
(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 11, No. 4, 2020

430 | P a g e

www.ijacsa.thesai.org

Three Levels of Modeling: Static

(Structure/Trajectories of Flow), Dynamic (Events)

and Behavioral (Chronology of Events)

Sabah Al-Fedaghi

Computer Engineering Department

Kuwait University

Kuwait

Abstract—Constructing a conceptual model as an abstract

representation of a portion of the real world involves capturing

the (1) static (things/objects and trajectories of flow), (2) the

dynamic (event identification), and (3) the behavior (e.g.,

acceptable chronology of events) of the modeled system. This

paper focuses on examining the behavior notion in modeling and

current works in the “behavior space” to illustrate that the

problem of behavior and its related concepts in modeling lacks a

clear-cut systematic basis. The purpose is to advance the

understanding of system behavior to avoid ambiguity-related

problems in system specification. It is proposed to base the notion

of behavior on a new conceptual model, called the thinging

machine, which is a tool for modeling that establishes three levels

of representation: (1) a static structural description that is

constructed upon the flow of things in five generic operations

(activities; i.e., create, process, release, transfer and receive);

(2) a dynamic representation that identifies hierarchies of events

based on five generic events; and (3) a chronology of events. This

is shown through examples that support the thinging machine as

a new methodology suitable for all three levels of specification.

Keywords—System behavior; static model; chronology of

events; conceptual representation; dynamic specification

I. INTRODUCTION

The main objectives of conceptual modeling of software
and systems include enhancing understanding of the modeled
system, providing a point of reference for designers to
assemble requirements and specifications, and documenting the
system for future reference. Constricting a conceptual model as
an abstract representation of a portion of the real world
involves capturing (1) the static (things/objects and trajectories
of flow), (2) the dynamic (events identification), and (3) the
behavior (e.g., acceptable chronology of events) of the
modeled system.

A. Problem by Example

The issue is that such a three-level conceptualization is not
clearly recognizable in most current modeling methodologies
in software and system engineering. To exemplify such
problems, consider the issue of behavior specification of flow
models. According to Bock and Gruninger [1], “Flow models
are the most common form of behavior specification. They
underlie popular programming languages and many graphical
behavior specification tools. However, their semantics is
typically given in natural language or in varied

implementations, leading to unexpected effects in the final
system.” Bock and Groninger [1] discussed a way to remove
ambiguity by restating flow modeling constructs in terms of
constraints on runtime sequences of behavior execution. In this
context, ambiguity refers to omitting information. Bock and
Gruninger [1] gave an example of this problem as shown in the
activity diagram of Fig. 1 where (1) the arrow in the figure is
often interpreted as signifying that the paint behavior sends a
message to the dry behavior or (2) the arrow means that dry
must always happen after paint whenever the paint behavior is
performed [2]. Fig. 1 is actually intended to state that the
execution of the ChangeColor behavior is an execution of the
paint behavior, after which an execution of the dry behavior
will occur [1].

In this paper, the claim is that Fig. 1 mixes up the notion of
activity with the notion of event and shows the static
description with the dynamic description. In the current paper,
we will define “activity” and “event” and present static and
dynamic models that substantiate our claim.

Fig 1. Behavior notation example (Adapted from [1]).

B. Problem at Large in Modeling: What is Behavior?

Behavior has constituents that define it and form a network
or a “space” of linked behavior-based concepts. According to
Deleuze and Guattari [3], “Every concept has components and
is defined by them [and] there is no concept with only one
component.” In this paper, we examine the behavior plane in
modeling and review current works in the “behavior space” to
illustrate that the problem of behavior and its related concepts
in modeling lacks a clear-cut systematic basis. In spite of many
examples given in the related literature, behavior, from our
perspective, does not have a direct reply to the problem.

The issue is that “a behavioral description presumed a
structural description, but a structural description also
presumed a behavioral description” [4]. Moreover, the inability
to connect structure and behavior is sometimes frustrating [4].
Looking at UML, “The notations provided by the UML for
describing behavior are complex, poorly defined and poorly
integrated, that round tripping between code and model is far

Paint Dry

Change color

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 11, No. 4, 2020

431 | P a g e

www.ijacsa.thesai.org

too loose and error prone, and that tools in general are poor in
how they integrate modelling artefacts into the lifecycle” [5].

C. Our Contribution

We will propose basing the notion of behavior on a new
conceptual model, called the thinging machine (TM). TM is a
tool for modeling, which in this context is directed at
understanding, in contrast to the general notion of modeling for
he purpose of prediction. We will establish three levels of
representation as follows:

1) A static structural description that uses a single

ontological element called a thimac (thing/machine). The

thimac simultaneously has the structure of a thing (e.g., an

object) and a machine (i.e., a process). Flow trajectories are

based on five generic operations: create, process (change),

release, transfer, and receive.

2) A dynamic representation that identifies events in the

thimac to form hierarchies of events to divide the execution of

the modeled system into segments of time.

3) A chronology of events that specifies the acceptable

behavior of the system.

