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Abstract—Hand gestures with finger relationships are among
the toughest features to extract for machine recognition. In
this paper, this particular research challenge is addressed with
3D hand joint features extracted from distance measurements
which are then colour mapped as spatio temporal features.
Further patterns are learned using an 8-layer convolutional
neural network (CNN) to estimate the hand gesture. The results
showed a higher degree of recognition accuracy when compared
to similar 3D hand gesture methods. The recognition accuracy
for our dataset KL 3DHG with 220 classes was around 94.32%.
Robustness of the proposed method was validated with only
available benchmark 3D skeletal hand gesture dataset DGH 14/28.

Keywords—Gesture recognition; 3D motion capture; deep learn-
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I. INTRODUCTION

Hand gestures were considered to be one of the most
powerful form of communication known to humans. It has
evolved with the progression of generations which has now
been regarded as the formidable communication between hu-
mans and machines. Hand gestures have now become a part
of natural language processing in the current scenario. Hence,
hand gestures have become an increasingly important part of
human computer interaction (HCI) [1].

There are only three sensors that are exclusively available
for capturing 3D hand and fingers. They are Kinect [2], leap
motion [3] and Time of Flight (ToF) [4] sensors. Kinect 2 has
the capabilities to capture fingers abstractly though noticeably
imperfect at times. Leap motion is a good choice for hand
capture but the factors for quality depends on the precision
movements on the sensor, which at times attracts failures.
The ToF sensor reconstructs 3D images from time series data
captured by the sensors which however are quite complex
to effectively predict hand gestures. Apart from the above,
the most popular currently are based on 3D depth sensing
technologies [5].

The depth-based hand gestures used 3D modelling for
finger relationships for recognition [6]. Moreover, to 3D hand
gesture recognition has been the most sought after for its
challenging nature. Recent studies point towards static, tra-
jectory and continuous 3D hand gesture recognition for many
applications such as human robot interaction, daily assistance,
gaming and sign language recognition [7].

In contrast to the above sensors for 3D hand capture, we
propose a 3D motion capture technology-based hand gesture
recognition. In this work, we used an 8-camera motion capture

technology to extract hand gestures for representation of Indian
sign language. Here 3D hand gestures are Modelled as a time
series 3D joints on the hands. Two hands are used in cohesion
as against the existing separation techniques.

The 3D hand joint across frames is Modelled as a time
series position vectors that change over frames. This data
from all 3D joints is converted into a spatio temporal image
representing the varying hand gestures. Hence, the 3D hand
gesture recognition problem translates into a spatio temporal
RGB image recognition problem. This RGB image recognition
problem is handled efficiently using deep networks. An 8-
layer CNN is built for this purpose which is based on VGG-
16 architecture. However, these networks showed resistance
to inter hand variations which resulted in non-discriminatory
features at the end of the network. In this work, we propose a
multi layered CNN network that preserves the long-term spa-
tial relationships among actions thus generating discriminatory
features that facilitate better performance.

To test the proposed multi layered CNN architecture, we
intend to use our own 3D hand gesture dataset (KL 3DHG)
in skeletal form along with only available skeletal DGH 14/18
[8]. The rest of the paper is organized as follows. Section 2 de-
scribes the literature review related to the proposed framework.
Section 3 gives the methodology of the proposed framework
that has been followed for 3D hand gesture recognition. It is
then followed by results and discussion in Section 4. Finally,
Section 5 concludes the work.

II. LITERATURE REVIEW

Hand gestures are an important part of human commu-
nication. It’s classified as a natural language processing tool
when comes to interactions between humans and machines.
Numerous studies have been successfully conducted in the
last few decades to develop a framework for hand recognition
using multiple sensors for data capturing with subsequent
experimentation to improve recognition performances. This
section describes the methods and their findings with gaps
towards development of a 3D hand gesture recognition system.

Hand gesture recognition has been attempted visually
through video data captured using 2D sensors. However, the
operations on this 2D video data has been a series of steps such
as pre-processing, segmentation, feature extraction and finally
classification [7], [9]. Consequently, the methods used have
generated interest mildly, but could not create an impact on
the applications related to 3D hand gestures. The underlying
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reason for poor performance lies in the input sensors ability
to capture real time hand gestures effectively [10].

