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Abstract—Constructing a conceptual model as an abstract 

representation of a portion of the real world involves capturing 

the (1) static (things/objects and trajectories of flow), (2) the 

dynamic (event identification), and (3) the behavior (e.g., 

acceptable chronology of events) of the modeled system. This 

paper focuses on examining the behavior notion in modeling and 

current works in the “behavior space” to illustrate that the 

problem of behavior and its related concepts in modeling lacks a 

clear-cut systematic basis.  The purpose is to advance the 

understanding of system behavior to avoid ambiguity-related 

problems in system specification. It is proposed to base the notion 

of behavior on a new conceptual model, called the thinging 

machine, which is a tool for modeling that establishes three levels 

of representation: (1) a static structural description that is 

constructed upon the flow of things in five generic operations 

(activities; i.e., create, process, release, transfer and receive); 

(2) a dynamic representation that identifies hierarchies of events 

based on five generic events; and (3) a chronology of events. This 

is shown through examples that support the thinging machine as 

a new methodology suitable for all three levels of specification. 
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I. INTRODUCTION 

The main objectives of conceptual modeling of software 
and systems include enhancing understanding of the modeled 
system, providing a point of reference for designers to 
assemble requirements and specifications, and documenting the 
system for future reference. Constricting a conceptual model as 
an abstract representation of a portion of the real world 
involves capturing (1) the static (things/objects and trajectories 
of flow), (2) the dynamic (events identification), and (3) the 
behavior (e.g., acceptable chronology of events) of the 
modeled system. 

A. Problem by Example 

The issue is that such a three-level conceptualization is not 
clearly recognizable in most current modeling methodologies 
in software and system engineering. To exemplify such 
problems, consider the issue of behavior specification of flow 
models. According to Bock and Gruninger [1], “Flow models 
are the most common form of behavior specification. They 
underlie popular programming languages and many graphical 
behavior specification tools. However, their semantics is 
typically given in natural language or in varied 

implementations, leading to unexpected effects in the final 
system.” Bock and Groninger [1] discussed a way to remove 
ambiguity by restating flow modeling constructs in terms of 
constraints on runtime sequences of behavior execution. In this 
context, ambiguity refers to omitting information. Bock and 
Gruninger [1] gave an example of this problem as shown in the 
activity diagram of Fig. 1 where (1) the arrow in the figure is 
often interpreted as signifying that the paint behavior sends a 
message to the dry behavior or (2) the arrow means that dry 
must always happen after paint whenever the paint behavior is 
performed [2]. Fig. 1 is actually intended to state that the 
execution of the ChangeColor behavior is an execution of the 
paint behavior, after which an execution of the dry behavior 
will occur [1]. 

In this paper, the claim is that Fig. 1 mixes up the notion of 
activity with the notion of event and shows the static 
description with the dynamic description. In the current paper, 
we will define “activity” and “event” and present static and 
dynamic models that substantiate our claim. 

 
Fig 1. Behavior notation example (Adapted from [1]). 

B. Problem at Large in Modeling: What is Behavior? 

Behavior has constituents that define it and form a network 
or a “space” of linked behavior-based concepts. According to 
Deleuze and Guattari [3], “Every concept has components and 
is defined by them [and] there is no concept with only one 
component.” In this paper, we examine the behavior plane in 
modeling and review current works in the “behavior space” to 
illustrate that the problem of behavior and its related concepts 
in modeling lacks a clear-cut systematic basis. In spite of many 
examples given in the related literature, behavior, from our 
perspective, does not have a direct reply to the problem. 

The issue is that “a behavioral description presumed a 
structural description, but a structural description also 
presumed a behavioral description” [4]. Moreover, the inability 
to connect structure and behavior is sometimes frustrating [4]. 
Looking at UML, “The notations provided by the UML for 
describing behavior are complex, poorly defined and poorly 
integrated, that round tripping between code and model is far 
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too loose and error prone, and that tools in general are poor in 
how they integrate modelling artefacts into the lifecycle” [5]. 

