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Abstract—In order to perceive automatically the 

manifestation of dysarthria in Parkinson’s disease, we propose a 

novel classifier which is able to categorize acoustic features and 

detects articulatory deficits. The proposed approach incorporates 

relevance feature weighting to the Gaussian mixture model in 

order to address the issue of high dimensionality. Besides, it 

learns the relevance feature weights with respect to each model 

along with the Gaussian mixture model parameters to deal with 

the specificity of the class models. In order to assess the 

performance of the proposed approach, we used the data 

collected by the department of neurology in Cerrahpaşa faculty 

of medicine at Istanbul University. The obtained results of the 

Gaussian mixture models with relevance feature weights 

algorithm are first compared to the GMM results, and to the 

most recent related work. The experimental results showed the 

effectiveness of the proposed approach with an accuracy of 0.89 

and an MCC score of 0.7. 
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I. INTRODUCTION 

Patients suffering from Parkinson’s Disease (PD) show a 
neurological disturbance because of the devolution and death 
of the neurons that produce dopamine in the central nervous 
system. There are 7 to 10 million patients suffering from this 
disease in the world. Succeeding to diagnose PD at an early 
stage would contribute enhancing their quality of life. 
However, this task is tedious and the patient may be diagnosed 
with PD years after. Meanwhile, there is no unique commonly 
used diagnosis for PD which make the task even more 
challenging for physicians that are not expert on PD 
symptoms. Indeed, around 20% of PD patients are estimated 
to be not diagnosed yet [1]. 

One well known symptom of PD is a movement disorder 
due to the deficiency in dopamine, responsible of movement 
coordination. However, not only the movement of the patient 
is affected by the disease, but also his voice and speech since 
speaking involves larynx, lung and mouth mussel movements. 
In fact, the vocal degeneration is believed to be a common 
syndrome of PD disease that appears at early stage [2]. 
However, the vocal degeneration could not be sensed at an 
early stage by human ability. Rather, it could be analyzed and 
identified by computer based signal processing systems [3]. In 
fact, classification approaches of the feature extracted from a 

recorded speech can provide computer aided diagnosis 
systems that can perceive the voice degradation automatically 
[4]. Recently, several approaches have been reported in the 
literature to aid-diagnosis speech impaired diseases. These 
approaches are based on extracting acoustic features from the 
recorded speech and classifying them as PD or non PD [5], 
[6], [7], [8], [9], [10], [11]. 

Although these approaches succeeded to predict PD 
syndrome, the acoustic feature that is able to discriminate PD 
patient from non PD one, is still not characterized. Meanwhile, 
considering all features yields the curse of dimensionality 
problem.  Therefore, most of previous works perform an 
empirical exhaustive search for the best feature-classifier 
combination. Another way to tackle the problem is through 
feature selection.  Several feature selection approaches have 
been reported in the literature [1], [12]. For example, some of 
these approaches are based on performing simultaneous 
clustering and feature selection [13], on dropping highly 
correlated variable and keeping only one [14], on a logistic 
regression model [15], or , on a two-level hierarchical 
Bayesian model [16], etc. However, combining the features 
could be more effective than selecting a subset of them. In 
fact, although a certain feature can be irrelevant when 
compared to other features, it can contribute to the prediction. 
Moreover, some feature can be relevant to a certain class 
while not being relevant to another. Therefore, it is beneficial 
to have relevance feature weights with respect to each class 
for a better discrimination ability of the classifier. 

Gaussian mixture model classifier, GMM, has been proved 
to be effective in many applications ( [17], [18], [19]). 
However, in high dimension, GMM maybe not that effective. 
In fact, for high-dimensional data, the Gaussian distribution is 
very dense toward the tail. It is against the intuition, since for 
low dimensional data, the Gaussian distribution is dense 
toward the mean. This issue makes the estimation of the 
Gaussian mixture model parameters challenging.  For this 
reason, the EM algorithm may fail to estimate the Gaussian 
mixture model parameters. Moreover, the Gaussian model 
parameter estimation is even more challenging when the size 
of the data is not large enough compared to its dimensionality. 
In fact, the maximum likelihood estimation MLE results in a 
singular covariance matrix of the Gaussian for high 
dimensional data which leads to the failure of the GMM. In 
order to alleviate this issue of high dimensional data, several 
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feature selection approaches have been especially devised for 
GMM [20]. In addition to removing irrelevant features for the 
purpose of improving the classifier performance, feature 
selection also yields a feature reduction which solves the curse 
of dimensionality issue.  However, this kind of feature 
selection is crisp. The feature is either considered relevant to 
the application; therefore kept or it is considered irrelevant 
and it is discarded. However, even though a feature is 
considered irrelevant when compared to the other features, it 
may contribute to the prediction. Moreover, the features could 
not be equally relevant. In this case, combining the features 
effectively is more important than selecting a subset of them.  