Consequently, sensors such as Kinect and ToF were in-
strumental in capturing 3D human hand gesture recognition to
a new dimension involving depth and skeletal data [11]. The
3D hand gestures recognition problem has been approached
in two ways: 1) Static hand poses and 2) Dynamic poses.
The static 3D hand shapes are represented as original 3D
depth data or using some transform domain data. The 3D
hand features are projected as a pixel wise depth features in
different hand positions accounting for a large feature space
with computational complexities in [12]. In contrast, ensemble
of shape function has been proposed to represent 3D shapes
as a point cloud which greatly reduced feature space [13].
Apart from spatial domain, the transform domain used Haar
[14], Gabor [15], invariant moments [16] as features to model
intensity and orientation of 3D hand shapes.

More efficient methods were proposed for representing 3D
hand gestures using histogram of 3D Facets as features that
modelled surfaces on 3D point clouds [17]. However, the most
successful features were SIFT [18], SURF [19] and BOW [20]
which achieved highest classification accuracies on a large
contingent of classifiers. Moreover, the hybrid features such as
bag of words (BoW) has improved the performance of the 3D
hand gesture recognition methods effectively. Apart from BoW,
other hybrid methods that have shown promising improvement
in the recognition accuracies are feature fusion [21] and sensor
fusion methods [22]. After feature extraction, an efficient
classifier is necessary for producing highly accurate 3D hand
gesture recognition. The most widely employed classifiers for
3D static hand gesture recognition are, support vector machines
(SVM), artificial neural networks (ANN), random forests (RF)
and template matching (TM) [5].

However, dynamic hand gestures were a set of time varying
hand representations which need trajectories and orientations
for efficient recognition. Two most exclusively used methods
for dynamic hand recognition are hidden Markova models
(HMM) [23] and dynamic time warping [24]. Besides the
above models for continuous 3D hand gesture recognition,
condition random fields (CRF) [25] and windowed DTW [26]
has proved to achieve higher accuracies.

In the last couple of years, the hand gesture recognition has
shifted gears to accommodate real time application capabilities
using deep learning models. The most widely employed deep
learning model being convolutional neural network (CNN) [27]
for 3D human action recognition. Deep learning has been
popular on 2D hand gesture video data with 3D CNNs at the
learning core to estimate gestures [28]. These are two stream
models that are quite popular than the single stream methods.
Depth and skeletal data were being exploited simultaneously
for recognition with multi stream CNNs [8]. The SoftMax
scores from skeletal and depth stream are fused together to
generate a class score. However, the most challenging dataset
for 3D hand recognition has been the skeletal data. This is due
to joint occlusions and overlapping that are hard to analyse on
the CNN [29], [30]. Moreover, these methods directly operate
on the raw positional vectors as inputs to the CNNs. The results
point to a poor recognition accuracy due to inconsistences in
the data during the signing process with joint many possible
joint interactions.

Apart from CNNs, other deep learning methods used for
3D skeletal hand recognition are memory based deep learning
architectures called recurring neural networks (RNNs) and its
derived models such as Long Short-Term Memory (LSTMs).
The most accurate are a mixture of both spatial and temporal
feature learning models that used CNNs for spatial features
and RNNs or LSTMs for temporal features. The Recurrent
CNN (R-CNN) [31] used 3D convolutional neural networks to
extract spatial features which are learned in time by RNNs
to generate a complete spatio temporal learning. However,
RNNs are slow and could not handle long sequence of data
streams making them sluggish for real time operation. These
shortcomings were handled efficiently by using long short term
memory networks (LSTMs) and there are a multitude of CNN
– LSTM [32], [33], [34] combinations with different network
architectures that have shown their might in learning spatio
temporal features in 3D hand gesture recognition. The sad part
is that these hybrid recurrent CNNs are not end – to – end
trainable, which limits their capacity for real time modelling.
The solution is to develop a complete spatio temporal features
which represent spatial and time series variations in 3D hand
gestures.

