
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

639 | P a g e

www.ijacsa.thesai.org

DMTree: A Novel Indexing Method for Finding

Similarities in Large Vector Sets

Phuc Do
1

Faculty of Information Technology

University of Information

Technology (UIT)

VNU-HCM

Ho Chi Minh City

Vietnam

Trung Phan Hong
2

Faculty of Science and Information

Technology, University of

Information Technology (UIT),

VNU-HCM, Faculty of Information

Technology, Hoa Sen University

Ho Chi Minh City, Vietnam

Huong Duong To
3

Faculty of Information Technology

Hoa Sen University

Ho Chi Minh City

Vietnam

Abstract—In a vector set, to find similarities we will compute

distances from the querying vector to all other vectors. On a

large vector set, computing too many distances as above takes a

lot of time. So we need to find a way to compute less distance and

the MTree structure is the technique we need. The MTree

structure is a technique of indexing vector sets based on a defined

distance. We can solve effectively the problems of finding

similarities by using the MTree structure. However, the MTree

structure is built on one computer so the indexing power is

limited. Today, large vector sets, not fit in one computer, are

more and more. The MTree structure failed to index these large

vector sets. Therefore, in this work, we present a novel indexing

method, extended from the MTree structure, that can index large

vector sets. Besides, we also perform experiments to prove the

performance of this novel method.

Keywords—MTree; DMTree; spark; distributed k-NN query;

distributed range query

I. INTRODUCTION

In the real world, graph applications appear everywhere and
graphs get bigger and bigger. Graph with millions, billions of
vertices are very popular. However, applying of mathematical
calculations and machine learning algorithms on graphs is
limited and very difficult. Therefore, a new and promising
graph processing technique, which is widely interested in
research circles, is the graph embedding technique [1]–[3]. The
graph embedding technology is developed based on word2vec
technology [4][5]. Word2vec is a technology of mapping
words to vectors. This technology has helped solve a series of
Natural Language Processing problems with much greater
accuracy than before. In the graph embedding, each vertex of a
graph is mapped to a vector with 64, 128, 256... dimensions,
each dimension is a real number. In order to preserve as much
information as possible in the original graph, the greater is the
number of dimensions of the vector set. Today, large graphs
are very popular, so large vector sets are also very popular.

On the other hand, to find similarities in vector sets, we
must compute distances from the querying vector to all other
vectors. In a large vector set, we cannot compute too many
distances as above. Through the research process, we realize
that the MTree structure is a technique of indexing vector sets
based on a defined distance. Using the MTree structure, we can
solve the problems of finding similarities effectively [6]. Since

the MTree structure is only built on one computer, it can only
index small vector sets, where all vectors can store into one
computer. Today, large vector sets, where vectors are
distributed in a computer cluster, are increasingly popular. The
MTree structure fails to index these large vector sets. That is
why in this work we build the distributed MTree structure
(DMTree for short) by extending the MTree structure on
Spark, a famous framework for distributed processing, for
indexing large vector sets. Besides, we also perform
experiments on both structures to prove that the performance of
the DMTree structure is better than that of the MTree structure.

The main contributions of our paper are as the following:

 Proposing a method to build the DMTree structure to
index large vector sets.

 Using the DMTree structure for finding similarities in
large vector sets.

 Presenting experiments to prove that the DMTree
structure is better than the MTree structure.

There are six sections in this paper, including:
I. Introduction, II. Related works, III. Preliminaries,

IV. Methodology, V. Experiments, and VI. Conclusion and
future works.

II. RELATED WORKS

Inspired by [6], there are many works on implementing,
developing the MTree structure and other indexing structures.

Author in [7] has proposed the MVPTree structure (the
multi-vantage point tree structure) to partition vector sets.
Experiments has performed to compare the MVPTree structure
and the MTree structure.

Author in [8] has built a framework for finding similarities,
where data is indexed locally by using the MTree structure.
This work has used a super-peer architecture, where super-
peers are responsible for query routing, for supporting
scalability and efficiency of finding similarities.