D. Organization of the Paper

The paper is organized as follows: Section 2 explores
current conceptualizations of such terms as “behavior,”
“action,” and “event” to demonstrate the arbitrary and
sometimes contradictory use of these notions. To achieve a
self-contained paper, in Section 3, we review TM with
enhancement of its details. Section 4 illustrates TM modeling
by providing a new example. Section 5 discusses the drying
paint example, given in Subsection A of this introduction, in
terms of TM. Section 6 clarifies the notions of activity and
behavior as the basis of static and dynamic models,
respectively. Section 7 shows that the TM diagram unifies
UML activity and sequence diagrams.

II. A CURRENT SAMPLE OF SEMANTICS: BEHAVIOR,

ACTIVITY AND ACTIONS

This section highlights descriptions of the notion of
behavior and its related concepts. Published works provide
plenty of examples of behavior specifications, behavior
execution, behavior taxonomies, behavior occurrences,
behavior models, behavior specialization, runtime behavior,
etc., but, in many references, a single statement about what
behavior is does not exist. Accordingly, we will highlight
interpretations from various works, mostly in software
engineering, focusing on the terms “behavior,” “actions,”
“activity,” and “events.” We will present only high points of
exploration, as extensive material about the topics are scattered
inside many research papers that have been published.

A. Behavior

In UML, a basic segmentation of “behavioral” and
“structural” features exists, where “behavior is a function of
time and structure is a function of space” [4]. UML is excellent
at distinguishing them, “but not so good at putting them back
into a meaningful relationship” [4]. According to the Object
Management Group [6], “All behavior in a modeled system is
ultimately caused by actions executed by so-called ‘active’

objects.’” Actions ultimately cause “all behavior in a modeled
system” and “all behavior is the consequence of the actions of
structural entities” [7].

Operations may be bound to activities or other behaviors
[7]. A behavior describes possible executions, and an execution
is the performance of an algorithm according to a set of rules
[7].

Behavior specification is called “activity” and occurrence is
a runtime execution of a behavior specification. In UML 2,
behaviors are described as classes, and their executions are
instances. For example, ChangeColor in Fig. 1 is a class, and
each time it is executed, a new instance is created [1].

It is proposed (e.g., [1]) to specify the semantics of the
UML activities using a process specification language (PSL).
A PSL activity is said to be a reusable behavior (e.g.,
ChangeColor or Paint in Fig. 1) and is equivalent to the UML 2
concept called “behavior.” A PSL occurrence is a runtime
execution of an activity [1].

In UML, most of the time, behavior means behavioral
diagrams (sequence diagrams, activity diagrams, and state
machine diagrams) that “depict the elements of a system that
are dependent on time and that convey the dynamic concepts of
the system and how they relate to each other. The elements in
these diagrams resemble the verbs in a natural language and
the relationships that connect them typically convey the
passage of time.” [8] (Italic added for emphasis). Some UML
literature refers to verbs as behavioral things and nouns as
depicting the static behavior of a model [9]. In software design,
we may “think of the linguistic analogy [about verbs and
nouns]: nouns are like business objects and verbs are like use
cases. When we’re children, we don’t start talking in verbs, we
start pointing at things and saying their names” [4].

Dynamic behavior shows collaborations among objects and
changes to the internal states of objects [10]. Dynamic

behavior is usually defined in terms of behavior (e.g., “the

dynamic behavior is the behavior of the system when it is
running/operating”) [10].

In philosophy, an agent’s behaviors are not actions:
“Actions are definitely different from the bodily movements
that are controlled by non-cognitive homeostatic processes or
reflexes” [11].

B. Action

Actions are used to define fine-grained behaviors. An
action takes inputs and converts them into outputs. Basic
actions include calling operations, sending signals, and
invoking behavior [7].

An action represents a single step within an activity. An
activity represents a behavior that is composed of actions.
Examples of actions are sending and accepting a payment [7].

“The action concept is present everywhere the dynamic
aspects of the world are to be taken into account. In some
domains (e.g., dynamic logic), actions are confused with
events” [11].

In philosophy, the concept of action is difficult to grasp
[11]. Trypuz [11] lists some of these meanings of “action”: an

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 11, No. 4, 2020

432 | P a g e

www.ijacsa.thesai.org

event carried out by an agent, an event caused by an agent with
the intention to do this action, and an event caused by an agent
for a reason.

Linguists distinguish lexical aspectual classes of verbs and
verb phrases by their relation with time: activity (e.g., run or
eat), state (e.g., know, be sick, or sit), accomplishment (e.g., eat
an apple, or climb a mountain) and achievement (e.g., realize,
reach the summit).

C. Events

According to [12], an “event is something that ‘happens’
during the course of a process. Events affect the flow of the
process. Several types of event exist: TimerEvent,
ConditionalEvent, etc.”

An event is a stimulus that triggers state changes. Events
are representations of requests from other objects. An event is
defined as the specifications of noteworthy occurrence that has
an allocation in time and space [13].

D. No Systematic Ontology

In spite of our attempt to put the conceptual highlights
given above into a coherent framework, we ended by giving up
such a maneuver. Instead, we opted to project the concepts
over the TM model to observe their interrelatedness and
connections, as shown in the remaining part of this paper.

III. THINGING MACHINE

This section will briefly review the TM model to establish
TM as a foundation to study behavior. A more elaborate
discussion of TM’s philosophical foundation can be found in
[14-20].