This is however is managed effectively by extracting fea-
tures on the raw time series positional data as motion maps
[35]. The problems in raw 3D joint data has been effectively
regulated by transforming the joint time series positional data
into spatio temporal feature maps such as joint distance maps
(JDMs) [36], joint angular displacement maps (JADMs) [37],
joint velocity maps (JVM) [38], joint quad maps (JQM) [39]
and joint trajectory maps (JTM) [40]. There are joint surface
maps and joint acceleration maps [36] proposed on skeletal
data. All the coded maps represent spatio temporal information
in the joints with a colour coded image maps which can be
effectively learned by a deep convolutional neural network.
The key objectives of this work are

1) To generate a 3D hand skeletal dataset with 36 joints
on both hands using 3D motion capture technology,
which is first of its kind dataset with highest number
of joint representations.

2) To extract features from the 3D skeletal hand gesture
data for characterizing then using a maximally dis-
criminant spatio temporal colour coded feature maps.

3) To design and train an end – to – end deep learning
model to learn the 3D gesture characterizations from
spatio temporal maps to accurately recognize gestures
of Indian sign language.

The proposed work is different from the existing 3D hand
recognition models in three aspects:

1) Most joints on the hands till now for modelling
accurately the real time 3D hand motions.

2) A colour coded feature map to characterize the spatio
temporal variations in the 3D hand skeletal data,
which have not been explore fully for hand gesture
recognition.

3) A fast training CNN architecture which can estimate
gestures accurately on the proposed features.

The following section describes in detail the methodology
for 3D hand gesture recognition framework with datasets, maps
creation and CNN operation.
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III. PROPOSED METHODOLOGY

The section presents a detailed description of the methods
used in 3D hand gesture recognition with deep CNNs. The
3D data describes the hand to hand communication in Indian
sign language. The data is captured using 3D motion capture
system with 8 cameras. The captured 3D data is a time
series representations of hand joints as shown in Fig. 1.
Consequently, joint distance features of hands are computed
which are then transformed into spatio temporal RGB images.
Finally, a deep CNN is inputted with these images to estimate
a class label pertaining to the sign. This section contains
information regarding 3D hand gesture datasets, joint distance
measurements, colour coding joint distance to features, CNN
training and testing procedures.

Fig. 1. 3D motion capture system for hand gesture capture

A. 3D Hand Gesture Datasets

The 3D hand gesture skeletal data for sign language is the
most complex dataset and hence a challenging task to learn
features for recognition. Since Indian sign language is a two-
hand system, both hands are used in this work to generate data.
Each hand is marked with 18 joints, taking the total number of
joints in both hands to 36. This is currently the highest number
of joint representations for 3D hand gesture recognition in sign
language application. The recorded 3D data gives positional
information of each of the finger joints individually with in
a video frame. For a particular sign these 3D hand joints are
variable across frames in a video sequence.

The time series 3D positional values of hand joints rep-
resent a spatio temporal information of a particular class of
signs. To construct an entire dataset for training and testing the
proposed CNN, we capture 220 sign classes with 10 subjects
in 4 views. Fig. 2 shows 3D hand gesture of Indian sign
language. Each 3D video frame is recorded for 280 frames,
which is considered as a hyper parameter for optimal capture
of all signs. A total of 220× 280× 10× 4× 3 = 73, 92, 000
2D tensors or 24,64,000 3D video frames are available for
processing by the proposed CNN.

Apart from our 3D hand gesture datasets (KL 3DHG),
we test the proposed network on benchmark skeletal dataset
captured using Intel’s real sense technology is DGH 14/28

Fig. 2. 3D Hand gestures for Indian sign language

[8]. This is the only skeletal dataset that is available for hand
gesture recognition. It consists of 22 joints in a single hand
pose to record 3D skeletal data. The system has a resolution of
640× 480 and captures hand poses at 30fps. Each 3D skeletal
video in the dataset has 20 to 50 frames per gesture. There are
around 2800 samples with 14 or 28 class labels in the DGH
14/28 hand gesture dataset. Comparatively, our KL 3DHG
is quite advanced than the DGH dataset with highest sign
gestures with full HD resolution with a recording frame rate of
120fps. Our dataset has a greater number of frames per class
than the DGH 14/28 dataset. Next section presents the feature
calculation and colour coded map generation.