C. Our Contribution 

We will propose basing the notion of behavior on a new 
conceptual model, called the thinging machine (TM). TM is a 
tool for modeling, which in this context is directed at 
understanding, in contrast to the general notion of modeling for 
he purpose of prediction. We will establish three levels of 
representation as follows: 

1) A static structural description that uses a single 

ontological element called a thimac (thing/machine). The 

thimac simultaneously has the structure of a thing (e.g., an 

object) and a machine (i.e., a process). Flow trajectories are 

based on five generic operations: create, process (change), 

release, transfer, and receive. 

2) A dynamic representation that identifies events in the 

thimac to form hierarchies of events to divide the execution of 

the modeled system into segments of time. 

3) A chronology of events that specifies the acceptable 

behavior of the system. 

D. Organization of the Paper 

The paper is organized as follows: Section 2 explores 
current conceptualizations of such terms as “behavior,” 
“action,” and “event” to demonstrate the arbitrary and 
sometimes contradictory use of these notions. To achieve a 
self-contained paper, in Section 3, we review TM with 
enhancement of its details. Section 4 illustrates TM modeling 
by providing a new example. Section 5 discusses the drying 
paint example, given in Subsection A of this introduction, in 
terms of TM. Section 6 clarifies the notions of activity and 
behavior as the basis of static and dynamic models, 
respectively. Section 7 shows that the TM diagram unifies 
UML activity and sequence diagrams. 

II. A CURRENT SAMPLE OF SEMANTICS: BEHAVIOR, 

ACTIVITY AND ACTIONS 

This section highlights descriptions of the notion of 
behavior and its related concepts. Published works provide 
plenty of examples of behavior specifications, behavior 
execution, behavior taxonomies, behavior occurrences, 
behavior models, behavior specialization, runtime behavior, 
etc., but, in many references, a single statement about what 
behavior is does not exist. Accordingly, we will highlight 
interpretations from various works, mostly in software 
engineering, focusing on the terms “behavior,” “actions,” 
“activity,” and “events.” We will present only high points of 
exploration, as extensive material about the topics are scattered 
inside many research papers that have been published. 

A. Behavior 

In UML, a basic segmentation of “behavioral” and 
“structural” features exists, where “behavior is a function of 
time and structure is a function of space” [4]. UML is excellent 
at distinguishing them, “but not so good at putting them back 
into a meaningful relationship” [4]. According to the Object 
Management Group [6], “All behavior in a modeled system is 
ultimately caused by actions executed by so-called ‘active’ 

objects.’” Actions ultimately cause “all behavior in a modeled 
system” and “all behavior is the consequence of the actions of 
structural entities” [7].  

Operations may be bound to activities or other behaviors 
[7]. A behavior describes possible executions, and an execution 
is the performance of an algorithm according to a set of rules 
[7].  

Behavior specification is called “activity” and occurrence is 
a runtime execution of a behavior specification. In UML 2, 
behaviors are described as classes, and their executions are 
instances. For example, ChangeColor in Fig. 1 is a class, and 
each time it is executed, a new instance is created [1]. 

It is proposed (e.g., [1]) to specify the semantics of the 
UML activities using a process specification language (PSL). 
A PSL activity is said to be a reusable behavior (e.g., 
ChangeColor or Paint in Fig. 1) and is equivalent to the UML 2 
concept called “behavior.” A PSL occurrence is a runtime 
execution of an activity [1]. 

In UML, most of the time, behavior means behavioral 
diagrams (sequence diagrams, activity diagrams, and state 
machine diagrams) that “depict the elements of a system that 
are dependent on time and that convey the dynamic concepts of 
the system and how they relate to each other. The elements in 
these diagrams resemble the verbs in a natural language and 
the relationships that connect them typically convey the 
passage of time.” [8] (Italic added for emphasis). Some UML 
literature refers to verbs as behavioral things and nouns as 
depicting the static behavior of a model [9]. In software design, 
we may “think of the linguistic analogy [about verbs and 
nouns]: nouns are like business objects and verbs are like use 
cases. When we’re children, we don’t start talking in verbs, we 
start pointing at things and saying their names” [4]. 