The TM ontology is based on a single category called
thimacs. A thimac is a categorical wrapper that embraces
classical entity-ness: objects or processes. It is simultaneously
an object (called a thing) and a process (in the broad sense)
(called a machine)—thus, the name “thimac.” The thimac
notion is not new. In physics, subatomic entities must be
regarded as particles and as waves to describe and explain
observed phenomena [21]. According to Sfard [22], abstract
notions can be conceived in two fundamentally different ways:
structurally, as objects/things (static constructs), and
operationally, as processes. Thus, distinguishing between form
and content and between process and object is popular, but
“like waves and particles, they have to be united in order to
appreciate light” [23]. TM adopts the notion of duality in
conceptual modeling, generalizing it beyond mathematics.

In a thimac’s two modes of being, “structural conception”
means seeing a notion as an entity with a recognizable internal
structure and specified trajectories of motion (called “flow” in
TM). The behavioral way of conceiving thimacs emphasizes
the dynamic aspects in terms of events (thimacs embrace time
machines). Accordingly, we can identify a chronology of
events to specify the accepted behavior.

The term “thing” relies more on Heidegger’s [24] notion of
“things” than it does on the notion of objects. According to
Heidegger [24], a thing is self-sustained, self-supporting, or
independent—something that stands on its own. A thing
“things”; that is, it gathers, unites, or ties together its

constituents in the same way that a bridge unifies
environmental aspects (e.g., a stream, its banks, and the
surrounding landscape).

The term “machine” refers to a special abstract machine
called a “thinging machine” (see Fig. 2) that encapsulates the
laws of flows. TM is built under the postulation that only five
generic actions/operations are performed on things: creating,
processing (in the sense of changing), releasing, transferring,
and receiving.

A thimac (a simple or complex form of TM) has dual being
as a thing and as a machine. A thing is defined as that which is
created, processed, released, transferred, and/or received. A
machine is defined as that which creates, processes, releases,
transfers, and/or receives things. Since a thimac is a thing and a
machine at the same time, we will alternate between the terms
“thimac,” “thing,” and “machine” according to the context.

The five TM flow operations (also called stages) form the
foundation for thimacs. Among the five stages, the flow (a
solid arrow in Fig. 2) of a thing means the trajectory of a
thing’s “motion,” which occupies different stages. The arrow
represents a projected flow just as, say, the path of the Nile on
a map.

The TM diagram reflects the succession that is imposed on
this “motion” of the thing: create→release→transfer, etc. The
flow among the five stages is the law of flow though the
thimac. The flow is the occupation of different stages at
different times. In TM, a thing has no other place to be besides
the five generic stages. Note that this definition is inspired by
Russell’s definition of motion as occupying different places at
different times [25]. Adopting this theory (used to solve Zeno’s
paradoxes [25]), the arrows in Fig. 2 have no corresponding
events (times), as they do not denote transitions.

The generic TM flow operations can be described as
follows:

 Arrival: A thing occupies the first stage (input gate) of a
new machine.

 Acceptance: A thing is permitted to occupy the accept
stage in the machine. If arriving things are always
accepted, then arrival and acceptance can be combined
to become the “receive” stage. For simplicity, this
paper’s examples assume a receive stage.

 Release: A thing occupies a release stage where it is
marked as ready to be transferred outside of the
machine.

Fig 2. A Thinging Machine.

Create

Receive

Transfer

Release

Process

Accept Arrive

Output Input

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 11, No. 4, 2020

433 | P a g e

www.ijacsa.thesai.org

 Transference: A thing occupies a transfer stage (output
gate) to be transported somewhere outside of the
machine.

 Creation: A new thing is born (created) in a machine. A
machine creates, in the sense that it “finds/originates” a
thing; it brings a thing into the system and then
becomes aware of it. “Creation” can designate
“bringing into existence” in the system because what
exists is what is found.

In addition, the TM model includes memory that is
accessed from all stages and triggering (represented as dashed
arrows) that connects thimacs in non-flow ways (e.g., classical
control flow among independent programs that have no data
flow among them).

IV. THINGING MACHINE BY EXAMPLE

To illustrate TM, we use the script model proposed by
Schank and Abelson [26] that represents people’s knowledge
of events in terms of stereotyped sequences of routine actions.
Fig. 3 is an example of the script for “going to a restaurant”
[26] that describes the sequence of actions happening in a
restaurant. In Fig. 3, the preconditions are indicated by the
entry conditions “customer is hungry” and “customer has
money,” and consequences are marked by the results
“customer has less money,” “customer is not hungry,” and
“owner has more money.” The script is divided into scenes
(e.g., entering, ordering, eating, and exiting) and actions that
fall under various scenes. According to Chen [27], “A series of
psychological studies indicates that scripts correspond to
psychological reality, in the sense that people indeed use
predetermined, stereotyped structures to understand routine
events and that people have significant agreement on the
actions that comprise these events.”

A. Static TM Model

The TM model of such a script is shown in Fig. 4 and can
be explained as follows.

 First, the customer (Circle 1) flows to the restaurant (2).
Note that the customer thimac contains two subthimacs:
the state of being hungry (3) and the money machine
that he or she has.

 Upon entering the restaurant, the customer activates
(triggers; 5) looking around (6) that triggers a decision
about where to sit (7). The decision triggers moving (8)
to a table (9).

 Next (this sequence will be specified in the TM
dynamic model), the customer takes the menu (10 and
11) and processes it (12) to trigger ordering food (13).