B. JRDM Feature Calculations

Inspired from the methods in [27], [35], [36], [37], [38],
[39], [40], we propose to calculate joint relational distance
maps (JRDM) between the two hands separately and combine
them into a single mapping entity. Here, we calculate joint
distances of each hand separately in each frame and further
calculate the distance between the two hands from the dis-
tances of individual distances of corresponding joint pairs. This
JRDM is calculated between joint distance of paired joints on
individual hands.

The location pi of the joint J can be represented in 3D
space using 3D coordinates as pi (xi, yi, zi)∀i = 1 to J ∈
R3×J . We then have the combined position vector for the
full set of J joints on a N-frame hand sign can therefore be
expressed as Sh = {p1, p2, ...., pN} ∀RJ×3×N , where h is the
hand pointer which takes two variables such as l for left and
r for right hand. The intra frame hand distances between ith

and jth joint is

dnij h =
∥∥Pn

ih − Pn
jh

∥∥
2

(1)

For left hand pair (i, j), the distance becomes dnij l and it
is dnij r for right hand in the nth video frame, respectively.
The two-hand joint relative distance (JRD) that gives the
relationship between hands is formulated as

Dn
ij =

∥∥dnij l − dnij r

∥∥
2

(2)

Where Dn
ij characterizes the hand relationships between

joint pairs in an entire video sequence. However, if only one
hand is present during a signing process, only intra hand
distances are used as feature vector. The final feature matrix
for an entire 3D hand sign sequence of N frames is given as

DN
ij =

[
D1

ij , D
2
ij , ................., D

N
ij

]
∀DN

ij l, D
N
ij r (3)
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else
DN

ij =
[
D1

ij l, D
2
ij l, ......, D

N
ij l

]
∀h = l (4)

Or
DN

ij =
[
D1

ij r, D
2
ij r, ......, D

N
ij r

]
∀h = r (5)

The JRD matrix captures three types of motion details,
namely the intra hand joint distances, inter hand relational joint
distances and the time. Finally, the JRD matrix is transformed
into a JRDM mapped entity that represents 3D hand move-
ments in Indian sign language.

In contrast to previous studies [27], we simply encode the
JRD matrix into an image, using a standard mapping procedure
[36] with the “Jet” colour map. Combining the three RGB
colour planes into one produces a JRD image which consists of
intensity values only. Previous methods have encoded distance
maps into colour images [27], but these are affected by the
subject’s dimensions, leading to an increased number of mis-
classifications. We used the inter hand relationships between
hand joints in the present study to account for the differences
in their unrelated features, thus making our approach resistant
to subject to subject dimensionality differences. Fig. 3 shows
how the JRDM is encoded for a 3D hand sign video.

Fig. 3. JRDM color encoding process

C. Proposed 3DH CNN

The proposed 3DH CNN is inspired by the modified signet
VGG architecture developed in [36], a moderately deep CNN
model that demonstrated state-of-the-art classification and pre-
cision for 3D sign language recognition. The architecture of
3DH CNN is shown in Fig. 4. It has 8 convolutional layers
followed by a max pooling and ReLu layers. Drop out of 0.5
was introduced at the end of 8th layer for inducing nonlinearity
into the feature vectors. Two dense layers and a SoftMax were
present at the end of the network to assign class probabilities
during training and testing. The filter sizes in each layer are
kept constant at with an increasing filter numbers every two
layers. The dual constant filter layers are 16, 32, 64 and 128.

The image resolution of 256 × 256 is considered for both
training and testing to match the filter resolutions and their
number which avoided vanishing gradients.

D. Training 3DH CNN

Python 3.7, with a Keras frontend and a TensorFlow back-
end is used for implementing 3DH CNN on our KL 3DHG
dataset with 220 class labels. We used the same hyperparam-
eters for all datasets, except for the learning rate, which was
reassigned during training for benchmark dataset DGH 14/18.
Specifically, we decreased the learning rate exponentially from
0.001 until the error became constant. At the start of the
training phase for each dataset, we set the network’s weights
and bias parameters randomly using a zero-mean Gaussian
distribution function with variance 0.01.