Feature weighting, which have been introduced mostly in 
the context of clustering [8], allows to combine the feature by 
weighting each one according to its relevance to the 
application. This enhances the discrimination ability of the 
classifiers and reduces the dimensionality without discarding 
any features. Moreover, the feature weights can be specific to 
each class model. In fact, some feature can be relevant to a 
certain class model while not being relevant to another. 
Therefore, it is beneficial to have relevance feature weights 
with respect to each class model for a better discrimination 
ability of the classifier. 

The high dimensionality of the acoustic feature limits the 
performance of Parkinson’s dysarthria recognition systems. In 
order to alleviate this problem, we suggest aggregating the 
different feature sets by introducing relevance feature 
weighting to the Gaussian mixture model. The proposed 
approach learns the relevant features and the Gaussian mixture 
model parameters with respect to each class. 

II. BACKGROUND 

The statistical estimation approach, Gaussian Mixture 
Model, GMM, [21] approximates the probability density 
function, PDF, of the data using a weighted sum of Gaussian 
functions. The mixture of Gaussians that fits best the data is 
determined by a set of parameters that maximize a likelihood 
function. In order to estimate these parameters, the EM 
algorithm is used. It alternatively estimates the model 
parameters and the points membership likelihood. 

Let 𝑥𝑘  be a real-valued vector of length 𝑑 that represents 

the 𝑘𝑡ℎ instance of the data of size 𝑛, 𝑣𝑖   is the mean of the 
Gaussian 𝑖,  𝐴𝑖  its covariance and 𝜑  the model parameters. 
The GMM can be expressed as 

𝑔(𝑥𝑘|𝜑) = ∑𝜋𝑖𝑝𝑖(𝑥𝑘|𝜑𝑖)

𝐶

𝑖=1

 

(1) 

where C is number of considered Gaussians, 𝑝𝑖(𝑥|𝜑𝑖) is 
the Gaussian function 𝑖, and 𝜋𝑖 is the ratio of 𝑝𝑖(𝑥|𝜑𝑖) in the 
mixture. The model parameters 𝐴𝑖 , 𝑣𝑖 ,  and πi  can be 
determined using the maximum likelihood estimation (MLE) 
technique. The log of the likelihood can be expressed as 

∑∑𝜇𝑖𝑘(𝑙𝑜𝑔(𝜋𝑖𝑝𝑖(𝑥|𝜑𝑖)))

𝐶

𝑖=1

=∑∑𝜇𝑖𝑘 (−𝑙𝑜𝑔 (𝜋𝑖)

𝐶

𝑖=1

𝑛

𝑘=1

𝑛

𝑘=1

−
𝑛

2
𝑙𝑜𝑔(2𝜋)

−
1

2
𝑙𝑜𝑔(|𝐴𝑖|) −

1

2
(𝑥𝑘 − 𝑣𝑖)𝐴𝑖

−1(𝑥𝑘 − 𝑣𝑖)
𝑇) 

(2) 

where 𝜇𝑖𝑘 is the probability that 𝑥𝑘  is assigned to the 
Gaussian 𝑖, and is defined as 

𝜇𝑖𝑘 =
𝜋𝑖𝑝𝑖(𝑥𝑘|𝜑𝑖)

∑ 𝜋𝑙𝑝𝑙(𝑥𝑘|𝜑𝑙)
𝐶
𝑙=1

 
(3) 

It can be proven that the MLE parameters are 

𝑣𝑖 =
1

𝑛
∑ 𝜇𝑖𝑘𝑥𝑘
𝑛
𝑘=1 , and (4) 

𝐴𝑖 =
1

𝑛
∑𝜇𝑖𝑘(𝑥𝑘 − 𝑣𝑖)(𝑥𝑘 − 𝑣𝑖)

𝑇

𝑛

𝑘=1

 
(5) 

As mentioned above, the resulting algorithm alternates the 
E-step and The M-step. The E-step assigns each point 𝑥𝑘  to a 
Gaussian 𝑖, and the M-step computes the Gaussian centers, 𝑣𝑖 , 
and covariance, 𝐴𝑖  . The GMM algorithm using MLE 
optimization is summarized in algorithm 1. 