 The food order flows (14 and 15) to the waiter (16),
who takes it (17 and 18) to the cook (19).

 The cook creates the food (20) and gives it (22) to the
waiter, who receives the food (23) and carries it (24) to
the customer (24).

 The customer eats the food (25).

 When the customer finishes eating, the waiter gives the
customer the bill (26 and 27) and leaves the table (28
and 29).

 Then, the customer leaves the table (30) and goes (31)
to the cash register (32), where he or she pays (show;
33) money (34) that flows to the cash register (35).

 The customer leaves the restaurant (37) in a state of
being full (27) with less money (38).

The static TM model is static because it is a
conceptualization that includes all trajectories of flow
according to TM. The TM enforces order on the flow in a
thimac. The static model is just the mental memory: everything
is there, now, existing in the same memory. If there is a flow
from X to Y and a flow from Y to X (e.g., traffic on a one-lane
street), then both flows are in the static state, despite the
apparent contradiction that will be resolved when time is taken
into consideration. It is important to note that the sequence of
stages of flow will have some influence (not all) on the
sequence of events, because the logical flow inside TM cannot
be violated, as will be described next.

Fig 3. The Restaurant Script. Adapted from [26].

Script: Restaurant

Entry Conditions: Customer is hungry.

Customer has money.

Scenes:

1. Entering

Customer goes into restaurant. (E1)

Customer looks around. (E2)

Customer decides where to sit. (E3)

Customer goes to a table and sits down. (E4)

2. Ordering

Customer picks up a menu. (E5)

Customer decides on food. (E6)

Customer orders food from waiter. (E7)

Waiter tells cook the order. (E8)

Cook prepares food. (E9)

3. Eating

Cook gives food to waiter. (E10)

Waiter gives food to customer. (E11)

Customer eats food. (E12)

4. Exiting

Waiter writes out check. (E13)

Waiter brings check to customer. (E14)

Customer gives tip to waiter. (E15)

Customer goes to cash register. (E16)

Customer gives money to cashier. (E17)

Customer leaves restaurant. (E18)

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 11, No. 4, 2020

434 | P a g e

www.ijacsa.thesai.org

Fig 4. The TM Model of the Script.

Fig 5. Static model is an encoding of a mental construct.

B. TM Static Model and Time

In this section, we explain what is meant by calling Fig. 4 a
static model. For us, Fig. 4 is a conceptual model, in the sense
that it is a mental construct represented in a diagram, as shown
in Fig. 5. Inside the static model, activities (operation/stages of
TM or sequences of these operations) are not events (i.e., not
happening in time). The activities (series of operations/stages)
in the diagram and their successions are a logical progression
enforced by TM, which acts as the law of flows. We note that
Fig. 4 has several “floating” (cut from each other) subdiagrams
with no indication of sequencing. However, the succession of
stages inside a TM is compulsory. Triggering may be added for
clarity, e.g., cause-and-effect.

It is possible to create the model with no consideration of
succession except logical sequencing. For example, imagine
that a designer captures each scene in the script on a different
day. The first day he or she asks the restaurant manager to
show him or her the scene of ordering, which the designer

models using TM. On the second day, the designer asks to
watch the paying scene, etc. At the end, he or she will end up
with independent models of each scene. Then, the designer
constructs Fig. 4 according to the thimac/subthimac
relationship, with no idea of the ordering of the scenes:
ordering, paying, etc. We say that the resultant model is a static
description, because the time succession is not taken into
consideration, except for the logical succession of the TM’s
operations: create, process, release, transfer, and receive. In
modeling, we specify, in the static description, the entities and
their flows, then, in the dynamic model, we identify the events
in preparation for specifying the total behavior of the system.

To develop the notion of a dynamic TM model, we need
the notion of an event. An event in TM is a thimac that
includes a time. For example, the event the customer goes into
restaurant is modeled as shown in Fig. 6. It includes the time,
the region where the event occurs, the event, and other thimacs
(e.g., intensity) that are not shown in this example.

Fig 6. The TM Model of the Event “Customer attends Restaurant.”

State

Create:

hungry

Transfer Transfer

Receive

 Money

Customer

 Looking around Create Process

Decision

about sitting
Create

Men

u Process

Decision

on food

 Waiter
Transfer

 Cook

Receive

Create

Transfer Process: eating

Create Process

Transfer Receive Release

Create Receive

Release

Table

Transfer

Transfer

Receive

Transfer

Release

Transfer

Receive

Transfer

Release

Transfer

Receive Transfer Receive

Transfer

Release

Create

Release

Release Transfer Transfer Receive

Transfer

Transfer

Release

Transfer

Receive Release Transfer Transfer Receive

Release Transfer Transfer Receive

Transfer Transfer Release

Restaurant

Food

Check out

Tip

Cash

register Receive Transfer Release Transfer
Money

Transfer

State

Create:

has

 State
Create:

not

hungry

 Money

State

Create:
less

1

2

3

4 11 10

12

7

6 5

8

9

20

19

18

17 16
15 14

13

29 28

27 26

25
24 23

22

21

30

33

34
35

32

31

38

37

36

State

Create:

hun

Transfer Transfer
Receive

Money

Customer

Create Process

Decision about

sitting Create

Process
Deci

sion

Transfer

Release

Table

Transfer
Transfer

Receive
Release

Create
Release

Receive

State
Create:

has

Region

Time

Create Transfer

Release

Transfer

Receive

Process

Event itself

Transfer Receive Transfer

Restaurant

Process: i.e., taking its course

of time

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 11, No. 4, 2020

435 | P a g e

www.ijacsa.thesai.org

Identifying events based on the five generic operations

Generic events correspond to generic TM operations (e.g.,
receive is viewed at the dynamic level as the receive event with
time.) We said previously that TM encapsulates the laws of
flow. Flows decide the chronology of generic events. For
example, the receive event occurs after the transfer event. We
can build events of events, thus forming hierarchies of events
based on the five generic TM operations