Dynamic behavior shows collaborations among objects and 
changes to the internal states of objects [10]. Dynamic 

behavior is usually defined in terms of behavior (e.g., “the 

dynamic behavior is the behavior of the system when it is 
running/operating”) [10]. 

In philosophy, an agent’s behaviors are not actions: 
“Actions are definitely different from the bodily movements 
that are controlled by non-cognitive homeostatic processes or 
reflexes” [11]. 

B. Action 

Actions are used to define fine-grained behaviors. An 
action takes inputs and converts them into outputs. Basic 
actions include calling operations, sending signals, and 
invoking behavior [7]. 

An action represents a single step within an activity. An 
activity represents a behavior that is composed of actions. 
Examples of actions are sending and accepting a payment [7].  

“The action concept is present everywhere the dynamic 
aspects of the world are to be taken into account. In some 
domains (e.g., dynamic logic), actions are confused with 
events” [11].  

In philosophy, the concept of action is difficult to grasp 
[11]. Trypuz [11] lists some of these meanings of “action”: an 
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event carried out by an agent, an event caused by an agent with 
the intention to do this action, and an event caused by an agent 
for a reason. 

Linguists distinguish lexical aspectual classes of verbs and 
verb phrases by their relation with time: activity (e.g., run or 
eat), state (e.g., know, be sick, or sit), accomplishment (e.g., eat 
an apple, or climb a mountain) and achievement (e.g., realize, 
reach the summit).  

C. Events 

According to [12], an “event is something that ‘happens’ 
during the course of a process. Events affect the flow of the 
process. Several types of event exist: TimerEvent, 
ConditionalEvent, etc.”  

An event is a stimulus that triggers state changes. Events 
are representations of requests from other objects. An event is 
defined as the specifications of noteworthy occurrence that has 
an allocation in time and space [13]. 

D. No Systematic Ontology 

In spite of our attempt to put the conceptual highlights 
given above into a coherent framework, we ended by giving up 
such a maneuver. Instead, we opted to project the concepts 
over the TM model to observe their interrelatedness and 
connections, as shown in the remaining part of this paper.  

III. THINGING MACHINE 

This section will briefly review the TM model to establish 
TM as a foundation to study behavior. A more elaborate 
discussion of TM’s philosophical foundation can be found in 
[14-20]. 

The TM ontology is based on a single category called 
thimacs. A thimac is a categorical wrapper that embraces 
classical entity-ness: objects or processes. It is simultaneously 
an object (called a thing) and a process (in the broad sense) 
(called a machine)—thus, the name “thimac.” The thimac 
notion is not new. In physics, subatomic entities must be 
regarded as particles and as waves to describe and explain 
observed phenomena [21]. According to Sfard [22], abstract 
notions can be conceived in two fundamentally different ways: 
structurally, as objects/things (static constructs), and 
operationally, as processes. Thus, distinguishing between form 
and content and between process and object is popular, but 
“like waves and particles, they have to be united in order to 
appreciate light” [23]. TM adopts the notion of duality in 
conceptual modeling, generalizing it beyond mathematics.  

In a thimac’s two modes of being, “structural conception” 
means seeing a notion as an entity with a recognizable internal 
structure and specified trajectories of motion (called “flow” in 
TM). The behavioral way of conceiving thimacs emphasizes 
the dynamic aspects in terms of events (thimacs embrace time 
machines). Accordingly, we can identify a chronology of 
events to specify the accepted behavior. 

The term “thing” relies more on Heidegger’s [24] notion of 
“things” than it does on the notion of objects. According to 
Heidegger [24], a thing is self-sustained, self-supporting, or 
independent—something that stands on its own. A thing 
“things”; that is, it gathers, unites, or ties together its 

constituents in the same way that a bridge unifies 
environmental aspects (e.g., a stream, its banks, and the 
surrounding landscape).  