Algorithm 1 GMM algorithm 

Initialize 𝑣𝑖, 𝐴𝑖 , and 𝜋𝑖 
Repeat 

1- E-step: Compute 𝜇𝑖𝑘 using (3) 

2- M-step:  

 Compute 𝑣𝑖 using (4) 

 Compute 𝐴𝑖 using (5) 

 Compute 𝜋𝑖 =
𝑛𝐶

𝑛
, where 𝑛𝐶 = ∑ 𝜇𝑖𝑘

𝑛
𝑘=1  

Until convergence  

The GMM algorithm may be prone to local minima. That 
is why it is preferable to run it several times with different 
initialization settings. 

III. RELATED WORKS 

Recently, considerable researches that tackle the relation 
between PD and speech disorder have been reported in 
literature. More specifically, classification based approaches 
that recognize PD voice impairment symptom have been 
proposed. Their performance depends highly on the selection 
of the appropriate acoustic feature and on the machine 
learning approach adopted. 

The authors in [5] suggested to select the 10 most 
uncorrelated features by applying redundant feature filter. 
Then, using the obtained features, they performed an 
exhaustive search looking for all possible combinations. These 
feature combinations are conveyed to a kernel SVM classifier 
to conclude on the best combination of features. They found 
out that the combination of   pitch period entropy (PPE) [5] 
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and the harmonics-to-noise ratios gave the best performance.  
In the same context of feature selection, the authors in [6] use 
22 acoustic features as described in [22]. Based on the 
obtained 132-length feature vector, they compared four feature 
selection algorithms. Namely, they used the least absolute 
shrinkage and selection operator (LASSO) [23], the minimum 
redundancy maximum relevance (mRMR) [24], the RELIEF 
[25] and the local learning-based feature selection (LLBFS) 
[26]. The empirical comparison concluded that RELIEF [25] 
is more suitable for this data when reducing the feature’s 
dimension to 10. Then, the obtained 10 pre-selected features 
are conveyed to random forests (RF) and support vector 
machines (SVM) binary classifiers [27]. They concluded that 
SVM outperforms RF for this data. 

Other researches tackled the problem by introducing new 
feature extraction approaches. The authors in [9] presented a 
system for PD system based on segmenting ‘pa’, ‘ta’, and ‘ka’ 
syllables. Using the obtained syllables, they designed 13 
acoustic features to detect voice deficiency. The extracted 
features are then classified using SVM [27] in order to 
discriminate between PD and non PD patients. On the other 
hand, the authors in [28]  applied a combination of Mel-
frequency cepstral and of tunable Q-factor wavelet coefficient 
as a feature to be fed to a voice based PD diagnosis system. 
The obtained feature is conveyed to 9 classifiers that are 
combined using ensemble learning method. 

Since one of the characteristics of the voice data for PD 
detection is the record repetition of the same patient, the 
authors in [10] and [11] proposed two systems to handle the 
data repetition problem. The first proposed approach is based 
on aggregating the data while the second one used latent 
variable in the Bayesian logistic regression approach. 
Similarly, the authors in [7] dealt with the problem of repeated 
voice recordings per patient. They suggested representing the 
acoustic features extracted from the records of the same 
patient with center and dispersion variables rather than with 
independent variables. They used the k-nearest neighbor (k-
NN) and support vector machines (SVM) [27] as classification 
approaches to segregate between PD and non PD patients. 
Whereas, the authors in [29] don’t address only the problem of 
within-patient variability but also multicollinearity. They 
proposed a two stage approach. The first step is a feature 
selection step. For each group of feature, one representative is 
kept based on its similarity with the feature of the same group. 
The second step consists in using Least Absolute Shrinkage 
and Selection Operator LASSO [30] that performs regression 
and variable selection. Moreover, Gibbs sampling algorithm 
[31] is used in order to avoid the computational complexity of 
the two stage system. 