Author in [9] has researched a tree structure for indexing
and querying data based on a metric. This work has also
performed experiments to compare its method with others,
such as the MMTree structure and the SliMTree structure. This

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

640 | P a g e

www.ijacsa.thesai.org

work has proposed a classification of indexing methods also.

And most recently, [10] has built the SuperMTree structure
by extending the MTree structure for indexing vector sets. This
work has proposed a generalized concept of metric spaces that
is metric subset spaces. Various metric distance functions can
be extended to metric subset distance functions.

Most of the previous works do not refer to indexing large
vector sets, where vectors are distributed in a computer cluster,
except [8]. However, [8] has built a new framework for finding
similarities in a distributed manner. In this work, we will not
create any framework, we only use Spark, which is the famous
framework for distributed processing, to build the DMTree
structure for indexing large vector sets effectively.

III. PRELIMINARIES

A. Similarity Query Definitions

In vector sets, the common task is finding similarities.
Specifically, we usually find k vectors closest to the querying
vector; or find all vectors in the range of radius r, and the
center is the querying vector. Those are the k-nearest neighbors
query (k-NN query for short) and the range query [6][11]. The
following are definitions of them.

1) Definition 1. K-nearest neighbors query: Given a vector

set , a distance function , a querying vector , and an

integer number . The k-nearest neighbors query

 () selects vectors in that are closest to .

2) Definition 2. Range query: Given a vector set , a

distance function , a querying vector , and a radius .

The range query () selects all vectors in

such that () .

B. The MTree Structure

The MTree structure is a technique of indexing vector sets
based on a defined distance function [6][13]. In terms of
internal structure, it is a balanced tree but not require periodic
rebuilding.

A node of the MTree structure can contain at most C
objects, C is called the capacity of nodes. The leaf nodes
contain indexed objects. The rest nodes contain routing objects.

The format of a routing object is as follows:

[(

) ()]

Where represents the routing object; is the

covering radius of ; (

) is the distance between

and

 which is the parent object of ; () is the
reference of subtree which is the covering tree of .

The format of an indexed object is as follows:

 (

)

Where represents the indexed object, (

) is the

distance between and

 which is the parent object of .

 Fig. 1 is an instance of the MTree structure with C = 3.
This MTree structure includes:

 Node 1 is the root node which contains two routing

object and .

 Node 2 and node 3 are the internal nodes. The internal
nodes contain routing objects. For example, node 2
contains two routing objects are and . In node 2,
consider the routing object , () ;
3.5 is the covering radius of ; 1.3 is the distance
between and (in node 1) which is the parent
object of .

 Node 4, 5, 6, 7, 8 are the leaf nodes. The leaf nodes
contain indexed objects. For example, leaf node 4
contains three indexed objects are and . In
node 4, consider the indexed object ; 2.5 is
the distance between and (in node 2) which is the
parent object of .

Fig. 1. An Instance of the MTree Structure with C = 3.

Please refer [6][13] for more information about the MTree
structure.

IV. METHODOLOGY

At first, we build the MTree structure running on one
computer. After that, we extend the MTree structure to build
the DMTree structure running on a Spark cluster consisting of
multiple computers. We also perform many experiments on
both structures to prove that the DMTree structure is better
than the MTree structure. The following are details of our
solution.

A. Building a DMTree Object

At first, we create the MTree class to represent the MTree
structure based on [6][13]. The MTree class has the following
important methods:

 function insertObject(n: Node, v: Vector): locates the
most suitable leaf node in the subtree of node n to store
a new vector v. It is possible to trigger splitting the leaf
node if the leaf node is full. This method is used to
build an MTree object from a vector set.

 function kNNQuery(v: Vector, k: Integer): Set[Vector]:
executes a k-NN query and return k vectors that are
closest to v.

 function rangeQuery(v: Vector, r: Double): Set[Vector]:
executes a range query and returns all vectors such that
the distances from v to them less than or equal to r.

Please refer [6][13] for more details of these methods.