The term “machine” refers to a special abstract machine 
called a “thinging machine” (see Fig. 2) that encapsulates the 
laws of flows. TM is built under the postulation that only five 
generic actions/operations are performed on things: creating, 
processing (in the sense of changing), releasing, transferring, 
and receiving.  

A thimac (a simple or complex form of TM) has dual being 
as a thing and as a machine. A thing is defined as that which is 
created, processed, released, transferred, and/or received. A 
machine is defined as that which creates, processes, releases, 
transfers, and/or receives things. Since a thimac is a thing and a 
machine at the same time, we will alternate between the terms 
“thimac,” “thing,” and “machine” according to the context. 

The five TM flow operations (also called stages) form the 
foundation for thimacs. Among the five stages, the flow (a 
solid arrow in Fig. 2) of a thing means the trajectory of a 
thing’s “motion,” which occupies different stages. The arrow 
represents a projected flow just as, say, the path of the Nile on 
a map. 

The TM diagram reflects the succession that is imposed on 
this “motion” of the thing: create→release→transfer, etc. The 
flow among the five stages is the law of flow though the 
thimac. The flow is the occupation of different stages at 
different times. In TM, a thing has no other place to be besides 
the five generic stages. Note that this definition is inspired by 
Russell’s definition of motion as occupying different places at 
different times [25]. Adopting this theory (used to solve Zeno’s 
paradoxes [25]), the arrows in Fig. 2 have no corresponding 
events (times), as they do not denote transitions. 

The generic TM flow operations can be described as 
follows: 

 Arrival: A thing occupies the first stage (input gate) of a 
new machine.  

 Acceptance: A thing is permitted to occupy the accept 
stage in the machine. If arriving things are always 
accepted, then arrival and acceptance can be combined 
to become the “receive” stage. For simplicity, this 
paper’s examples assume a receive stage. 

 Release: A thing occupies a release stage where it is 
marked as ready to be transferred outside of the 
machine. 

 

Fig 2. A Thinging Machine. 
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 Transference: A thing occupies a transfer stage (output 
gate) to be transported somewhere outside of the 
machine. 

 Creation: A new thing is born (created) in a machine. A 
machine creates, in the sense that it “finds/originates” a 
thing; it brings a thing into the system and then 
becomes aware of it. “Creation” can designate 
“bringing into existence” in the system because what 
exists is what is found. 

In addition, the TM model includes memory that is 
accessed from all stages and triggering (represented as dashed 
arrows) that connects thimacs in non-flow ways (e.g., classical 
control flow among independent programs that have no data 
flow among them). 

IV. THINGING MACHINE BY EXAMPLE 

To illustrate TM, we use the script model proposed by 
Schank and Abelson [26] that represents people’s knowledge 
of events in terms of stereotyped sequences of routine actions. 
Fig. 3 is an example of the script for “going to a restaurant” 
[26] that describes the sequence of actions happening in a 
restaurant. In Fig. 3, the preconditions are indicated by the 
entry conditions “customer is hungry” and “customer has 
money,” and consequences are marked by the results 
“customer has less money,” “customer is not hungry,” and 
“owner has more money.” The script is divided into scenes 
(e.g., entering, ordering, eating, and exiting) and actions that 
fall under various scenes. According to Chen [27], “A series of 
psychological studies indicates that scripts correspond to 
psychological reality, in the sense that people indeed use 
predetermined, stereotyped structures to understand routine 
events and that people have significant agreement on the 
actions that comprise these events.” 

A. Static TM Model 

The TM model of such a script is shown in Fig. 4 and can 
be explained as follows.  

 First, the customer (Circle 1) flows to the restaurant (2). 
Note that the customer thimac contains two subthimacs: 
the state of being hungry (3) and the money machine 
that he or she has. 

 Upon entering the restaurant, the customer activates 
(triggers; 5) looking around (6) that triggers a decision 
about where to sit (7). The decision triggers moving (8) 
to a table (9). 

 Next (this sequence will be specified in the TM 
dynamic model), the customer takes the menu (10 and 
11) and processes it (12) to trigger ordering food (13). 