In the context of feature weighting, the authors in [8] 
proposed a hybrid system to detect PD from acoustic features.  
They first weighted the features by clustering the data using 
Gaussian mixture model GMM [21].  Then, they performed 
feature reduction and transformation using principal 
component analysis, PCA, linear discriminant analysis LDA, 
sequential forward selection SFS, and sequential backward 
selection SBS [32]. Finally, they classified the transformed 
acoustic features using least-square support vector machine 
LS-SVM [33], probabilistic neural network PNN [34] and 

general regression neural network GRNN [35]. Similarly, for 
feature selection purpose, the authors in [36] used recursive 
feature elimination algorithm (RFE) [37]. The obtained 
selected features were conveyed to a linear SVM classifier in 
order to distinguish PD from non PD patients. 

Recently, the authors in [38] employed the deep learning 
framework to discriminate between PD and non PD patients. 
In fact, they introduced two systems based on Convolutional 
Neural Networks CNN [39] to combine several acoustic 
features. The first proposed system aggregates the considered 
features before conveying them to a CNN with 9 layers. 
Whereas, the second proposed system conveyed directly the 
considered feature to a CNN with parallel input layers. They 
concluded that the second system is promising. 

In summary, recent researchers found that voice 
degeneration allowed the early diagnosis of PD. In this 
context, several systems based on feature extraction and 
machine learning methods have been reported in the literature. 
Some of these works ( [5], [6]) focused in the problem of 
acoustic feature high correlation and suggested the use of 
different feature selection approaches.  Other works ( [9], 
[28]) introduced new feature extraction method to 
discriminate PD from non PD patient using voice records. The 
works ( [7], [10], [11]) tackled the problem of repeated voice 
recordings per patient. Feature weighting has been considered 
in multiple layered hybrid system where the feature weighting 
is performed through clustering the data [8]. Deep learning 
framework has also been considered in [38] where CNN has 
been used to classify PD and non PD patients. 

IV. PROPOSED APPROACH 

Let 𝑥𝑘  be a real-valued vector of length 𝑑 that represents 

the 𝑘𝑡ℎ instance of the data of size 𝑛, 𝑥𝑘 can be seen as  a set 
of sub-vectors where each sub-vector represents a different 
feature. Let 𝑆𝑡 be the number of considered sub-features, 𝑥𝑘 
can be expresses as 

𝑥𝑘 = [𝑥𝑘
1, 𝑥𝑘

2, 𝑥𝑘
3, … , 𝑥𝑘

𝑠] 
 

(6) 

where 𝑥𝑘
𝑠 represents the sub-feature 𝑠 of size 𝑧𝑠. It follows 

that the size 𝑑 of 𝑥𝑘 is 

𝑑 =∑𝑧𝑠
𝑆𝑡

𝑠=1

 

(7) 

Let 𝑤𝑖𝑠  be the weight of sub-feature 𝑥𝑘
𝑠  with respect to 

Gaussian i. Concatenating the different sub-features to 
reconstruct the vector 𝑥𝑘  would result in a high dimensional 
vector which yield all the related drawbacks. To alleviate this 
problem, we propose aggregating the different sub-features as 
a weighted sum of the different sub-features. The weights 
related to each sub-feature 𝑠 are learned in such a way they 
reflect the relevance of sub-feature 𝑠  in modeling 𝑥𝑘  with 
Gaussian 𝑖.  In this sense, the distance between 𝑥𝑘  and the 
center of Gaussian 𝑖 , can be defined as 

∑𝑤𝑖𝑠
𝑞(𝑥𝑘

𝑠 − 𝑣𝑖
𝑠)𝐴𝑖

𝑠−1(𝑥𝑘
𝑠 − 𝑣𝑖

𝑠)𝑇
𝑆𝑡

𝑠=1

 

(8) 
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where 𝑤𝑖𝑠  is the relevance weight of sub-feature 𝑠  with 
respect to Gaussian model 𝑖, 𝑞 is the parameter that controls 
the fuzziness of these feature relevance weights, 𝐴𝑖