Next, we build the DMTree structure by defining the
DMTree class based on the MTree class. A DMTree object
includes a set of MTree objects built from a vector set. The

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

641 | P a g e

www.ijacsa.thesai.org

vector set is distributed in partitions of an RDD (Resilient
Distributed Dataset), which is a fundamental data structure of
Apache Spark and is a fault-tolerant collection of elements that
can be operated on in parallel [14][15]. Properties and methods
of the DMTree class are shown in TABLE I. and Table II.

The process of building a DMTree object from a vector set
is shown in Fig. 2. First, a vector set is loaded from distributed
files into an RDD[Vector] object in a Spark cluster [14].
Second, a DMTree object is created. Then, using the Map
transformation, which transforms an RDD[X] object to another
RDD[Y] object in parallel (suppose that X and Y are data
types), maps each partition of the RDD[Vector] object to an
MTree object inside the DMTree object. The number of
partitions of an RDD[Vector] object can be configured, so is
the number of MTree objects of a DMTree object. The process
of building a DMTree object from a vector set is described in
Algorithm 1.

TABLE I. PROPERTIES OF THE DMTREE CLASS

Properties Data Types Descriptions

C Integer

The capacity of DMTree objects. In essence,

this property is the capacity of nodes of

MTree objects inside a DMTree object.

mtrees RDD[MTree]
Containing an MTree object set inside a

DMTree object.

TABLE II. METHODS OF THE DMTREE CLASS

Methods Descriptions

function build(path: String, C: Integer): DMTree

Building a DMTree object with capacity C from distributed

files that contain a vector set.

function store(path: String, dmtree: DMTree)

 Storing a DMTree object into distributed files.

function rebuild(path: String): DMTree

Rebuilding a DMTree object from distributed files that

contain the DMTree object.

function kNNQuery(v: Vector, k: Integer): Set[Vector]

 Executing a distributed k-NN query.

function rangeQuery(v: Vector, r: Double): Set[Vector]

 Executing a distributed range query.

Fig. 2. The Process of Building a DMTree Object from a Vector Set.

Algorithm 1. Building a DMTree Object.

- Function: building a DMTree object from a vector set in distributed

files.

- Input: 1) path: the path of the distributed files that contain the vector set.

2) C: the capacity of the DMTree object.

- Output: the DMTree object.

1. function build(path: String, C: Integer): DMTree{

2. load the vector set from the distributed files into an

RDD[Vector] object.

3. create a new empty DMTree object with capacity C.

4. map each partion of the RDD[Vector] object to an MTree

object in the RDD[MTree] object inside the DMTree object.

5. return the DMTree object.

6. }

B. Storing a DMTree Object into Distributed Files

Because creating DMTree objects is quite time consuming,
we will store DMTree objects for reuse later. A DMTree object
can be very large, exceeding the capacity of a file in a local file
system; so it must be stored in distributed files. Storing a
DMTree object into distributed files is described in
Algorithm 2.

Algorithm 2. Storing a DMTree Object.

- Function: storing a DMTree object into distributed files.

- Input: 1) path: the path of the distributed files. 2) dmtree: the DMTree

object will be stored in the distributed files.

- Output: none.

1. function store(path: String, dmtree: DMTree){

2. store metadata (the capacity, number of MTree objects…) of

the DMTree object.

3. map each MTree object in the RDD[MTree] object inside the

DMTree object to a distributed file.

4. }

C. Rebuilding a DMTree object from Distributed Files

When reusing a DMTree object previously stored, it can be
rebuilt from distributed files. Since a DMTree object includes
an MTree object set, each executor should load at least one
MTree object for effective processing. Therefore, the number
of MTree objects inside a DMTree object should be a multiple
of the number of executors. The process of rebuilding a
DMTree object from distributed files in a Spark cluster is
described in Algorithm 3.

Algorithm 3. Rebuilding a DMTree Object.

- Function: rebuilding a DMTree object in a Spark cluster from

distributed files that contain the DMTree object.