 The food order flows (14 and 15) to the waiter (16), 
who takes it (17 and 18) to the cook (19).  

 The cook creates the food (20) and gives it (22) to the 
waiter, who receives the food (23) and carries it (24) to 
the customer (24).  

 The customer eats the food (25).  

 When the customer finishes eating, the waiter gives the 
customer the bill (26 and 27) and leaves the table (28 
and 29). 

 Then, the customer leaves the table (30) and goes (31) 
to the cash register (32), where he or she pays (show; 
33) money (34) that flows to the cash register (35). 

 The customer leaves the restaurant (37) in a state of 
being full (27) with less money (38).  

The static TM model is static because it is a 
conceptualization that includes all trajectories of flow 
according to TM. The TM enforces order on the flow in a 
thimac. The static model is just the mental memory: everything 
is there, now, existing in the same memory. If there is a flow 
from X to Y and a flow from Y to X (e.g., traffic on a one-lane 
street), then both flows are in the static state, despite the 
apparent contradiction that will be resolved when time is taken 
into consideration. It is important to note that the sequence of 
stages of flow will have some influence (not all) on the 
sequence of events, because the logical flow inside TM cannot 
be violated, as will be described next.  

 
Fig 3. The Restaurant Script. Adapted from [26]. 

Script: Restaurant 

Entry Conditions: Customer is hungry. 

Customer has money. 

Scenes: 

1. Entering 

Customer goes into restaurant. (E1) 

Customer looks around. (E2) 

Customer decides where to sit. (E3) 

Customer goes to a table and sits down. (E4) 

2. Ordering 

Customer picks up a menu. (E5) 

Customer decides on food. (E6) 

Customer orders food from waiter. (E7) 

Waiter tells cook the order. (E8) 

Cook prepares food. (E9) 

3. Eating 

Cook gives food to waiter. (E10) 

Waiter gives food to customer. (E11) 

Customer eats food. (E12) 

4. Exiting 

Waiter writes out check. (E13) 

Waiter brings check to customer. (E14) 

Customer gives tip to waiter. (E15) 

Customer goes to cash register. (E16) 

Customer gives money to cashier. (E17) 

Customer leaves restaurant. (E18) 
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Fig 4. The TM Model of the Script. 

 
Fig 5. Static model is an encoding of a mental construct. 

B. TM Static Model and Time 

In this section, we explain what is meant by calling Fig. 4 a 
static model. For us, Fig. 4 is a conceptual model, in the sense 
that it is a mental construct represented in a diagram, as shown 
in Fig. 5. Inside the static model, activities (operation/stages of 
TM or sequences of these operations) are not events (i.e., not 
happening in time). The activities (series of operations/stages) 
in the diagram and their successions are a logical progression 
enforced by TM, which acts as the law of flows. We note that 
Fig. 4 has several “floating” (cut from each other) subdiagrams 
with no indication of sequencing. However, the succession of 
stages inside a TM is compulsory. Triggering may be added for 
clarity, e.g., cause-and-effect. 

It is possible to create the model with no consideration of 
succession except logical sequencing. For example, imagine 
that a designer captures each scene in the script on a different 
day. The first day he or she asks the restaurant manager to 
show him or her the scene of ordering, which the designer 

models using TM. On the second day, the designer asks to 
watch the paying scene, etc. At the end, he or she will end up 
with independent models of each scene. Then, the designer 
constructs Fig. 4 according to the thimac/subthimac 
relationship, with no idea of the ordering of the scenes: 
ordering, paying, etc. We say that the resultant model is a static 
description, because the time succession is not taken into 
consideration, except for the logical succession of the TM’s 
operations: create, process, release, transfer, and receive. In 
modeling, we specify, in the static description, the entities and 
their flows, then, in the dynamic model, we identify the events 
in preparation for specifying the total behavior of the system.  

To develop the notion of a dynamic TM model, we need 
the notion of an event. An event in TM is a thimac that 
includes a time. For example, the event the customer goes into 
restaurant is modeled as shown in Fig. 6. It includes the time, 
the region where the event occurs, the event, and other thimacs 
(e.g., intensity) that are not shown in this example. 