𝑠  and 𝑣𝑖
𝑠  

are respectively the covariance and mean of sub-feature 𝑠 with 
respect to model 𝑖. The definition of the new distance in (8) 

yields, that the  𝑖𝑡ℎ Gaussian 𝑔𝑖 ,  can be defined as 

𝑔𝑖(𝑥𝑘|𝜑𝑖) =
1

(2𝜋)𝑛 2⁄ ∑ 𝑤𝑖𝑠
𝑞
|𝐴𝑖
𝑠|
1 2⁄𝑆𝑡

𝑠=1

∙ 𝑒[−1 2
∑ 𝑤𝑖𝑠

𝑞
(𝑥𝑘
𝑠−𝑣𝑖

𝑠)𝐴𝑖
𝑠−1(𝑥𝑘

𝑠−𝑣𝑖
𝑠)
𝑇𝑆𝑡

𝑠=1⁄ ]
 

(9) 

subject to: 

∑𝑤𝑖𝑠

𝑆𝑡

𝑠=1

= 1 

(10) 

Let  𝜑 = [𝜑𝑖]1 ..𝐶   be the model parameters. The GMM 
with relevance feature weights can be expressed as 

𝑔(𝑥𝑘|𝜑) = ∑𝜋𝑖𝑔𝑖(𝑥𝑘|𝜑𝑖)

𝐶

𝑖=1

 

(11) 

where C is number of considered Gaussians, 𝑔𝑖(𝑥|𝜑𝑖) is 
the Gaussian function 𝑖, and 𝜋𝑖 is the ratio of 𝑔𝑖(𝑥|𝜑𝑖) in the 

mixture. The model parameters  𝜑 = [𝑣𝑖
𝑠 , 𝐴𝑖

𝑠] 𝑖=1..𝐶
𝑠=1..𝑆𝑡

, can be 

determined using the maximum likelihood estimation (MLE) 
technique. The logarithm of the likelihood 𝐿 can be expressed 
as 

𝐿 = ∑∑(log(𝜋𝑖𝑔𝑖(𝑥|𝜑𝑖)))

𝐶

𝑖=1

μ𝑖𝑘

𝑛

𝑘=1

 

(12) 

where 𝜇𝑖𝑘 is the probability that 𝑥𝑘  is assigned to the 
Gaussian 𝑖, and is defined as 

𝜇𝑖𝑘 =
𝜋𝑖𝑔𝑖(𝑥𝑘|𝜑𝑖)

∑ 𝜋𝑙𝑔𝑙(𝑥𝑘|𝜑𝑙)
𝐶
𝑙=1

 
(13) 

Substituting (9) in (12), gives 

𝐿 = ∑∑𝜇𝑖𝑘 (−log (𝜋𝑖)

𝐶

𝑖=1

𝑛

𝑘=1

−
𝑛

2
log(2𝜋)

−
1

2
∑log(|𝐴𝑖

𝑠|)

𝑆𝑡

𝑠=1

−
1

2
∑𝑤𝑖𝑠

𝑞(𝑥𝑘

𝑆𝑡

𝑠=1

− 𝑣𝑖
𝑠)𝐴𝑖

𝑠−1(𝑥𝑘 − 𝑣𝑖
𝑠)𝑇) 

(14) 

The derivative of L with respect to 𝑣𝑖 is 

𝜕𝐿

𝜕𝑣𝑖
𝑠 = −

1

2
∑𝜇𝑖𝑘𝑤𝑖𝑠

𝑞(𝑥𝑘 − 𝑣𝑖
𝑠)𝐴𝑖

𝑠−1

𝑛

𝑘=1

 
(15) 

Setting (15) to zero gives the estimated value of 𝑣𝑖 as in 
(16) 

𝑣𝑖
𝑠 =

1

𝑛
∑𝜇𝑖𝑘𝑤𝑖𝑠

𝑞
𝑥𝑘
𝑠

𝑛

𝑘=1

 
(16) 