- Input: 1) path: the path of the distributed files that contain the DMTree

object.

- Output: the DMTree object.

1. function rebuild(path: String): DMTree{

2. load metadata (the capacity, number of MTree objects…) of

the DMTree object from the distributed file containing metadata.

3. create a new empty DMTree object with the capacity loaded.

4. load MTree objects from the distributed files into the

RDD[MTree] object inside the DMTree object.

5. return the DMTree object.

6. }

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

642 | P a g e

www.ijacsa.thesai.org

D. Executing a Distributed k-NN Query

A distributed k-NN query is a k-NN query running on a
Spark cluster based on a DMTree object. The process of
executing a distributed k-NN query is shown in Fig. 3.

First, the driver program in the master node invokes the
kNNQuery(v, k) method on the DMTree object. This method
uses the Map transformation to map each MTree object in the
RDD[MTree] object inside the DMTree object to a Set[Vector]
object, which is the result of invoking the kNNQuery(v, k)
method on the MTree object.

Next, the driver program collects all Set[Vector] objects
from the worker nodes to the master node and unions them to
the final Set[Vector] object by using a Reduce action. On
Spark, the Reduce action is an action that collects data of an
RDD object from the worker nodes into the master node and
performs a function (such as sum, min, max, union…) on the
collected data set.

The final Set[Vector] object is sorted by distances in
ascending order. The final result is the top k vectors are
extracted from the final Set[Vector] object.

The process of executing a distributed k-NN query is
described in Algorithm 4.

Algorithm 4. Executing a distributed k-NN query.

- Function: executing a distributed k-NN query on a DMTree object.

- Input: 1) v: the querying vector. 2) k: the number of nearest

neighbors.

- Output: at most k vectors that are closest to v.

1. function kNNQuery(v: Vector, k: Integer): Set[Vector]{

2. map each MTree object in the RDD[MTree] object inside

the DMTree object to a Set[Vector] object, which is the result of

invoking the kNNQuery(v, r) method on the MTree object.

3. collect all Set[Vector] objects from the worker nodes.

4. union all Set[Vector] objects to the final Set[Vector] object.

5. sort the final Set[Vector] object by distances in ascending

order.

6. return the top k vectors in the final Set[Vector].

7. }

The distributed k-NN query problem is solved by
Algorithm 4 successfully, but there is still a drawback that
needs further improvement. That is, each MTree object returns
at most k vectors to the master node, n MTree objects will
return at most () vectors to the master node. Because the
master node only extracts the top k vectors, there are a lot of
vectors received by the master node but not used. This
increases the data traffic transferred from the worker nodes to
the master node, decreasing the performance of the algorithm.
However, overcoming this weakness is not easy. We need to
research further in the future.

E. Executing a Distributed Range Query

A distributed range query is a range query running on a
Spark cluster based on a DMTree object. The process of
executing a distributed range query is shown in Fig. 4.

First, the driver program in the master node invokes the
rangeQuery(v, r) method on the DMTree object. This method
uses the Map transformation to map each MTree object in the

RDD[MTree] object inside the DMTree object to a Set[Vector]
object, which is the result of invoking the rangeQuery(v, r)
method on the MTree object.

Next, the driver program collects all Set[Vector] objects
from the worker nodes to the master node and unions them to
the final Set[Vector] object by using a Reduce action.

The final Set[Vector] object is sorted by distances in
ascending order for ease of observation. The final result is the
final Set[Vector] object.

The process of executing a distributed range query is
described in Algorithm 5.

Algorithm 5. Executing a distributed range query.

- Function: executing a distributed range query on a DMTree object.

- Input: 1) v: the querying vector. 2) r: the radius.

- Output: a set of vectors such that the distances from v to them less than or

equal to r.

1. function rangeQuery(v: Vector, r: Double): Set[Vector]{

2. map each MTree object in the RDD[MTree] object inside the

DMTree object to a Set[Vector] object, which is the result of invoking

the rangeQuery(v, r) method on the MTree object.

3. collect all Set[Vector] objects from the worker nodes.