 

Fig 6. The TM Model of the Event “Customer attends Restaurant.” 
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Identifying events based on the five generic operations 

Generic events correspond to generic TM operations (e.g., 
receive is viewed at the dynamic level as the receive event with 
time.) We said previously that TM encapsulates the laws of 
flow. Flows decide the chronology of generic events. For 
example, the receive event occurs after the transfer event. We 
can build events of events, thus forming hierarchies of events 
based on the five generic TM operations  

Identifying events among disconnected thimacs 

Additionally, the behavior of the system requires “linking” 
the “floating” (cut from each other) subdiagrams, some of 
which are connected by triggering, discussed previously. The 
links are non-TM links (roughly corresponding to the so-called 
“control flow”) and decided according to some type of cause-
and-effect observation. In the given restaurant example, 
looking around happens after entering and the decision to sit 
happens after looking around.  

In current modeling methodology (e.g., UML), non-TM 
specifications are mixed with the “data flow” from the 
beginning of writing the specification. For example, UML 
activity diagrams include data flow and control flow 
simultaneously. Hence, in the data flow parts, the behavior is 
decided by the data flow. In the control flow part, the behavior 
has one stream of succession decided at the beginning of the 
specification, in a way that is similar to the procedural 
programs method. Thus, in the restaurant example, we see that 
“entering,” which includes a sequence of activities, is followed 
by “looking around,” which also includes many sequential 
activities inside it, then “deciding where to sit,” etc. It 
functions just like a main program with a set of subprograms. It 
is possible to permit a system behavior where the customer sits 
immediately after entering. However, such a chronology of 
events is not permitted in the given script. 

Confusion exists between operations (activities, i.e., 
sequence of operations) and events. Activities, such as send 
and receive (e.g., sequence diagram), are viewed as events (i.e., 
operation plus time). However, this is correct only if we 
specify a single chronology of events. Obviously this is very 
restrictive modeling. Imagine a person’s behavior is specified 
only as wake up→eat→work→home→sleep. The TM model 
of behavior permits specifying all other sequences that form 
acceptable behaviors. Current methods of modeling overcome 
this restriction by specifying each behavior by itself, as will be 
shown in the next example. 

We observe that this single thread of behavior is the cause 
of mixing up activities and events as appears in the so-called 
behavior diagrams. In TM, the dynamic model is developed 
after finishing the static model. As we see in the restaurant 
script in Fig. 3 (a type of activity diagram), entering is an 
activity and an event, looking around is an activity and an 

event, etc. So the behavior becomes the chronology of 
activities instead of the chronology of events. The result is a 

single behavior: entering→looking around→making decision

→sitting, etc. An activity in TM is a generic operation or a 

series of generic operations that works correctly as a 
chronology of events, as long as the series of TM operations 
continues (e.g., in data flow). However, this does not work for 
multiple acceptable behaviors if different types of flow exist. 

The static TM model induces flow that partially constrains 
the behavior (chronology of events). Additionally, we have to 
weave the “floating” (cut from each other) subdiagrams into 
different streams of events to specify permitted behavior. In the 
restaurant example, looking around may happen (be permitted) 
after sitting (e.g., a regular customer may go straight to a 
preferred table without looking around for best seat) or vice 
versa (looking around to signal a waiter). The dynamic model 
specifies events at a certain level or above the generic events. 
The chronology of events specifies the legal behavior of the 
system. 

In the restaurant example, for simplicity’s sake, we 
represent each event by its region. Accordingly, each step 
taken in the scene in Fig. 4 is an event. Fig. 7 shows the events 
of the script and Fig. 8 shows the behavior of the script system 
in terms of the chronology of events as given. 

However, the dynamic TM model makes it possible to 
specify other types of behavior in the behavior specification 
(chronology of events). For example, suppose that we permit 
the following two types of behavior: 

 An old customer with a favorite table enters and sits 
down without looking around and deciding where to sit. 