The partial derivative of 𝐿 with respect to 𝐴𝑖
−1 is 

𝜕𝐿

𝜕𝐴𝑖
−1 = −

𝑛

2
𝐴𝑖
𝑠 −

1

2
∑𝜇𝑖𝑘𝑤𝑖𝑠

𝑞(𝑥𝑘
𝑠 − 𝑣𝑖

𝑠)(𝑥𝑘
𝑠 − 𝑣𝑖

𝑠)𝑇
𝑛

𝑘=1

 
(17) 

Setting (17) to zero gives 

𝐴𝑖
𝑠 =

1

𝑛
∑𝜇𝑖𝑘𝑤𝑖𝑠

𝑞(𝑥𝑘
𝑠 − 𝑣𝑖

𝑠)(𝑥𝑘
𝑠 − 𝑣𝑖

𝑠)𝑇
𝑛

𝑘=1

 
(18) 

Using the Lagrange multiplier technique, the partial 
derivative of 𝐿 with respect to 𝑤𝑖𝑠 subject to (10) is 

𝜕𝐿 

𝜕𝑤𝑖𝑠
= −

1

2
∑𝑞𝜇𝑖𝑘𝑤𝑖𝑠

𝑞−1(𝑥𝑘
𝑠 − 𝑣𝑖

𝑠)𝐴𝑖
𝑠−1(𝑥𝑘

𝑠 − 𝑣𝑖
𝑠)𝑇

𝑛

𝑘=1

+ 𝜆 

(19) 

where 𝜆 is the Lagrange coefficient. Setting (19) to zero 
gives 

𝑤𝑖𝑠 = (
𝜆
𝑞⁄

1
2
∑ 𝜇𝑖𝑘(𝑥𝑘

𝑠 − 𝑣𝑖
𝑠)𝐴𝑖

𝑠−1(𝑥𝑘
𝑠 − 𝑣𝑖

𝑠)𝑇𝑛
𝑘=1

)

1
𝑞−1⁄

 

(20) 

Substituting (20) in (10), yields 

(𝜆 𝑞⁄ )
1
𝑞−1⁄

=
1

∑ (
1

1
2
∑ 𝜇𝑖𝑘(𝑥𝑘

𝑠 − 𝑣𝑖
𝑠)𝐴𝑖

𝑠−1(𝑥𝑘
𝑠 − 𝑣𝑖

𝑠)𝑇𝑛
𝑘=1

)

1
𝑞−1⁄

𝑆𝑡
𝑠

 
(21) 

Substituting (21) in (20), gives 

𝑤𝑖𝑠 =

(

 
 

1
∑ 𝜇𝑖𝑘(𝑥𝑘

𝑠 − 𝑣𝑖
𝑠)𝐴𝑖

𝑠−1(𝑥𝑘
𝑠 − 𝑣𝑖

𝑠)𝑇𝑛
𝑘=1

⁄

∑ (1
∑ 𝜇𝑖𝑘(𝑥𝑘

𝑙 − 𝑣𝑖
𝑙)𝐴𝑖

𝑙−1(𝑥𝑘
𝑙 − 𝑣𝑖

𝑙)𝑇𝑛
𝑘=1

⁄ )𝑆𝑡
𝑙=1

)

 
 

1
𝑞−1⁄

 

(22) 

As mentioned above, the resulting algorithm alternates the 
E-step and the M-step. The E-step assigns each point 𝑥𝑘  to a 
Gaussian 𝑖, and the M-step computes the Gaussian centers, 𝑣𝑖

𝑠 , 
and covariance, 𝐴𝑖

𝑠 . The GMM with relevance feature weights 
algorithm using MLE optimization is summarized in 
algorithm 2.  

Algorithm 2  GMM with relevance feature weights 

algorithm 

Initialize 𝑣𝑖
𝑠, 𝐴𝑖

𝑠, and 𝜋𝑖 and 𝑤𝑖𝑠 
Repeat 

1- E-step: Compute 𝜇𝑖𝑘 using (13) 

2- M-step:  

 Compute 𝑣𝑖
𝑠,  using (16), 

  𝐴𝑖
𝑠 using (18) 

 Compute 𝑤𝑖𝑠 using (22) 

 Compute 𝜋𝑖 =
𝑛𝐶

𝑛
, where 𝑛𝐶 = ∑ 𝜇𝑖𝑘

𝑛
𝑘=1  

Until convergence  
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Similar to the GMM algorithm, the proposed GMM with 
relevance feature weights may be prone to local minima. One 
way to alleviate this problem is by running it several times 
with different initialization settings.  