4. union all Set[Vector] objects to the final Set[Vector] object.

5. sort the final Set[Vector] object by distances in ascending order.

6. return the final Set[Vector].

7. }

Fig. 3. The Process of Executing a Distributed k-NN Query.

Fig. 4. The Process of Executing a Distributed Range Query.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

643 | P a g e

www.ijacsa.thesai.org

V. EXPERIMENTS

In this section, we show the experimental results of MTree
and DMTree objects. We use Yago Knowledge Base [16],
downloaded from the Max Planck Institute for Informatics
website [12], to make data for experiments. At first, we build
knowledge graphs from downloaded triples, then create 64-
dimensional vector sets from the knowledge graphs by using
the graph embedding technique. The following are details of
the experiments.

A. Experiments on MTree Objects

In order to perform experiments on the MTree objects, we
use one computer with configuration as the following:

 Processor: Intel(R) Core™ i5-6500 CPU @ 3.20GHz
3.20GHz

 RAM: 16.0 GB

We perform experiments on 64-dimensional vector sets.
We create MTree objects with C = 1,000 from these vector
sets. Table III shows experimental results (in seconds) of 4
functions:

 Building and Storing MTrees: includes building MTree
objects in computer memory from vector sets stored in
local files and storing the MTree objects into local files
for reusing later.

 Rebuilding MTrees: rebuilds MTree objects from local
files.

 Executing k-NN Queries: executes k-NN queries on
MTree objects.

 Executing Range Queries: executes range queries on
MTree objects.

We only conduct experiments of up to 2,000,000 vectors
because if we experiment on larger vector sets that will exceed
the capabilities of our computer.

Fig. 5 shows the chart that compares the time (in seconds)
of building + storing and rebuilding MTree objects. This chart
demonstrates that building and storing MTree objects to local
files is slower than rebuilding MTree objects from local files
into memory of the computer. Specifically, building and
storing the MTree object from a vector set of 2 million vectors
takes 128,10 seconds, on the contrary, rebuilding it takes 76,86
seconds.

Fig. 6 shows the chart that compares the time to execute k-
NN and range queries on the MTree objects. This chart
demonstrates that executing queries is quite fast and k-NN
queries are always slower than range queries. Specifically,
executing a k-NN query on the MTree object of 2 million
vectors takes 7.82 seconds, while executing a range query on
the same MTree object takes 5.65 seconds only.

B. Experiments on DMTree Objects

In order to perform experiments on DMTree objects, we
built a Spark cluster includes 16 computers. Where one
computer is both a master node and a worker node (For
simplicity, we refer this computer as the master node), and

fifteen computers work as worker node only (Similarly, we
refer these computers as the worker nodes). The configuration
of the master node as the following:

 Processor: Intel(R) Core™ i5-6500 CPU @ 3.20GHz
3.20GHz

 RAM: 16.0 GB

And the configuration of the worker nodes as the
following:

 Processor: Intel(R) Core™ i5-6500 CPU @ 3.20GHz
3.20GHz

 RAM: 8.0 GB

TABLE III. EXPERIMENTAL RESULTS (IN SECONDS) ON MTREE OBJECTS

Vector

Sets

Building

and Storing

MTrees

Rebuilding

MTrees

Executing

k-NN

Queries

Executing

Range

Queries

 0.1 m 56.68 34.01 0.26 0.27

 0.2 m 58.09 34.85 0.53 0.48

 0.3 m 60.52 36.31 0.99 0.76

 0.4 m 65.13 40.68 1.34 1.02

 0.5 m 69.98 44.39 1.71 1.34

 0.6 m 75.09 45.05 1.88 1.63

 0.7 m 77.78 46.67 2.36 1.87

 0.8 m 81.06 48.64 2.50 2.16

 0.9 m 86.91 52.14 2.85 2.46

 1.0 m 91.84 55.10 3.19 2.81

 1.1 m 97.35 58.41 3.84 3.00

 1.2 m 102.28 61.37 3.86 3.29

 1.3 m 104.05 63.83 4.57 3.63

 1.4 m 110.41 66.24 4.62 3.90

 1.5 m 112.59 67.56 5.61 4.19

 1.6 m 114.30 68.58 5.57 4.62

 1.7 m 116.53 69.92 5.76 4.83

 1.8 m 118.34 71.00 6.22 5.23

 1.9 m 123.27 73.96 6.62 5.54

 2.0 m 128.10 76.86 7.82 5.65

Fig. 5. The Comparison of the Time (in Seconds) of Building + Storing and

Rebuilding MTree Objects.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

644 | P a g e

www.ijacsa.thesai.org

Fig. 6. The Comparison of the Time (in Seconds) of Executing k-NN and

Range Queries on the MTree Objects.

Fig. 7 shows the architecture of our Spark cluster. Where:

 Master Node: is a computer running main programs,
sending code to the worker nodes to execute in parallel,
and collecting the results.

 Worker Node: is a computer participating in processing
requests of the master node.

 Cluster Manager: is a component allocating resources
across applications.

The software installed on our Spark cluster as showed in
Table IV.

Similar to the experiments on MTree objects, we perform
experiments on 64-dimensional vector sets also. We create
DMTree objects with C = 1,000 from these vector sets.
Table V shows experimental results (in seconds) of four
functions:

 Building and Storing DMTrees: includes building
DMTree objects in the Spark cluster from vector sets
stored in distributed files and storing the DMTree
objects into distributed files for reusing later.

 Rebuilding DMTrees: rebuilds DMTree objects from
distributed files in the Spark cluster.

 Executing Distributed k-NN Queries: executes k-NN
queries on DMTree objects.

 Executing Distributed Range Queries: executes range
queries on DMTree objects.

Fig. 8 is the chart that compares the time (in seconds) of
building + storing and rebuilding DMTree objects. This chart
demonstrates that building and storing DMTree objects is quite
slow. However, loading DMTree objects from HDFS into the
Spark cluster is much faster. Specifically, creating and storing
the DMTree object from a vector set of 6 million vectors takes
98.06 seconds, while rebuilding this DMTree object takes
25.88 seconds only.

Fig. 9 is a chart comparing the time to execute distributed
k-NN queries and distributed range queries on DMTree
objects. This chart demonstrates that the execution of queries is

quite fast, and distributed k-NN queries are always slower than
distributed range queries. Specifically, executing a distributed
k-NN query on the DMTree object of 6 million vectors takes
6.48 seconds, while executing a distributed range query on this
DMTree object only takes 5.19 seconds.

Fig. 7. The Architecture of our Spark Cluster.

TABLE IV. SOFTWARE IS INSTALLED ON OUR SPARK CLUSTER

Software Version

Operating System Ubuntu 18.04

Java OpenJDK version 1.8.0_222

Scala Version 2.11.12

Apache Hadoop Apache Hadoop 2.8.5

Apache Spark Apache Spark 2.4.4

TABLE V. EXPERIMENTAL RESULTS (IN SECONDS) ON DMTREE OBJECTS

Vect

or

Sets

Building and

Storing

DMTrees

Rebuilding

DMTrees

Executing

Distributed k-

NN Queries

Executing

Distributed

Range Queries

1 m 18.38 2.66 2.11 1.27

2 m 21.92 5.59 2.84 1.65

3 m 28.25 9.09 3.72 2.74

4 m 41.21 12.00 4.77 3.22

5 m 69.95 18.25 5.12 3.85

6 m 98.06 25.88 6.48 5.19

Fig. 8. The Time Comparison of Creating + Storing and Loading DMTree

Objects.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

645 | P a g e

www.ijacsa.thesai.org

Fig. 9. The Time Comparison of Executing Distributed Queries on DMTree

Objects.

It is also important to note that if we use MTree objects on
one machine, we can only index vector sets of up to 2 million
vectors; but when using DMTree objects on the Spark cluster,
we can index much larger vector sets. This proves the
limitations of the MTree structure and outstanding ability of
the DMTree structure.