The 3DH CNN learned by updating its weights and bias
parameters using the back propagation gradient descent al-
gorithm. We applied ReLu and SoftMax hyperparameter ac-
tivations in the convolutional and dense layers, respectively.
Finally, we used a fixed batch size of 64 for training, based on
the image resolution and amount of GPU memory available.
During training, we used k-fold cross validation, setting the
k value at 20% of the training set. After training on each
dataset, the trained model was saved, and then its hyperpa-
rameters were tuned based on feedback acquired through layer
visualizations. Later, we compared our model’s performance
against those of several state-of-the-art DNNs used for 3D
hand gesture recognition in [27], [28], [8], [29], [30], [35].
The training accuracy and loss functional plots are shown in
Fig. 5 from the proposed 3DH CNN on KL 3DHG.

E. Testing and Performance Evaluation

After training on each dataset, the CCNN and the other
DNNs were tested on the test sets described in Table I. Table
I shows the recognition accuracies obtained for each of the
two skeletal datasets for hand gesture recognition which are
averaged over the entire set. Further, video-based 3D hand
gesture recognition based on CNNs with datasets in [41] and
[42] were also tested with our network. These results show that
our 3DH CNN recognition accuracies were higher than those
of the state-of-the-art DNNs. The proposed 3DH CNN showed
no signs of disappearing gradients, and weight decay was
relatively smooth in the dense layers. The promising results
for the 2D video hand gesture datasets inspired us to look into
the more difficult question of identification of 3D human action
skeletal dataset such as NTU RGB D, HDM05 and CMU [27].

IV. EXPERIMENTAL EVALUATIONS AND DISCUSSIONS

Firstly, the proposed method is being evaluated for 3D
hand gesture skeletal data characterizations using JRDMs with

TABLE I. PREDICTION ACCURACIES ACHIEVED FOR TWO HAND SKELETON DATASETS

Datasets Recognition Rates (%)

VGG CNN+
LSTM

CNN+
RNN

Multi-Stream
CNN GoogLeNet Connived

ResNet
3DH CNN
(Proposed)

DGH 14/28 86.23 88.82 88.31 91.52 93.07 93.86 96.07
KL 3DHG 84.36 86.48 86.37 88.96 91.16 91.75 94.32
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Fig. 4. Proposed 3DH CNN for 3D skeletal hand gesture recognition

Fig. 5. (a) accuracy Vs epochs and (b) loss Vs epochs.

3DH CNN. Second, various colour coded maps will be tested
with 3DH CNN on KL 3DHG and DGH 14/28 hand skeletal
datasets. Thirdly, different DNNs gauge the performance of
the proposed 3DH CNN on the two hand gesture datasets.
Finally, we test the performance of the proposed JRDMs on
3D skeletal action datasets with 3DH CNN and other popular
models.

A. Evaluation on KL 3DHG with 3DH CNN

The implementation is derived from Keras and TensorFlow
toolboxes available in python 3.6 with considerable adjust-
ments during training and testing. The training is accomplished
on an 8GB GPU from NVIDIA with model number GTX1080.
The proposed 3DH CNN is tested on KL 3DHG mocap data
on the above GPU system. Performance of each network with
the proposed JRDA encoding format is evaluated with respect
to mean average recognition (mAR) on the entire training set.
The 3DH CNN is shown examples from 8 subjects in 2 views
during training and the remaining 2 subjects with 2 views are
applied during testing. Table II shows the mAR for both same
and cross subject test results. It also shows results of same and
cross view testing.

In this part, we plot confusion matrices of the proposed
JRDM’s on our 3DH CNN architecture resulted from cross
subject and cross view testing of the trained network. Fig.
6 and 7 shows the confusion matrix for 30 hand gestures in
Indian sign language. The confusion matrices clearly show the
influence of putting relational information between hands into
distance maps together with the help of Eq. (4). The overall
recognition accuracies achieved are around 94.32% for cross
subject and 91.28% for cross view testing respectively.

