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Abstract—In a vector set, to find similarities we will compute 

distances from the querying vector to all other vectors. On a 

large vector set, computing too many distances as above takes a 

lot of time. So we need to find a way to compute less distance and 

the MTree structure is the technique we need. The MTree 

structure is a technique of indexing vector sets based on a defined 

distance. We can solve effectively the problems of finding 

similarities by using the MTree structure. However, the MTree 

structure is built on one computer so the indexing power is 

limited. Today, large vector sets, not fit in one computer, are 

more and more. The MTree structure failed to index these large 

vector sets. Therefore, in this work, we present a novel indexing 

method, extended from the MTree structure, that can index large 

vector sets. Besides, we also perform experiments to prove the 

performance of this novel method. 

Keywords—MTree; DMTree; spark; distributed k-NN query; 

distributed range query 

I. INTRODUCTION 

In the real world, graph applications appear everywhere and 
graphs get bigger and bigger. Graph with millions, billions of 
vertices are very popular. However, applying of mathematical 
calculations and machine learning algorithms on graphs is 
limited and very difficult. Therefore, a new and promising 
graph processing technique, which is widely interested in 
research circles, is the graph embedding technique [1]–[3]. The 
graph embedding technology is developed based on word2vec 
technology [4][5]. Word2vec is a technology of mapping 
words to vectors. This technology has helped solve a series of 
Natural Language Processing problems with much greater 
accuracy than before. In the graph embedding, each vertex of a 
graph is mapped to a vector with 64, 128, 256... dimensions, 
each dimension is a real number. In order to preserve as much 
information as possible in the original graph, the greater is the 
number of dimensions of the vector set. Today, large graphs 
are very popular, so large vector sets are also very popular. 

On the other hand, to find similarities in vector sets, we 
must compute distances from the querying vector to all other 
vectors. In a large vector set, we cannot compute too many 
distances as above. Through the research process, we realize 
that the MTree structure is a technique of indexing vector sets 
based on a defined distance. Using the MTree structure, we can 
solve the problems of finding similarities effectively [6]. Since 

the MTree structure is only built on one computer, it can only 
index small vector sets, where all vectors can store into one 
computer. Today, large vector sets, where vectors are 
distributed in a computer cluster, are increasingly popular. The 
MTree structure fails to index these large vector sets. That is 
why in this work we build the distributed MTree structure 
(DMTree for short) by extending the MTree structure on 
Spark, a famous framework for distributed processing, for 
indexing large vector sets. Besides, we also perform 
experiments on both structures to prove that the performance of 
the DMTree structure is better than that of the MTree structure. 

The main contributions of our paper are as the following: 

 Proposing a method to build the DMTree structure to 
index large vector sets. 

 Using the DMTree structure for finding similarities in 
large vector sets. 

 Presenting experiments to prove that the DMTree 
structure is better than the MTree structure. 

There are six sections in this paper, including: 
I. Introduction, II. Related works, III. Preliminaries, 

IV. Methodology, V. Experiments, and VI. Conclusion and 
future works. 

II. RELATED WORKS 

Inspired by [6], there are many works on implementing, 
developing the MTree structure and other indexing structures. 

Author in [7] has proposed the MVPTree structure (the 
multi-vantage point tree structure) to partition vector sets. 
Experiments has performed to compare the MVPTree structure 
and the MTree structure. 

Author in [8] has built a framework for finding similarities, 
where data is indexed locally by using the MTree structure. 
This work has used a super-peer architecture, where super-
peers are responsible for query routing, for supporting 
scalability and efficiency of finding similarities. 

Author in [9] has researched a tree structure for indexing 
and querying data based on a metric. This work has also 
performed experiments to compare its method with others, 
such as the MMTree structure and the SliMTree structure. This 
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work has proposed a classification of indexing methods also. 

And most recently, [10] has built the SuperMTree structure 
by extending the MTree structure for indexing vector sets. This 
work has proposed a generalized concept of metric spaces that 
is metric subset spaces. Various metric distance functions can 
be extended to metric subset distance functions. 

Most of the previous works do not refer to indexing large 
vector sets, where vectors are distributed in a computer cluster, 
except [8]. However, [8] has built a new framework for finding 
similarities in a distributed manner. In this work, we will not 
create any framework, we only use Spark, which is the famous 
framework for distributed processing, to build the DMTree 
structure for indexing large vector sets effectively. 