Identifying events among disconnected thimacs

Additionally, the behavior of the system requires “linking”
the “floating” (cut from each other) subdiagrams, some of
which are connected by triggering, discussed previously. The
links are non-TM links (roughly corresponding to the so-called
“control flow”) and decided according to some type of cause-
and-effect observation. In the given restaurant example,
looking around happens after entering and the decision to sit
happens after looking around.

In current modeling methodology (e.g., UML), non-TM
specifications are mixed with the “data flow” from the
beginning of writing the specification. For example, UML
activity diagrams include data flow and control flow
simultaneously. Hence, in the data flow parts, the behavior is
decided by the data flow. In the control flow part, the behavior
has one stream of succession decided at the beginning of the
specification, in a way that is similar to the procedural
programs method. Thus, in the restaurant example, we see that
“entering,” which includes a sequence of activities, is followed
by “looking around,” which also includes many sequential
activities inside it, then “deciding where to sit,” etc. It
functions just like a main program with a set of subprograms. It
is possible to permit a system behavior where the customer sits
immediately after entering. However, such a chronology of
events is not permitted in the given script.

Confusion exists between operations (activities, i.e.,
sequence of operations) and events. Activities, such as send
and receive (e.g., sequence diagram), are viewed as events (i.e.,
operation plus time). However, this is correct only if we
specify a single chronology of events. Obviously this is very
restrictive modeling. Imagine a person’s behavior is specified
only as wake up→eat→work→home→sleep. The TM model
of behavior permits specifying all other sequences that form
acceptable behaviors. Current methods of modeling overcome
this restriction by specifying each behavior by itself, as will be
shown in the next example.

We observe that this single thread of behavior is the cause
of mixing up activities and events as appears in the so-called
behavior diagrams. In TM, the dynamic model is developed
after finishing the static model. As we see in the restaurant
script in Fig. 3 (a type of activity diagram), entering is an
activity and an event, looking around is an activity and an

event, etc. So the behavior becomes the chronology of
activities instead of the chronology of events. The result is a

single behavior: entering→looking around→making decision

→sitting, etc. An activity in TM is a generic operation or a

series of generic operations that works correctly as a
chronology of events, as long as the series of TM operations
continues (e.g., in data flow). However, this does not work for
multiple acceptable behaviors if different types of flow exist.

The static TM model induces flow that partially constrains
the behavior (chronology of events). Additionally, we have to
weave the “floating” (cut from each other) subdiagrams into
different streams of events to specify permitted behavior. In the
restaurant example, looking around may happen (be permitted)
after sitting (e.g., a regular customer may go straight to a
preferred table without looking around for best seat) or vice
versa (looking around to signal a waiter). The dynamic model
specifies events at a certain level or above the generic events.
The chronology of events specifies the legal behavior of the
system.

In the restaurant example, for simplicity’s sake, we
represent each event by its region. Accordingly, each step
taken in the scene in Fig. 4 is an event. Fig. 7 shows the events
of the script and Fig. 8 shows the behavior of the script system
in terms of the chronology of events as given.

However, the dynamic TM model makes it possible to
specify other types of behavior in the behavior specification
(chronology of events). For example, suppose that we permit
the following two types of behavior:

 An old customer with a favorite table enters and sits
down without looking around and deciding where to sit.

 The chef cooks the food before customers enter the
restaurant.

Fig. 9 shows the new chronology of events where the
behavior can starts at event 1 or event 9.

V. TM MODEL OF THE PAINT–DRY EXAMPLE

In this section, we show that it is not good to regard an
activity (e.g., Paint and Dry in Fig. 1) as a behavior. In this
type of modeling, behavior is an action (a TM stage or series of
stages). In TM, Paint→Dry refers to the flow from the Paint (-
ed) compass thimac to the Dry thimac. Because it is a flow, the
static model enforces a sequence of TM stages.

According to Bock and Odell [28], occurrences (of “the
things being modeled”) are supposed to obey models of
behaviors. Apparently, their use of the term behavior (as in an
activity diagram) corresponds to the static TM model. A static
diagram models behavior in a superficial way, based on the
ambiguous notions of data flow and control flow. The result
limits the specification of multiple behaviors.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 11, No. 4, 2020

436 | P a g e

www.ijacsa.thesai.org

Fig 7. The Events in the TM Model of the Script.

Fig 8. The Chronology of Events in the Script.

Fig 9. The New Chronology of Events.