VI. CONCLUSION AND FUTURE WORKS

The MTree structure is a technique of indexing vector sets.
We can solve effectively the problems of finding similarities
(for example k-NN and range queries) in vector sets by using
the MTree structure. However, for large vector sets, vectors are
distributed across multiple computers, the MTree structure fails
to index them. In order to overcome this drawback of the
MTree structure, we extended the MTree structure to build the
DMTree structure on the Spark cluster. We also perform
experiments on both the structures to prove that the
performance of the DMTree structure is better than that of the
MTree structure.

Through the research process, we draw some advantages
and disadvantages of the DMTree structure as follows.

Advantages:

 Take time to create the DMTree structure once, but it
can be reused many times.

 Allow adding or removing entries to/from the DMTree
structure without having to rebuild it.

 Help executing the k-NN query and the range query in
large vector sets effectively.

Disadvantages:

 Implementing the DMTree structure is quite
complicated.

 The MTree structure contains data in nodes that make
the size of the MTree structure quite large, resulting in a
large size of the DMTree structure.

 Finding similarities in large vector sets is still a bit slow
due to the large cost of communication between the
master node and the worker nodes.

In the near future, we will continue our research to reduce
the DMTree structure and decrease communication costs
between the master node and the worker nodes for improving
the performance of finding similarities in large vector sets.

ACKNOWLEDGMENT

This research is funded by Vietnam National University Ho
Chi Minh City (VNU-HCMC) under the grant number
DS2020-26-01.

REFERENCES

[1] P. Goyal and E. Ferrara, “Graph embedding techniques, applications, and
performance: A survey,” Knowledge-Based Syst., 2018.

[2] H. Cai, V. W. Zheng, and K. C. C. Chang, “A Comprehensive Survey of
Graph Embedding: Problems, Techniques, and Applications,” IEEE
Trans. Knowl. Data Eng., 2018.

[3] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for
networks,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.,
vol. 13-17-Augu, pp. 855–864, 2016.

[4] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of
Word Representations in Vector set,” ArXiv, pp. 1–12, 2013.

[5] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” 31st Int. Conf. Mach. Learn. ICML 2014, vol. 4, pp. 2931–
2939, 2014.

[6] P. Ciaccia, M. Patella, and P. Zezula, “MTree: An efficient access method
for similarity search in metric spaces,” in Proceedings of the 23rd
International Conference on Very Large Databases, VLDB 1997, 1997.

[7] T. Bozkaya and M. Ozsoyoglu, “Indexing Large Metric Spaces for
Similarity Search Queries,” ACM Trans. Database Syst., 1999.

[8] A. Vlachou, C. Doulkeridis, and Y. Kotidis, “Peer-to-peer similarity
search based on MTree indexing,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2010.

[9] Z. Kouahla, “Exploring intersection trees for indexing metric spaces,” in
CEUR Workshop Proceedings, 2011.

[10] J. P. Bachmann, “The SuperMTree: Indexing metric spaces with sized
objects,” ArXiv, pp. 1–14, 2019.

[11] P. Zezula, G. Amato, V. Dohnal, and M. Batko, “Similarity Search: The
Metric Space Approach,” Springer. 2006.

[12] “YAGO Homepage.” [Online]. Available: https://www.mpi-
inf.mpg.de/departments/databases-and-information-
systems/research/yago-naga/yago. [Accessed: 21-Jan-2019].

[13] “MTree Wikipedia.” [Online]. Available: https://en.wikipedia.org/wiki
/MTree. [Accessed: 15-Mar-2019].

[14] P. Zecevic and M. Bonaci, Spark in Action. Manning Publications Co,
2017.

[15] R. Kienzler, Mastering Apache Spark 2.x : Scalable analytics faster than
ever, vol. 22, no. S1. 2017.

[16] “YAGO (database) Wikipedia.” [Online]. Available: https://en.
wikipedia.org/wiki/YAGO_(database). [Accessed: 21-Jan-2019].