III. PRELIMINARIES 

A. Similarity Query Definitions 

In vector sets, the common task is finding similarities. 
Specifically, we usually find k vectors closest to the querying 
vector; or find all vectors in the range of radius r, and the 
center is the querying vector. Those are the k-nearest neighbors 
query (k-NN query for short) and the range query [6][11]. The 
following are definitions of them. 

1) Definition 1. K-nearest neighbors query: Given a vector 

set  , a distance function  , a querying vector    , and an 

integer number    . The k-nearest neighbors query 

        (   ) selects   vectors in   that are closest to  . 

2) Definition 2. Range query: Given a vector set  , a 

distance function  , a querying vector    , and a radius  . 

The range query           (   ) selects all vectors    in   

such that  (    )   . 

B. The MTree Structure 

The MTree structure is a technique of indexing vector sets 
based on a defined distance function [6][13]. In terms of 
internal structure, it is a balanced tree but not require periodic 
rebuilding. 

A node of the MTree structure can contain at most C 
objects, C is called the capacity of nodes. The leaf nodes 
contain indexed objects. The rest nodes contain routing objects. 

The format of a routing object is as follows: 

[        (     
 
)    (  ) ] 

Where    represents the routing object;      is the 

covering radius of   ;  (     
 
) is the distance between    

and   
 

 which is the parent object of   ;    (  )  is the 
reference of subtree    which is the covering tree of   . 

The format of an indexed object    is as follows: 

      (     
 
)   

Where    represents the indexed object,  (     
 
)  is the 

distance between    and   
 
 which is the parent object of   . 

 Fig. 1 is an instance of the MTree structure with C = 3. 
This MTree structure includes: 

 Node 1 is the root node which contains two routing 

object    and   . 

 Node 2 and node 3 are the internal nodes. The internal 
nodes contain routing objects. For example, node 2 
contains two routing objects are    and   . In node 2, 
consider the routing object   ,                 (  )  ; 
3.5 is the covering radius of   ; 1.3 is the distance 
between    and    (in node 1) which is the parent 
object of   . 

 Node 4, 5, 6, 7, 8 are the leaf nodes. The leaf nodes 
contain indexed objects. For example, leaf node 4 
contains three indexed objects are       and   . In 
node 4, consider the indexed object              ; 2.5 is 
the distance between    and    (in node 2) which is the 
parent object of   . 

 

Fig. 1. An Instance of the MTree Structure with C = 3. 

Please refer [6][13] for more information about the MTree 
structure. 

IV. METHODOLOGY 

At first, we build the MTree structure running on one 
computer. After that, we extend the MTree structure to build 
the DMTree structure running on a Spark cluster consisting of 
multiple computers. We also perform many experiments on 
both structures to prove that the DMTree structure is better 
than the MTree structure. The following are details of our 
solution. 

A. Building a DMTree Object 

At first, we create the MTree class to represent the MTree 
structure based on [6][13]. The MTree class has the following 
important methods: 

 function insertObject(n: Node, v: Vector): locates the 
most suitable leaf node in the subtree of node n to store 
a new vector v. It is possible to trigger splitting the leaf 
node if the leaf node is full. This method is used to 
build an MTree object from a vector set. 

 function kNNQuery(v: Vector, k: Integer): Set[Vector]: 
executes a k-NN query and return k vectors that are 
closest to v. 

 function rangeQuery(v: Vector, r: Double): Set[Vector]: 
executes a range query and returns all vectors such that 
the distances from v to them less than or equal to r. 

Please refer [6][13] for more details of these methods. 

Next, we build the DMTree structure by defining the 
DMTree class based on the MTree class. A DMTree object 
includes a set of MTree objects built from a vector set. The 
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vector set is distributed in partitions of an RDD (Resilient 
Distributed Dataset), which is a fundamental data structure of 
Apache Spark and is a fault-tolerant collection of elements that 
can be operated on in parallel [14][15]. Properties and methods 
of the DMTree class are shown in TABLE I. and Table II. 

The process of building a DMTree object from a vector set 
is shown in Fig. 2. First, a vector set is loaded from distributed 
files into an RDD[Vector] object in a Spark cluster [14]. 
Second, a DMTree object is created. Then, using the Map 
transformation, which transforms an RDD[X] object to another 
RDD[Y] object in parallel (suppose that X and Y are data 
types), maps each partition of the RDD[Vector] object to an 
MTree object inside the DMTree object. The number of 
partitions of an RDD[Vector] object can be configured, so is 
the number of MTree objects of a DMTree object. The process 
of building a DMTree object from a vector set is described in 
Algorithm 1. 