 The chef cooks the food before customers enter the 
restaurant. 

Fig. 9 shows the new chronology of events where the 
behavior can starts at event 1 or event 9. 

V. TM MODEL OF THE PAINT–DRY EXAMPLE 

In this section, we show that it is not good to regard an 
activity (e.g., Paint and Dry in Fig. 1) as a behavior. In this 
type of modeling, behavior is an action (a TM stage or series of 
stages). In TM, Paint→Dry refers to the flow from the Paint (-
ed) compass thimac to the Dry thimac. Because it is a flow, the 
static model enforces a sequence of TM stages. 

According to Bock and Odell [28], occurrences (of “the 
things being modeled”) are supposed to obey models of 
behaviors. Apparently, their use of the term behavior (as in an 
activity diagram) corresponds to the static TM model. A static 
diagram models behavior in a superficial way, based on the 
ambiguous notions of data flow and control flow. The result 
limits the specification of multiple behaviors.  



(IJACSA) International Journal of Advanced Computer Science and Applications 

Vol. 11, No. 4, 2020 

436 | P a g e  

www.ijacsa.thesai.org 

 

Fig 7. The Events in the TM Model of the Script. 

 

Fig 8. The Chronology of Events in the Script. 

 

Fig 9. The New Chronology of Events. 

Bock and Odell [28] stated that UML has three ways of 
specifying behaviors: activities (Fig. 1), state machines, and 
interactions. In this context, “UML behavioral diagrams depict 
the elements of a system that are dependent on time and that 
convey the dynamic concepts of the system and how they 
relate to each other. The elements in these diagrams resemble 
the verbs in a natural language and the relationships that 
connect them typically convey the passage of time. For 
example, a behavioral diagram of a vehicle reservation system 
might contain elements such as Make a Reservation, Rent a 
Car, and Provide Credit Card Details.” [8] (Italic added). 

From the TM point of view, in Fig. 1 ChangeColor, Paint, 
and Dry are all thimacs in TM. Fig. 10 shows the TM 
representation of Fig. 1. 

In the figure, the color (material) flows from its place (e.g., 
a can; Circle 1) to the compass (2) to be processed (painted; 3) 

and then allowed to dry (4). The sequence (succession, 
following after) of stages release→transfer, etc., is a logical 
sequence (in agreement with the structure of TM) that may or 
may not coincide with the time sequence (in this case, it does). 
Flows in the static TM model “exist” (appear) simultaneously 
and all “exist” in the static “world” together “now” as in maps. 
In general, as we saw in the restaurant example, it does not take 
time into consideration. The static model embeds the union of 
all behaviors.  

 

Fig 10. The Static TM representation of the Overlapping Behaviors. 
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Suppose that the events are selected as shown in Fig. 11, 
then two possible behaviors are shown in Fig. 12: E1→E2 and 
E1→E3. The static description embeds all possible events and 
flows do not represent a specific behavior (a series of events). 
The static model (Fig. 10) only shows the operation (activities), 
not the behavior. The operations (activities) can be any of the 
five generic TM operations or a series of them. The static 
model does not involve events; however, all potential 
behaviors are “sleeping” together through their operations. We 
distinguish (based on TM) events in the dynamic model.  

We can see the origin of the ambiguity in Fig. 1, which is a 
type of static description, because it includes operations 
(activities), not events. The time factor ambiguously appears as 
a by-product, because of the arrows. Thus, in general, we 
differentiate between logical succession of operations and time 
succession, hence between thimacs without time and thimacs 
with time. As a consequence, the behavior is not attached to the 
static TM model but it appears with the dynamic TM model 
that embeds time. 

This conclusion will be clarified further with a more 
complex example in the next section. 