Bock and Odell [28] stated that UML has three ways of
specifying behaviors: activities (Fig. 1), state machines, and
interactions. In this context, “UML behavioral diagrams depict
the elements of a system that are dependent on time and that
convey the dynamic concepts of the system and how they
relate to each other. The elements in these diagrams resemble
the verbs in a natural language and the relationships that
connect them typically convey the passage of time. For
example, a behavioral diagram of a vehicle reservation system
might contain elements such as Make a Reservation, Rent a
Car, and Provide Credit Card Details.” [8] (Italic added).

From the TM point of view, in Fig. 1 ChangeColor, Paint,
and Dry are all thimacs in TM. Fig. 10 shows the TM
representation of Fig. 1.

In the figure, the color (material) flows from its place (e.g.,
a can; Circle 1) to the compass (2) to be processed (painted; 3)

and then allowed to dry (4). The sequence (succession,
following after) of stages release→transfer, etc., is a logical
sequence (in agreement with the structure of TM) that may or
may not coincide with the time sequence (in this case, it does).
Flows in the static TM model “exist” (appear) simultaneously
and all “exist” in the static “world” together “now” as in maps.
In general, as we saw in the restaurant example, it does not take
time into consideration. The static model embeds the union of
all behaviors.

Fig 10. The Static TM representation of the Overlapping Behaviors.

Transfe

r

State

Create:
less

State

Create:
hungry

Transfe

r

Money

Customer

State

Create:

has

 State
Create:

not

hungry

Money

Receive Transfe

r
Receive

Transfe

r

Release

Receive Transfe

r

Release Transfe

r Money

 Transfe

r Receive Looking around Create Process

Decision

about sitting
Create

Men

u Process

Decision

on food

 Waiter
Transfe

r

 Cook

Receive

Create

Transfe
r

Process: eating

Create Process

Transfe
r

Receive Release

Create Receive

Release

Table

Transfe

r

Transfe

r

Receive

Transfe

r

Release

Transfe
r Receive

Transfe

r

Release

Transfe

r

Create

Release

Release Transfe

r

Transfe

r

Receive

Transfe

r

Transfe
r

Release

Transfe
r

Receive Release Transfe

r
Transfe

r

Receive

Release Transfe

r

Transfe

r

Receive

Transfe

r

Transfe

r

Release

Restaurant

Food

Check out

Tip

Cash

register

E1 E2

E3
E4 E5

E6

E7
E8

E9

E1

0 E1

1
E1

2 E1

3
E1

4
E1

5
E1

6
E1

7
E1

8

1 7 2 3 4 6 5 12 11 15
10

17 14 9
13 16

8
18

1 7 2 3 4 6 5 12 11 15 10 17 14

9

13 16 8 18 9

Workshop

 Process:
Drying

Compass
Transfer Release Transfer Receive

Process:
painting

1 2
3 4

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 11, No. 4, 2020

437 | P a g e

www.ijacsa.thesai.org

Suppose that the events are selected as shown in Fig. 11,
then two possible behaviors are shown in Fig. 12: E1→E2 and
E1→E3. The static description embeds all possible events and
flows do not represent a specific behavior (a series of events).
The static model (Fig. 10) only shows the operation (activities),
not the behavior. The operations (activities) can be any of the
five generic TM operations or a series of them. The static
model does not involve events; however, all potential
behaviors are “sleeping” together through their operations. We
distinguish (based on TM) events in the dynamic model.

We can see the origin of the ambiguity in Fig. 1, which is a
type of static description, because it includes operations
(activities), not events. The time factor ambiguously appears as
a by-product, because of the arrows. Thus, in general, we
differentiate between logical succession of operations and time
succession, hence between thimacs without time and thimacs
with time. As a consequence, the behavior is not attached to the
static TM model but it appears with the dynamic TM model
that embeds time.

This conclusion will be clarified further with a more
complex example in the next section.

VI. WHAT EXISTS IS NOT NECESSARILY WHAT HAPPENS

Behavior is typically defined as movement, activity, or
process. However, behavior is not necessarily a movement
(e.g., adult male mountain gorillas need not move to emit fear
scents and octopuses often rest motionless when camouflaging
against predators) [29]. Moreover, behavior is not change or
activity (e.g., sweating). A process specifies behavior only if it
includes events. A process consists of a system of
interdependent relations between the objects, events, and other
entities in an environment [29]. Events imply embedding in
time. The origin of mixing these notions is the initial
ontological (object-oriented or process-oriented) assumption
where what happens (e.g., an event) and what exists (e.g.,
sticks and stones) are differentiated. In TM, the thimac is there
and, simultaneously, the thimac happens. The event is a thimac
that happens and the thing (object) is the thimac there.

Fig 11. The Events in Paint→Dry.

Fig 12. The Behavior of Paint→Dry.

The static thimac description is a thing and its behavior is
based on its time-version that specified the chronology of its
subevents. Calling a static description (e.g., activity, state and
interaction diagrams in UML) “behavior” is unfortunate. The
order in such a description is a transaction-based (i.e., flow-
based) order not a time-based order.