TABLE I.  PROPERTIES OF THE DMTREE CLASS 

Properties Data Types Descriptions 

C Integer 

The capacity of DMTree objects. In essence, 

this property is the capacity of nodes of 

MTree objects inside a DMTree object. 

mtrees RDD[MTree] 
Containing an MTree object set inside a 

DMTree object.  

TABLE II.  METHODS OF THE DMTREE CLASS 

Methods Descriptions 

function build(path: String, C: Integer): DMTree 

 
Building a DMTree object with capacity C from distributed 

files that contain a vector set. 

function store(path: String, dmtree: DMTree) 

 Storing a DMTree object into distributed files. 

function rebuild(path: String): DMTree 

 
Rebuilding a DMTree object from distributed files that 

contain the DMTree object. 

function kNNQuery(v: Vector, k: Integer): Set[Vector] 

 Executing a distributed k-NN query. 

function rangeQuery(v: Vector, r: Double): Set[Vector] 

 Executing a distributed range query. 

 

Fig. 2. The Process of Building a DMTree Object from a Vector Set. 

Algorithm 1. Building a DMTree Object. 

- Function: building a DMTree object from a vector set in distributed 

files. 

- Input: 1) path: the path of the distributed files that contain the vector set. 

2) C: the capacity of the DMTree object. 

- Output: the DMTree object. 

1. function build(path: String, C: Integer): DMTree{ 

2.  load the vector set from the distributed files into an 

RDD[Vector] object. 

3.  create a new empty DMTree object with capacity C. 

4.  map each partion of the RDD[Vector] object to an MTree 

object in the RDD[MTree] object inside the DMTree object.  

5.  return the DMTree object. 

6. } 

B. Storing a DMTree Object into Distributed Files 

Because creating DMTree objects is quite time consuming, 
we will store DMTree objects for reuse later. A DMTree object 
can be very large, exceeding the capacity of a file in a local file 
system; so it must be stored in distributed files. Storing a 
DMTree object into distributed files is described in  
Algorithm 2. 

Algorithm 2. Storing a DMTree Object. 

- Function: storing a DMTree object into distributed files. 

- Input: 1) path: the path of the distributed files. 2) dmtree: the DMTree 

object will be stored in the distributed files. 

- Output: none. 

1. function store(path: String, dmtree: DMTree){ 

2.  store metadata (the capacity, number of MTree objects…) of 

the DMTree object. 

3.  map each MTree object in the RDD[MTree] object inside the 

DMTree object to a distributed file. 

4. } 

C. Rebuilding a DMTree object from Distributed Files 

When reusing a DMTree object previously stored, it can be 
rebuilt from distributed files. Since a DMTree object includes 
an MTree object set, each executor should load at least one 
MTree object for effective processing. Therefore, the number 
of MTree objects inside a DMTree object should be a multiple 
of the number of executors. The process of rebuilding a 
DMTree object from distributed files in a Spark cluster is 
described in Algorithm 3. 

Algorithm 3. Rebuilding a DMTree Object. 

- Function: rebuilding a DMTree object in a Spark cluster from 

distributed files that contain the DMTree object. 

- Input: 1) path: the path of the distributed files that contain the DMTree 

object. 

- Output: the DMTree object. 

1. function rebuild(path: String): DMTree{ 

2.  load metadata (the capacity, number of MTree objects…) of 

the DMTree object from the distributed file containing metadata. 

3.  create a new empty DMTree object with the capacity loaded. 

4.  load MTree objects from the distributed files into the 

RDD[MTree] object inside the DMTree object.  

5.  return the DMTree object. 

6. } 
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D. Executing a Distributed k-NN Query 

A distributed k-NN query is a k-NN query running on a 
Spark cluster based on a DMTree object. The process of 
executing a distributed k-NN query is shown in Fig. 3. 

First, the driver program in the master node invokes the 
kNNQuery(v, k) method on the DMTree object. This method 
uses the Map transformation to map each MTree object in the 
RDD[MTree] object inside the DMTree object to a Set[Vector] 
object, which is the result of invoking the kNNQuery(v, k) 
method on the MTree object. 