TABLE II. MAR FOR FEW SIGNS IN OUR KL 3DHG DATASET

3D Hand
Gestures

Same
subject

Cross
subject

Same
View

Cross
View

Eat 0.9867 0.9738 0.9845 0.9692
Read 0.9899 0.9756 0.9894 0.9711
Hi 0.9946 0.9912 0.9969 0.9893
Good 0.9904 0.9824 0.9891 0.9723
North 0.9975 0.9889 0.9985 0.9862
East 0.9994 0.9918 0.9865 0.9812
Biscuit 0.9912 0.9893 0.9817 0.9734
Breakfast 0.9704 0.9671 0.9661 0.9417
Curd 0.9927 0.9827 0.9914 0.9751
Puri 0.9819 0.9698 0.9775 0.9576
Food 0.9964 0.9911 0.9924 0.9727
Cake 0.9918 0.9865 0.9867 0.9687
Ball 0.9345 0.9294 0.9259 0.9176
Sports 0.9934 0.9833 0.9989 0.9871
Trophy 0.9899 0.9817 0.9962 0.9815
Games 0.9845 0.9798 0.9808 0.9572
Badminton 0.9264 0.9175 0.9159 0.8973
Lose 0.9891 0.9795 0.9711 0.9669
Volleyball 0.9847 0.9768 0.9835 0.9714
Assembly 0.9221 0.9115 0.9152 0.8917
Power 0.9843 0.9721 0.9814 0.9656
Strike 0.9795 0.9689 0.9786 0.9512
Leader 0.9449 0.9412 0.9412 0.9256
Flag 0.9528 0.9465 0.9573 0.9487
Corn 0.9733 0.9663 0.9721 0.9617

Fig. 6. Cross subject Confusion matrix for 30 class 3D hand gesture data

B. Evaluating Colour Coding on 3D Hand Gestures

The proposed JRDM’s based colour texture encoding
method is tested on our KL 3DHG mocap dataset and one
publicly available 3D hand gesture dataset DGH 14/28. Two
CNN’s are built with the proposed architecture on images
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Fig. 7. Confusion matrix for 30 hand gestures tested with cross view data

encoded with our JRDM’s and other popular maps from joint
distance maps (JDMs) [36], joint angular displacement maps
(JADMs) [37], joint velocity maps (JVM) [38], joint quad
maps (JQM) [39] and joint trajectory maps (JTM) [40]. We
present the average recognition accuracies for JRDM and other
encoded images for front view, cross view and cross subject
evaluation on the two datasets in Table III on both the datasets.

The superior performance registered by JRDM’s over other
maps on 3D hand gesture datasets can be attributed to joint re-
lational information that provides relationships between joints
on both hands. All the values are averaged over the number
of test subjects used for testing the proposed 3DH CNN.

C. Performance of Hand Gesture Recognition on state – of –
the – art CNNs.

The image encoding model is further evaluated on popular
state of the art single stream CNN architectures, to prove that
the encoding mode is universal across architectures. Training
for all architectures is given from scratch by keeping the
network attributes such as learning rate, learning momentum
and stopping criterion as common.

From Table III, the recognition accuracies for cross subject
and cross view show that JRDM type colour texture encoding
is better than all other encoding on our KL 3DHG data. All
220 class labels are tested with an encoded image size of
as input for each deep net architecture. Table IV gives the
mRA of the networks trained with JRDM’s and other maps
on benchmarked deep learning models. The cross-view scores
are a little less than cross subject scores in all the cases due
to inter finger occlusions in joints during the signing process.

D. Performance on 3D Skeletal Action Recognition

This section evaluates the advantages of using our JRDMs
across different 3D skeletal action datasets with multiple DNN
classifiers. Table V lists the recognition accuracies on HDM05
[46], CMU [47] and NTU RGB-D [48] 3D action datasets.
The JRDMs were generated on the positional vectors using the
process described in Section 3. All the maps were normalised
and resized to 256 × 256, irrespective of number of joints
in the skeletons. Since, the performance of other maps has
already been reported in earlier works [36], [37], [38], we
recommend the reader to refer them for drawing conclusions
with the present relative geometric maps.