A. Example

Bock and Gruninger [2] specify that a food service process
must include ordering, preparing, serving, eating, and paying,
but not necessarily in that order. The constraints may be
(1) ordering, preparing, and serving always happen before
eating, (2) serving happens after preparing and ordering, and
(3) paying can happen anytime in the process. Four kinds of
food services are given, represented as activity diagrams, as
follows [2]:

 FastFoodService: Prepare→Order→Pay→Serve→Eat

 RestaurantService: Order→Prepare→Serve→Eat→Pay

 Buffet: Prepare→Order→Serve→Pay→Eat

 ChurchSupper: Pay→Order→Prepare→Serve→Eat

Bock and Gruninger [2] construct a separate activity
diagram for each service. This is a model that mixes up
activities with events. FastFoodService, RestaurantService,
Buffet, and ChurchSupper are different behaviors of the same
system.

Fig. 13 shows the static TM representation for this system
as a single diagram. We note that ordering, paying, serving,
and preparing subdiagrams are “loose” in their time
relationships with other subdiagrams. However, inside each of
the four services, the static TM model obeys the time flow to
develop the events of the system by preserving flow order and
converting the five generic TM operations into generic events
that follow the same sequence. In UML, basic events are
specified in the sequence diagram as sending of a message and
receiving of a message [30].

Fig. 14 shows selected events of the food-ordering system.
Hence, we can assemble the loose subdiagrams into several
forms that reflect the acceptable behavior of the system. The
loose subdiagrams are events, where the interior of each of
them is fixed with respect to the TM operations.

Fig. 15 shows the behavior of the system. Events may be
repeated in the diagram for clarity. Fig. 16 shows the union of
these events.

Process:
Drying

Compass

Transfer Release Transfer Receiv

e

Process:
painting

Event 1

Event 3

Event

2

E2

E3
E1

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 11, No. 4, 2020

438 | P a g e

www.ijacsa.thesai.org

Fig 13. The Static TM Model of a Food Service System.

Fig 14. The Events in the Food Services System.

Fig 15. Behavior of the Services System.

Fig 16. The Union of Behaviors of Different Services.

VII. CONCLUSION

In this paper, we have proposed a possible approach to
defining behavior in modeling, including behavior-related
related concepts (e.g., operation, action, and event).
Accordingly, we defined the following basic concepts:

 Behavior is the chronology of events in the TM model

 Events are thimacs with time submachines

 Operations/actions are the five generic TM operations
and the series of these operations.

TM can be used as a modeling tool that forms three levels
of representation with basic elements of operations/actions,
events, and behavior.

Representing a model in a single diagram may be raised as
an issue. In TM, the world is abstracted as thimacs with five
generic stages. The grand thimac is not a single, monolithic,
unmanageable whole; instead, it incorporates decomposability
by its skeletal structure of multiple interior thimacs. This
decomposability is based on joints (flows and triggering among
thimacs) that form the structure (anatomy) of a system (the
overarching thimac). Accordingly, the conceptual model is a
single diagram, but the implementation (e.g., software) lends
itself to differentiating thimacs at the joints via an adequate
conceptualization.

Food

T
ran

sfe
r

Preparing

Customer

Order

Paying

Serving

Food

service

P
ro

cess

Request to pay

R
eceiv

e

T
ran

sfe
r

R
elease

C
reate

P
ro

cess

C
reate

T
ran

sfe
r

P
ro

cess

R
eceiv

e

T
ran

sfe
r

R
elease

C
reate

T
ran

sfe
r

P
ro

cess:

E
a
tin

g

R
eceiv

e

T
ran

sfe
r

P
ro

cess

R
eceiv

e

T
ran

sfe
r

R
elease

C
reate

T
ran

sfe
r

Ingredient

P
ro

cess:

co
o

kin
g

R
elease

T
ran

sfe
r

R
elease

T
ran

sfe
r

R
eceiv

e

Payment

Ordering

T
ran

sfe
r

P
ro

cess

R
eceiv

e

T
ran

sfe
r

Preparing

C
reate

Ingredient

Food

T
ran

sfe
r

Order

Paying

Serving

Food

service

P
ro

cess

Request to pay

R
eceiv

e

T
ran

sfe
r

R
elease

C
reate

P
ro

cess

C
reate

T
ran

sfe
r

P
ro

cess

R
eceiv

e

T
ran

sfe
r

R
elease

C
reate

T
ran

sfe
r

P
ro

cess:

E
a

tin
g

R
eceiv

e

T
ran

sfe
r

P
ro

cess

R
eceiv

e

T
ran

sfe
r

R
elease

T
ran

sfe
r

P
ro

cess:

co
o

kin
g

T
ran

sfe
r

R
elease

T
ran

sfe
r

R
eceiv

e

Payment

E2

E3

E4

E5

Ordering

R
elease

Customer

T
ran

sfe
r

P
ro

cess

R
eceiv

e

T
ran

sfe
r

E1

E6

E5 E2 E3 E4 E6

E1

E2 E5 E4 E6 E3

E5 E2 E4 E3 E6

E3 E2 E5 E4 E6

ChurchSupper

Buffet

RestaurantService

FastFoodService

E5 E2 E3 E4 E6

E1

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 11, No. 4, 2020

439 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] C. Bock and M. Gruninger, “PSL and Flow Models” [presentation],
Ontolog Community Conference, Virtual Speaker Session, Ontolog
community's wiki workspace, 2002 to 2014 archive, 27-1-2005.

[2] C. Bock and M. Gruninger, “PSL: A semantic domain for flow models,”
Softw. Syst. Model., vol. 4, pp. 209–231, 2005.
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=822050
[Accessed March, 12, 2020].