Next, the driver program collects all Set[Vector] objects 
from the worker nodes to the master node and unions them to 
the final Set[Vector] object by using a Reduce action. On 
Spark, the Reduce action is an action that collects data of an 
RDD object from the worker nodes into the master node and 
performs a function (such as sum, min, max, union…) on the 
collected data set. 

The final Set[Vector] object is sorted by distances in 
ascending order. The final result is the top k vectors are 
extracted from the final Set[Vector] object. 

The process of executing a distributed k-NN query is 
described in Algorithm 4. 

Algorithm 4. Executing a distributed k-NN query. 

- Function: executing a distributed k-NN query on a DMTree object. 

- Input: 1) v: the querying vector. 2) k: the number of nearest 

neighbors. 

- Output: at most k vectors that are closest to v. 

1. function kNNQuery(v: Vector, k: Integer): Set[Vector]{ 

2.  map each MTree object in the RDD[MTree] object inside 

the DMTree object to a Set[Vector] object, which is the result of 

invoking the kNNQuery(v, r) method on the MTree object. 

3.  collect all Set[Vector] objects from the worker nodes. 

4.  union all Set[Vector] objects to the final Set[Vector] object. 

5.  sort the final Set[Vector] object by distances in ascending 

order. 

6.  return the top k vectors in the final Set[Vector]. 

7. } 

The distributed k-NN query problem is solved by 
Algorithm 4 successfully, but there is still a drawback that 
needs further improvement. That is, each MTree object returns 
at most k vectors to the master node, n MTree objects will 
return at most (    ) vectors to the master node. Because the 
master node only extracts the top k vectors, there are a lot of 
vectors received by the master node but not used. This 
increases the data traffic transferred from the worker nodes to 
the master node, decreasing the performance of the algorithm. 
However, overcoming this weakness is not easy. We need to 
research further in the future. 

E. Executing a Distributed Range Query 

A distributed range query is a range query running on a 
Spark cluster based on a DMTree object. The process of 
executing a distributed range query is shown in Fig. 4. 

First, the driver program in the master node invokes the 
rangeQuery(v, r) method on the DMTree object. This method 
uses the Map transformation to map each MTree object in the 

RDD[MTree] object inside the DMTree object to a Set[Vector] 
object, which is the result of invoking the rangeQuery(v, r) 
method on the MTree object. 

Next, the driver program collects all Set[Vector] objects 
from the worker nodes to the master node and unions them to 
the final Set[Vector] object by using a Reduce action. 

The final Set[Vector] object is sorted by distances in 
ascending order for ease of observation. The final result is the 
final Set[Vector] object. 

The process of executing a distributed range query is 
described in Algorithm 5. 

Algorithm 5. Executing a distributed range query. 

- Function: executing a distributed range query on a DMTree object. 

- Input: 1) v: the querying vector. 2) r: the radius. 

- Output: a set of vectors such that the distances from v to them less than or 

equal to r. 

1. function rangeQuery(v: Vector, r: Double): Set[Vector]{ 

2.  map each MTree object in the RDD[MTree] object inside the 

DMTree object to a Set[Vector] object, which is the result of invoking 

the rangeQuery(v, r) method on the MTree object. 

3.  collect all Set[Vector] objects from the worker nodes. 

4.  union all Set[Vector] objects to the final Set[Vector] object. 

5.  sort the final Set[Vector] object by distances in ascending order. 

6.  return the final Set[Vector]. 

7. } 

 

Fig. 3. The Process of Executing a Distributed k-NN Query. 

 

Fig. 4. The Process of Executing a Distributed Range Query. 
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V. EXPERIMENTS 

In this section, we show the experimental results of MTree 
and DMTree objects. We use Yago Knowledge Base [16], 
downloaded from the Max Planck Institute for Informatics 
website [12], to make data for experiments. At first, we build 
knowledge graphs from downloaded triples, then create 64-
dimensional vector sets from the knowledge graphs by using 
the graph embedding technique. The following are details of 
the experiments. 

A. Experiments on MTree Objects 

In order to perform experiments on the MTree objects, we 
use one computer with configuration as the following: 

 Processor: Intel(R) Core™ i5-6500 CPU @ 3.20GHz 
3.20GHz 

 RAM: 16.0 GB 

We perform experiments on 64-dimensional vector sets. 
We create MTree objects with C = 1,000 from these vector 
sets. Table III shows experimental results (in seconds) of 4 
functions: 

 Building and Storing MTrees: includes building MTree 
objects in computer memory from vector sets stored in 
local files and storing the MTree objects into local files 
for reusing later. 