V. CONCLUSION

This work proposes Joint Relational Distance maps
(JRDM’s) for representing spatio temporal information in
3D mocap hand gesture recognition data. Unlike, Joint other
previously proposed maps for action recognition, the proposed
JRDM maps to rich colour coded images with local infor-
mation is computed using paired joint distances of left- and
right-hand joint distances. Further, a 3DH CNN architecture is
proposed for classifying the encoded images. The CNN’s are
trained from scratch with KL 3DHG and DGH 14/28 hand
gesture datasets. The results show the JRDM encoded images
generate unique representations of 3D mocap hand gesture data
which are recognized with deep CNN frameworks.

TABLE III. COMPARING DIFFERENT FORMATS OF COLOUR TEXTURE ENCODING ON 3D HAND GESTURE DATASETS FOR PERFORMANCE EVALUATION.

Dataset % mRA
JDM JQM JADM JVM JTM JRDM

Front View KL 3DHG 0.9148 0.937 0.9412 0.9185 0.8841 0.9523
DGH 14/28 0.9426 0.9661 0.9689 0.9556 0.9118 0.9796

Cross View KL 3DHG 0.8464 0.8832 0.8871 0.8626 0.8294 0.9128
DGH 14/28 0.8691 0.9029 0.9101 0.8836 0.8525 0.9325

Cross Subject KL 3DHG 0.8899 0.9212 0.926 0.9035 0.8637 0.9432
DGH 14/28 0.9021 0.9338 0.943 0.9208 0.884 0.9607

TABLE IV. RECOGNITION RATES FOR STATE-OF-THE-ART CNN MODELS

Architecture JDM JADM JVM JQM JTM JRDM
Cross

Subject
Cross
View

Cross
Subject

Cross
View

Cross
Subject

Cross
View

Cross
Subject

Cross
View

Cross
Subject

Cross
View

Cross
Subject

Cross
View

VGG [37] 0.7788 0.7363 0.8352 0.7834 0.8147 0.7486 0.834 0.7733 0.7713 0.7203 0.8436 0.8009
CNN+LSTM [43] 0.803 0.7554 0.8533 0.7965 0.8337 0.783 0.8518 0.8058 0.7867 0.7465 0.8648 0.8188
CNN+RNN [44] 0.8043 0.7635 0.8553 0.807 0.8372 0.7906 0.8592 0.8149 0.7916 0.7454 0.8637 0.8204
Multi-Stream CNN [40] 0.8249 0.779 0.8755 0.836 0.8558 0.8104 0.8738 0.8329 0.8213 0.7665 0.8896 0.8393
GoogLeNet [45] 0.8514 0.7959 0.8983 0.8583 0.8715 0.8282 0.8915 0.8522 0.8332 0.7844 0.9116 0.8635
Connived ResNet [38] 0.8558 0.8098 0.8972 0.8628 0.8744 0.8365 0.8933 0.8545 0.8358 0.7931 0.9175 0.8655
3DH CNN (Proposed) 0.8899 0.8464 0.926 0.8871 0.9035 0.8626 0.9212 0.8832 0.8637 0.8294 0.9432 0.9128
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TABLE V. PERFORMANCE OF JRDMS ACROSS PUBLIC 3D SKELETAL
DATASETS

Architecture Datasets Validation
Error (%)

Cross
Subject

Cross
View

VGG
HDM05 5.54 85.35 83.79
CMU 6.67 79.92 78.42
NTU RGB-D 5.92 82.17 80.52

CNN+LSTM
HDM05 4.84 87.53 84.92
CMU 5.55 82.15 80.26
NTU RGB-D 4.96 84.27 82.11

CNN+RNN
HDM05 4.59 87.61 84.45
CMU 5.29 83.35 81.21
NTU RGB-D 4.77 84.27 81.92

Multi-Stream CNN
HDM05 4.21 90.41 87.71
CMU 5.03 84.32 81.27
NTU RGB-D 4.42 86.43 85.57

GoogLeNet
HDM05 4.18 91.24 89.14
CMU 4.93 86.12 84.46
NTU RGB-D 4.37 88.11 86.19

Connived ResNet
HDM05 3.53 92.54 90.35
CMU 4.95 91.34 89.63
NTU RGB-D 3.26 91.01 88.41

3DH CNN (Proposed)
HDM05 2.06 97.52 96.37
CMU 3.21 94.29 92.75
NTU RGB-D 2.17 96.68 95.24
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