VI. WHAT EXISTS IS NOT NECESSARILY WHAT HAPPENS 

Behavior is typically defined as movement, activity, or 
process. However, behavior is not necessarily a movement 
(e.g., adult male mountain gorillas need not move to emit fear 
scents and octopuses often rest motionless when camouflaging 
against predators) [29]. Moreover, behavior is not change or 
activity (e.g., sweating). A process specifies behavior only if it 
includes events. A process consists of a system of 
interdependent relations between the objects, events, and other 
entities in an environment [29]. Events imply embedding in 
time. The origin of mixing these notions is the initial 
ontological (object-oriented or process-oriented) assumption 
where what happens (e.g., an event) and what exists (e.g., 
sticks and stones) are differentiated. In TM, the thimac is there 
and, simultaneously, the thimac happens. The event is a thimac 
that happens and the thing (object) is the thimac there.  

 

Fig 11. The Events in Paint→Dry. 

 

Fig 12. The Behavior of Paint→Dry. 

The static thimac description is a thing and its behavior is 
based on its time-version that specified the chronology of its 
subevents. Calling a static description (e.g., activity, state and 
interaction diagrams in UML) “behavior” is unfortunate. The 
order in such a description is a transaction-based (i.e., flow-
based) order not a time-based order. 

A. Example 

Bock and Gruninger [2] specify that a food service process 
must include ordering, preparing, serving, eating, and paying, 
but not necessarily in that order. The constraints may be 
(1) ordering, preparing, and serving always happen before 
eating, (2) serving happens after preparing and ordering, and 
(3) paying can happen anytime in the process. Four kinds of 
food services are given, represented as activity diagrams, as 
follows [2]: 

 FastFoodService: Prepare→Order→Pay→Serve→Eat 

 RestaurantService: Order→Prepare→Serve→Eat→Pay 

 Buffet: Prepare→Order→Serve→Pay→Eat 

 ChurchSupper: Pay→Order→Prepare→Serve→Eat 

Bock and Gruninger [2] construct a separate activity 
diagram for each service.  This is a model that mixes up 
activities with events. FastFoodService, RestaurantService, 
Buffet, and ChurchSupper are different behaviors of the same 
system.  

Fig. 13 shows the static TM representation for this system 
as a single diagram. We note that ordering, paying, serving, 
and preparing subdiagrams are “loose” in their time 
relationships with other subdiagrams. However, inside each of 
the four services, the static TM model obeys the time flow to 
develop the events of the system by preserving flow order and 
converting the five generic TM operations into generic events 
that follow the same sequence. In UML, basic events are 
specified in the sequence diagram as sending of a message and 
receiving of a message [30].  

Fig. 14 shows selected events of the food-ordering system. 
Hence, we can assemble the loose subdiagrams into several 
forms that reflect the acceptable behavior of the system. The 
loose subdiagrams are events, where the interior of each of 
them is fixed with respect to the TM operations.  

Fig. 15 shows the behavior of the system. Events may be 
repeated in the diagram for clarity. Fig. 16 shows the union of 
these events. 
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Fig 13. The Static TM Model of a Food Service System. 

 

Fig 14. The Events in the Food Services System. 

 

Fig 15. Behavior of the Services System. 

 

Fig 16. The Union of Behaviors of Different Services. 

VII. CONCLUSION 

In this paper, we have proposed a possible approach to 
defining behavior in modeling, including behavior-related 
related concepts (e.g., operation, action, and event). 
Accordingly, we defined the following basic concepts: 

 Behavior is the chronology of events in the TM model 

 Events are thimacs with time submachines 

 Operations/actions are the five generic TM operations 
and the series of these operations. 

TM can be used as a modeling tool that forms three levels 
of representation with basic elements of operations/actions, 
events, and behavior. 

Representing a model in a single diagram may be raised as 
an issue. In TM, the world is abstracted as thimacs with five 
generic stages. The grand thimac is not a single, monolithic, 
unmanageable whole; instead, it incorporates decomposability 
by its skeletal structure of multiple interior thimacs. This 
decomposability is based on joints (flows and triggering among 
thimacs) that form the structure (anatomy) of a system (the 
overarching thimac). Accordingly, the conceptual model is a 
single diagram, but the implementation (e.g., software) lends 
itself to differentiating thimacs at the joints via an adequate 
conceptualization. 
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