred Design Process Model. Integration of
Usability Engineering and Software Engineering. in Proceedings of
INTERACT. 2003.

[24] Toader, C., Increasing reliability of Web services. Journal of Control
Engineering and Applied Informatics, 2010. 12(4): p. 30-35.

[25] Rahmani, M., A. Azadmanesh, and H. Siy, Architecture-based reliability
analysis of Web services in multilayer environment, in Proceedings of
the 3rd International Workshop on Principles of Engineering Service-
Oriented Systems. 2011, Association for Computing Machinery:
Waikiki, Honolulu, HI, USA. p. 57–60.

[26] Zhong, D. and Z. Qi. A petri net based approach for reliability prediction
of Web services. in OTM Confederated International Conferences" On
the Move to Meaningful Internet Systems". 2006. Springer.

[27] Ahmad, W., et al. Towards Formal Reliability Analysis of Logistics
Service Supply Chains using Theorem Proving. in IWIL@ LPAR. 2015.

[28] Hasan, O., S. Tahar, and N. Abbasi, Formal reliability analysis using
theorem proving. IEEE Transactions on Computers, 2009. 59(5): p. 579-
592.

[29] Hernández, A.G. and M.N.M. García. A formal definition of RESTful
semantic Web services. in Proceedings of the First International
Workshop on RESTful Design. 2010.

[30] Lall, M., J.A. van der Poll, and L.M. Venter, Towards A Formal
Definition Of Availability Of Web Services, in The International
Conference on Computing, Networking and Digital Technologies
(ICCNDT 2012). 2012: Gulf University, Bahrain. p. 154 - 165.

[31] Lall, M., J.A. Van Der Poll, and L. M. Venter, A Process Model for the
Formalisation Of Quality Attributes of Service-Based Software Systems.
Malaysian Journal of Computer Science, 2019: p. 284-303, 32(4).

[32] Shroff, M. and R.B. France. Towards a formalization of UML class
structures in Z. in Computer Software and Applications Conference,
1997. COMPSAC '97. Proceedings., The Twenty-First Annual
International. 1997.