[3] G. Deleuze and F. Guattari, What is Philosophy? New York, Columbia
University Press, 1991.

[4] brushjo, “Designing for Change – A New Take”, Philosophical Musings
on Software Architecture and Design, July 19, 2010 [online]..

[5] M. Broy and M. V. Cengarle, “UML formal semantics: Lessons
learned,” Softw. Syst. Model., vol. 10, pp. 441–446, 2010.

[6] Object Management Group, “OMG Unified Modeling LanguageTM
(OMG UML),” Superstructure, vol. 2.4.1.

[7] OMG, Unified Modeling LanguageTM (OMG UML), Superstructure,
vol. 2.2, February 2009. [Online].

[8] Sparx Systems, “UML Behavioral Models,” Sparx Systems Pty Ltd,
2000–2020, [Online].

[9] Javatpoint, “UML-Building blocks,” 2011-2018. [Online].
https://www.javatpoint.com/uml-building-blocks. [Accessed March, 15,
2020].

[10] Visual Paradigm, “UML - behavioral diagram vs structural diagram,”
[Online].

[11] R. Trypuz, “Formal ontology of action: a unifying approach,” Ph.D.
Thesis, Information and Communication Technologies, University of
Trento, 2007.

[12] A. Annane, N. Aussenac-Gilles, and M. Kamel. „BBO: BPMN 2.0
based ontology for business process representation.” 20th European
Conference on Knowledge Management (ECKM 2019), Sept. 2019,
Lisbonne, Portugal, pp. 49–59.

[13] A. Wambui King’ori, G. Muchiri Muketha and E. Muthoni Micheni, “A
literature survey of cognitive complexity metrics for statechart
diagrams,” International Journal of Software Engineering &
Applications, vol.10, no.4, July 2019.

[14] S. Al-Fedaghi, “Computer science approach to philosophy:
Schematizing Whitehead’s processes,” Int. J. Adv. Comput. Sci. Appl.,
vol. 7, no. 11, 2016.

[15] S. Al-Fedaghi and M. Al-Saraf, “Thinging the robotic architectural
structure,” 2020 3rd International Conference on Mechatronics, Control
and Robotics, February 22–24, 2020, Tokyo, Japan.

[16] S. Al-Fedaghi and Y. Atiyah, Tracking Systems as Thinging Machine: A
Case Study of a Service Company, International Journal of Advanced
Computer Science and Applications (IJACSA), Vol. 9, No. 10, pp. 110-
119, 2018.

[17] S. Al-Fedaghi and A. Alkhaldi, Thinging for Computational Thinking,
International Journal of Advanced Computer Science and Applications
(IJACSA), Vol. 10, No. 2, pp. 620-629, 2019.

[18] S. Al-Fedaghi, “Five generic processes for behaviour description in
software engineering,” Int. J. Comput. Sci. and Inf. Sec., vol. 17, no. 7,
18pp. 120–131, July 2019.

[19] S. Al-Fedaghi, “Thinging vs objectfying in software engineering,” Int. J.
Comput. Sci. and Inf. Sec., vol. 16, no. 10, July 2018.

[20] S. Al-Fedaghi and H. Alnasser, “Modeling network security: Case study
of email system,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 3, 2020.

[21] H. G. Steiner, “Theory of mathematics education: An introduction,” For
the Learning of Math., vol. 5, no. 2, pp. 11–17, 1985.

[22] A. Sfard, “On the dual nature of mathematical conceptions: Reflections
on processes and objects as different sides of the same coin,” Educ.
Studies in Math., vol. 22, no. 1, pp. 1–36, 1991.

[23] J. Mason and A. Waywood, “The role of theory in mathematics:
education and research,” in International Handbook of Mathematics
Education, A. Bishop, M.A. Clements, C. Keitel-Kreidt, J. Kilpatrick,
and C. Laborde, Eds., Springer Science and Business Media, December
6, 2012.

[24] M. Heidegger, “The thing,” in Poetry, Language, Thought, Transl. A.
Hofstadter, New York: Harper and Row, 1975, pp. 161–184.

[25] E. Boccardi, “Recent Trends in the Philosophy of Time: an Introduction
to Time and Reality I,” Manuscrito – Rev. Int. Fil. Campinas, vol. 39, n..
4, pp. 5–34, 2016. http://www.scielo.br/pdf/man/v39n4/2317-630X-
man-39-04-00005.pdf. [Accessed March 20, 2020].

[26] R. Schank and R. Abelson. Scripts, Plans, Goals, and Understanding.
Hillsdale, NJ: Lawrence Erlbaum, 1977.

[27] X. Chen, “Transforming temporal knowledge: conceptual change
between event concepts,” Perspectives on Science, vol. 13, no. 1, pp.
49–73, Spring 2005.

[28] C. Bock and J. Odell, “Ontological behavior modeling,” Journal of
Object Technology, vol. 10, pp. 31–36, 2011.
doi:10.5381/jot.2011.10.1.a3

[29] J. Uher, “What is behaviour? And (when) is language behaviour? A
metatheoretical definition,” Journal for the Theory of Social Behaviour,
vol. 46, no. 4, pp. 475–501, December 2016.

[30] P. Wilkinson, “Requirements Capture and Analysis with UML,”
SlideService presentation, Oct. 2002,. [Online].