 Rebuilding MTrees: rebuilds MTree objects from local 
files. 

 Executing k-NN Queries: executes k-NN queries on 
MTree objects. 

 Executing Range Queries: executes range queries on 
MTree objects. 

We only conduct experiments of up to 2,000,000 vectors 
because if we experiment on larger vector sets that will exceed 
the capabilities of our computer. 

Fig. 5 shows the chart that compares the time (in seconds) 
of building + storing and rebuilding MTree objects. This chart 
demonstrates that building and storing MTree objects to local 
files is slower than rebuilding MTree objects from local files 
into memory of the computer. Specifically, building and 
storing the MTree object from a vector set of 2 million vectors 
takes 128,10 seconds, on the contrary, rebuilding it takes 76,86 
seconds. 

Fig. 6 shows the chart that compares the time to execute k-
NN and range queries on the MTree objects. This chart 
demonstrates that executing queries is quite fast and k-NN 
queries are always slower than range queries. Specifically, 
executing a k-NN query on the MTree object of 2 million 
vectors takes 7.82 seconds, while executing a range query on 
the same MTree object takes 5.65 seconds only. 

B. Experiments on DMTree Objects 

In order to perform experiments on DMTree objects, we 
built a Spark cluster includes 16 computers. Where one 
computer is both a master node and a worker node (For 
simplicity, we refer this computer as the master node), and 

fifteen computers work as worker node only (Similarly, we 
refer these computers as the worker nodes). The configuration 
of the master node as the following: 

 Processor: Intel(R) Core™ i5-6500 CPU @ 3.20GHz 
3.20GHz 

 RAM: 16.0 GB 

And the configuration of the worker nodes as the 
following: 

 Processor: Intel(R) Core™ i5-6500 CPU @ 3.20GHz 
3.20GHz 

 RAM: 8.0 GB 

TABLE III.  EXPERIMENTAL RESULTS (IN SECONDS) ON MTREE OBJECTS 

Vector 

Sets 

Building 

and Storing 

MTrees 

Rebuilding 

MTrees 

Executing 

k-NN 

Queries 

Executing 

Range  

Queries 

 0.1 m  56.68 34.01 0.26 0.27 

 0.2 m  58.09 34.85 0.53 0.48 

 0.3 m  60.52 36.31 0.99 0.76 

 0.4 m  65.13 40.68 1.34 1.02 

 0.5 m  69.98 44.39 1.71 1.34 

 0.6 m  75.09 45.05 1.88 1.63 

 0.7 m  77.78 46.67 2.36 1.87 

 0.8 m  81.06 48.64 2.50 2.16 

 0.9 m  86.91 52.14 2.85 2.46 

 1.0 m  91.84 55.10 3.19 2.81 

 1.1 m  97.35 58.41 3.84 3.00 

 1.2 m  102.28 61.37 3.86 3.29 

 1.3 m  104.05 63.83 4.57 3.63 

 1.4 m  110.41 66.24 4.62 3.90 

 1.5 m  112.59 67.56 5.61 4.19 

 1.6 m  114.30 68.58 5.57 4.62 

 1.7 m  116.53 69.92 5.76 4.83 

 1.8 m  118.34 71.00 6.22 5.23 

 1.9 m  123.27 73.96 6.62 5.54 

 2.0 m  128.10 76.86 7.82 5.65 

 

Fig. 5. The Comparison of the Time (in Seconds) of Building + Storing and 

Rebuilding MTree Objects. 
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Fig. 6. The Comparison of the Time (in Seconds) of Executing k-NN and 

Range Queries on the MTree Objects. 

Fig. 7 shows the architecture of our Spark cluster. Where: 

 Master Node: is a computer running main programs, 
sending code to the worker nodes to execute in parallel, 
and collecting the results. 

 Worker Node: is a computer participating in processing 
requests of the master node. 

 Cluster Manager: is a component allocating resources 
across applications. 

The software installed on our Spark cluster as showed in 
Table IV. 