V. EXPERIMENTS 

In order to assess the performance of the proposed 
approach, we used the data set available at [40]. It was 
collected by the Department of Neurology in Cerrahpaşa 
Faculty of Medicine, Istanbul University. The data was built 
with the participation of 252 persons which age varies from 33 
to 87. From the 252 participants, 188 are diagnosed with PD 
and 64 are healthy. The participants were asked to pronounce 
the vowel /a/ three times. From the recorded 756 sample vocal 
data, acoustic features are extracted. Namely, Time Frequency 
Features, Mel Frequency Cepstral Coefficients (MFCCs), 
Wavelet Transform based Features, Vocal Fold Features and 
the tunable Q-factor wavelet transform (TQWT)  features  
were extracted from the collected data [28]. This results in 752 
dimensional feature vector for each record. The various 
extracted feature sets and their corresponding dimensions are 
reported in Table I. 

For the purpose of assessing the performance of the 
proposed approach, the extracted feature subsets (refer to 
Table I) are conveyed to the Gaussian Mixture model with 
relevance feature weights (as described in section4). The 
obtained results are first compared to the GMM results. Then, 
they are compared to the most recent related work that uses 
the same data set with same extracted set of features. Namely, 
we compare the obtained results to those reported in [28]. 
More specifically, the obtained results are compared to the 
results obtained when conveying the top 50 features selected 
using mRMR to different classifiers and the combination of 
their prediction using ensemble stacking and voting 
approaches. For this purpose, two performance measures are 
computed. These are the accuracy, and the Matthews 
correlation coefficient (MCC). For both GMM and GMM with 
relevance feature weights, we use two models for the PD class 
and 2 models for the Non PD class. Since both classifiers are 
prone to local minima, the experiment is run 100 times. 
Moreover, we use the 10-cross validation technique. Table II 
shows the comparison of the performances of GMM and 
GMM with relevance feature weights. The reported results are 
the mean and standard deviation of the accuracy and the MCC 
score over the 100 runs. As it can be seen, GMM performs 
poorly on this data. This is due to the high dimensionality of 
the data. On the other hand, by learning relevance feature 
weights that allow an effective combination of the feature 
subsets, the proposed GMM with relevance feature weights 
overcomes the high dimensionality problem, and give better 
results. In order to further investigate the obtained results, we 
report in Table III the confusion matrix obtained using GMM 
with relevance feature weights, and in Table IV, the confusion 
matrix obtained using GMM. We notice that GMM classifies 
the whole data as Non PD. In fact, since the feature vector has 

high dimensionality, the covariance matrix learned by GMM 
would be singular or nearly singular resulting in the numerical 
breakdown of the model.  

Fig. 1 depicts the learned relevance feature weights. Since 
we used two models for the PD class and two models for the 
non PD class, the proposed classifier learns a feature weight 
for each subset with respect to each of the 4 models. As it can 
be seen from Fig. 1, the first model of the non PD class has the 
large weight with respect to the Detrended fluctuation analysis 
feature, whereas the second model has the large weight with 
respect the Recurrence Period Density entropy feature. This 
means that the former feature allows discriminating the first 
model while the latter allows discriminating the second model. 
Similarly, the Pitch Period entropy, the Mel frequency 
features, and the vocal fold features are relevant to the first 
model of the PD class, while the Recurrence Period Density is 
relevant to the second one. By learning the relevant feature 
weight for each model, the proposed approach allows an 
effective combination of the feature subsets resulting in the 
improvement of the GMM performance. 