Similar to the experiments on MTree objects, we perform 
experiments on 64-dimensional vector sets also. We create 
DMTree objects with C = 1,000 from these vector sets. 
Table V shows experimental results (in seconds) of four 
functions: 

 Building and Storing DMTrees: includes building 
DMTree objects in the Spark cluster from vector sets 
stored in distributed files and storing the DMTree 
objects into distributed files for reusing later. 

 Rebuilding DMTrees: rebuilds DMTree objects from 
distributed files in the Spark cluster. 

 Executing Distributed k-NN Queries: executes k-NN 
queries on DMTree objects. 

 Executing Distributed Range Queries: executes range 
queries on DMTree objects. 

Fig. 8 is the chart that compares the time (in seconds) of 
building + storing and rebuilding DMTree objects. This chart 
demonstrates that building and storing DMTree objects is quite 
slow. However, loading DMTree objects from HDFS into the 
Spark cluster is much faster. Specifically, creating and storing 
the DMTree object from a vector set of 6 million vectors takes 
98.06 seconds, while rebuilding this DMTree object takes 
25.88 seconds only. 

Fig. 9 is a chart comparing the time to execute distributed 
k-NN queries and distributed range queries on DMTree 
objects. This chart demonstrates that the execution of queries is 

quite fast, and distributed k-NN queries are always slower than 
distributed range queries. Specifically, executing a distributed 
k-NN query on the DMTree object of 6 million vectors takes 
6.48 seconds, while executing a distributed range query on this 
DMTree object only takes 5.19 seconds. 

 

Fig. 7. The Architecture of our Spark Cluster. 

TABLE IV.  SOFTWARE IS INSTALLED ON OUR SPARK CLUSTER 

Software Version 

Operating System Ubuntu 18.04 

Java OpenJDK version 1.8.0_222 

Scala Version 2.11.12 

Apache Hadoop Apache Hadoop 2.8.5 

Apache Spark Apache Spark 2.4.4 

TABLE V.  EXPERIMENTAL RESULTS (IN SECONDS) ON DMTREE OBJECTS 

Vect

or 

Sets 

Building and 

Storing 

DMTrees 

Rebuilding 

DMTrees 

Executing 

Distributed k-

NN Queries 

Executing 

Distributed 

Range Queries 

1 m 18.38 2.66 2.11 1.27 

2 m 21.92 5.59 2.84 1.65 

3 m 28.25 9.09 3.72 2.74 

4 m 41.21 12.00 4.77 3.22 

5 m 69.95 18.25 5.12 3.85 

6 m 98.06 25.88 6.48 5.19 

 

Fig. 8. The Time Comparison of Creating + Storing and Loading DMTree 

Objects. 
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Fig. 9. The Time Comparison of Executing Distributed Queries on DMTree 

Objects. 

It is also important to note that if we use MTree objects on 
one machine, we can only index vector sets of up to 2 million 
vectors; but when using DMTree objects on the Spark cluster, 
we can index much larger vector sets. This proves the 
limitations of the MTree structure and outstanding ability of 
the DMTree structure. 

VI. CONCLUSION AND FUTURE WORKS 

The MTree structure is a technique of indexing vector sets. 
We can solve effectively the problems of finding similarities 
(for example k-NN and range queries) in vector sets by using 
the MTree structure. However, for large vector sets, vectors are 
distributed across multiple computers, the MTree structure fails 
to index them. In order to overcome this drawback of the 
MTree structure, we extended the MTree structure to build the 
DMTree structure on the Spark cluster. We also perform 
experiments on both the structures to prove that the 
performance of the DMTree structure is better than that of the 
MTree structure. 

Through the research process, we draw some advantages 
and disadvantages of the DMTree structure as follows. 

Advantages: 

 Take time to create the DMTree structure once, but it 
can be reused many times. 

 Allow adding or removing entries to/from the DMTree 
structure without having to rebuild it. 

 Help executing the k-NN query and the range query in 
large vector sets effectively. 

Disadvantages: 

 Implementing the DMTree structure is quite 
complicated. 

 The MTree structure contains data in nodes that make 
the size of the MTree structure quite large, resulting in a 
large size of the DMTree structure. 

 Finding similarities in large vector sets is still a bit slow 
due to the large cost of communication between the 
master node and the worker nodes. 

In the near future, we will continue our research to reduce 
the DMTree structure and decrease communication costs 
between the master node and the worker nodes for improving 
the performance of finding similarities in large vector sets. 
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