TABLE I. OVERVIEW OF THE FEATURE SETS USED AND THEIR 

CORRESPONDING DIMENSIONS 

Feature subset Size  

Jitter variants 5 

Shimmer variants 6 

Fundamental frequency parameters 5 

Harmonicity parameters 2 

Recurrence Period Density entropy 1 

Detrended Fluctuation analysis 1 

Pitch Period entropy 1 

Time frequency features (intensity, Frequencies, and 

bandwidth) 
11 

Mel Frequency Cepstral Coefficient 84 

Wavelet transform 182 

Vocal fold features (Glottis, Glotal to noise Excitation, vocal 

Fold Excitation, Empirical Mode Decomposition) 
22 

TWQT 432 

TABLE II. COMPARISON OF THE PERFORMANCES OF GMM AND GMM 

WITH RELEVANCE FEATURE WEIGHTS 

 Accuracy MCC 

GMM 

 
0.2540 ± 0 0±0 

GMM with relevance 

feature weights 
0.8912± 0.0054 0.7060±0.0143 

TABLE III. CONFUSION MATRIX OBTAINED USING GMM WITH 

RELEVANCE FEATURE WEIGHTS 

 Predicted Non PD Predicted PD 

Actual Non PD 119 73 

Actual PD 0 564 

TABLE IV. CONFUSION MATRIX OBTAINED USING GMM 

 Predicted Non PD Predicted PD 

Actual Non PD 192 0 

Actual PD 564 0 
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Fig 1. Relevance Feature Weights Learned by the Proposed Approach. 

TABLE V. COMPARISON OF THE PERFORMANCE OF THE PROPOSED 

APPROACH WITH RELATED WORKS 

 Accuracy MCC 

Naïve Bayes 0.83 0.54 

Logistic regression 0.85 0.57 

K-NN 0.85 0.56 

Multi-layer perceptron 0.84 0.54 

Random Forest 0.85 0.57 

SVM (Linear) 0.83 0.52 

SVM(RBF) 0.86 0.59 

Ensemble with voting 0.85 0.58 

Ensemble with stacking 0.84 0.55 

GMM 
0.2540 

± 0 

0 

±0 

GMM with relevance feature weights 
0.8912 

± 0.0054 
0.7060 

±0.0143 

In Table V, we show the comparison of the performance of 
the proposed approach with the results of different classifiers 
on  the top 50 features selected using mRMR and the 
combination of their prediction using ensemble stacking and 
voting approaches as reported in [28] on the same data set. We 
notice that the proposed approach has a higher accuracy and a 
higher MCC. This means that is outperforming the other 
considered approaches. We should mention here that, for the 
PD classification problem, higher accuracies than the accuracy 
of the proposed approach have been reported for the same 
dataset. However, these approaches use leave-one-out cross 
validation, whereas the dataset has several recordings per 
person. This yields biased models since recordings of the same 
person of the test recording are included in the training set, 
which results in overfitting problem. 

VI. CONCLUSION 

Recently, the number of PD patients has increased. 
Nowadays, 2 to 3% of older people that are over 65 years are 
affected by the disease. With the progression of the disease, 

different symptoms appear affecting the speech.  Machine 
learning techniques can be used for early detection of PD 
syndromes. More specifically, speech pattern detection 
approaches have been applied to the problem of articulatory 
deficits caused by PD. Although machine learning techniques 
have been proven to be effective to predict PD syndrome, the 
relevant acoustic feature that allow to distinguish the vocal 
records of PD patient from non PD one, is still not solved. In 
fact, since considering all features would result on the curse of 
dimensionality problem, most of previous works compare 
empirically these features with different classifiers in order to 
come up with best combination feature-classifier. Other 
approaches used feature selection techniques in the whole set 
of features in order to reduce the dimensionality and keep only 
relevant features. However, even though a feature is 
considered irrelevant when compared to the other features, it 
may contribute to the prediction. In this case, combining the 
features effectively is more important than selecting a subset 
of them. Moreover, the feature selection is done for the whole 
data set while some feature can be relevant to a certain class 
while not being relevant to another. Therefore, it is beneficial 
to have relevance feature weights with respect to each class 
for a better discrimination ability of the classifier. 

In this work, we classify the voice records for PD patient 
detection. For this purpose, we introduced a new classifier that 
incorporates relevance feature weighting to the Gaussian 
mixture models classifier. In fact, the proposed classifier 
learns the relevant feature weights and the Gaussian mixture 
model parameters with respect to each class. The experimental 
results showed the effectiveness of the proposed approach 
with an accuracy of 0.89 and an MCC score of 0.7. 

As future work, we intend to combine the Gaussian 
Mixture model classifier with a clustering algorithm that learn 
the relevance feature weights. 
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